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Abstract: Although silicon is being researched as one of the most promising anode materials for
future generation lithium-ion batteries owing to its greater theoretical capacity (3579 mAh g−1), its
practical applicability is hampered by its worse rate properties and poor cycle performance. Herein,
a silicon/graphite/amorphous carbon (Si/G/C) anode composite material has been successfully
prepared by a facile spray-drying method followed by heating treatment, exhibiting excellent elec-
trochemical performance compared with silicon/amorphous carbon (Si/C) in lithium-ion batteries.
At 0.1 A g−1, the Si/G/C sample exhibits a high initial discharge capacity of 1886 mAh g−1, with
a high initial coulombic efficiency of 90.18%, the composite can still deliver a high initial charge
capacity of 800 mAh g−1 at 2 A g−1, and shows a superior cyclic and rate performance compared
to the Si/C anode sample. This work provides a facile approach to synthesize Si/G/C composite
for lithium-ion batteries and has proven that graphite replacing amorphous carbon can effectively
improve the electrochemical performance, even using low-performance micrometer silicon and large
size flake graphite.

Keywords: lithium-ion batteries; anode material; Si/G/C; spray drying

1. Introduction

Rechargeable lithium-ion batteries (LIBs) were successfully commercialized by Sony
in 1991 [1]. LIBs have many advantages, such as high energy density, good cycle stability,
low self-discharge effect, no memory effect, and environmental friendliness, compared
with nickel-metal hydride, nickel-cadmium, and lead-acid batteries. These advantages
for lithium-ion batteries have increased their application areas, especially in the area of
consumer electronics products [2]. However, with the rapidly increasing demand for higher
energy density, the current theoretical capacity of graphite cathodes is too low to meet the
requirements of further applications of LIBs [3]. Consequently, there is growing interest in
developing battery electrodes with high gravimetric and volumetric capacity to surpass
the energy density of the current LIBs [2]. Silicon is widely considered as one of the most
promising anode materials. Nevertheless, the Si electrode suffers from large undesired
capacity loss caused by the large volume expansion during the repeated cycling and the
low electric conductivity, causing a short cycle life during application [4].

To address these critical issues, considerable strategies have been invented to improve
the performance of Si anodes, such as optimizing electrode structure. Nanostructures have
been demonstrated to be an effective method given the modification of conductivity as
well as the alleviation of swelling volume [5]. For example, silicon nanowires can solve
the material pulverization problem as they can accommodate large strains. Furthermore,
they also provide good electronic contact and conduction, and shorten the lithium insertion
distances [6]. In addition, it is also an effective technique for the integration of well-
conductive species into Si, which may operate as a buffer to cushion structural fracture and
improve electric connection.
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Recently, various Si-based anodes have been developed to provide significantly greater
lithium storage performances than the pure Si anode, such as Si/C [7–10], Si/Ag [11],
Si/Sn [12,13], Si/Cu [14], and Si/conducting polymer composites [15,16]. Among these
buffer metals, the co-utilization of silicon and graphite provides the most practical and
easy to commercialize anode for high-energy lithium batteries [17]. Compared with silicon
anode, graphite has more advantages, such as low cost, high CE, excellent cycle life,
good mechanical flexibility, small volume change, and high conductivity. Therefore, to
achieve high specific capacity, area capacity, and volume capacity, silicon is added to the
graphite negative electrode, and at the same time to buffer volume changes and increases
conductivity. In addition, the co-utilization of silicon and graphite can be achieved using the
same commercial production line, thus translating into high manufacturability and minimal
investment. Silicon–graphite composite will simultaneously maximize the advantages of
both materials while decreasing the disadvantages of both and also ensuring its success
as a viable alternative for the battery industry. However, integrating silicon and graphite
into a single composite to obtain the desired properties remains a challenge, as the two
materials differ significantly in terms of physical and chemical properties.

Herein, we report the preparation of Si/G/C composite anodes containing micro
silicon particles, flake graphite, and amorphous carbon generated from sucrose. The
low-cost micron silicon particles were obtained from the scraps of photovoltaic silicon
production lines. This work attempts to mix these low-cost micron Si particles, flake
graphite, and sucrose to prepare Si/G/C anode materials by a facile spray-drying and
carbonization process. The graphite and amorphous carbon in the composite can act as
a buffer matrix for the Li–Si alloy during the cycle. In addition, amorphous carbon can
successfully link Si with graphite, generating a conductive network, and may efficiently
contain the Si and graphite particles inside it. The Si/G/C composite obtained shows good
electrochemical performance, compared with the Si/C composite.

2. Results and Discussion

The XRD curves of a pristine Si/G/C sample along with a control sample of Si/C
are shown in Figure 1a. As to the Si/G/C and Si/C, a sequence of diffraction peaks can
be recognized. The diffraction peaks at 2θ = 28.44◦, 47.30◦, 56.12◦, 69.13◦, 76.38◦, and
88.03◦ are attributed to the (111), (220), (311), (400), (331), and (422) planes of the metal
Si (PDF#75-0589), respectively. While the diffraction peaks at 2θ = 26.38◦, 42.22◦, 44.39◦,
54.54◦, 77.24◦, and 83.18◦ correspond to the (002), (100), (101), (004), (110), and (112) planes
of the graphite (PDF#41−1487). Noticeably, no apparent diffraction peaks of amorphous
carbon can be noticed in the Si/C sample, perhaps owing to its low degree of crystallinity.
All of the diffraction patterns of Si/G/C composites are perfectly consistent with Si and
graphite, demonstrating that the crystalline phase change of Si does not take place during
the spray drying and carbonization process. The Raman spectra of Si/G/C and Si/C are
displayed in Figure 1b. The ratio of the integrated area of the D band and G band reveals
the graphitization degree. Compared with Si/C, the lower ratio of ID/IG for Si/G/C
shows that Si/G/C anodes offer greater electrical conductivity. Compared with graphite,
Si/G/C and Si/C samples exist as amorphous sucrose-pyrolyzed carbon. All this evidence
suggests that the Si/G/C and Si/C composites are successfully prepared.

The thermogravimetric (TG) curves of Si/G/C and Si/C composites, measured in air
at 900 ◦C to burn away the carbon matrix, are shown in Figure 2. TG analysis indicates that
Si/G/C powders contain ≈58.44 wt.% of Si and 41.56 wt.% of carbon. The experimental
idea is that the G of Si/G/C is to replace part C in Si/C, the carbon residual rate of sucrose
is about 33.33%, and 3 g sucrose is replaced by 1 g graphite. In fact, graphite also loses
weight after heat treatment, resulting in less carbon.

Figure 3a,b display the SEM images of the micro-sized porous Si and the graphite. As
demonstrated in Figure 3a, the silicon displays the particle size with micro-scale, without
evident agglomeration. As indicated in Figure 3b, the particle size of flake graphite is
about 15 µm. Figure 3c–f show the SEM images of Si/C precursor, Si/C, Si/G/C precursor,
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and Si/G/C composites, respectively. Although spherical particles may be seen in the
precursors produced by spray drying, they cannot stay that way after being heated, perhaps
because the D50 of Si and graphite are both micron-sized. There is no micron Si on the
surface of the Si/C material, showing that micron silicon is encased in amorphous carbon.
For the Si/G/C material, it is clear that the graphite sheet is bigger and not entirely covered.
From Figure 3b,f, it is seen that the graphite experiences ferocious shattering making the
particles smaller during ball milling. N2 adsorption/desorption isotherms of Si/G/C with
graphite added may be categorized as type IV with H4 hysteresis loop in the relative
pressure (p/p0) range between 0.5 and 1.0, which is associated with meso-mesopores
(Figure S1b (Supplementary Materials)). The morphological alterations brought on by
significant volume variations may be reduced by the meso-macropore structure, which
enhances cyclic stability [18–20].
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Figure 1. (a) XRD patterns; (b) Raman spectra of various samples.
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Figure 2. TG profiles.

According to the element mapping in Figure 4a, the Si and C elements are distributed
equally throughout the composite, showing the components of the Si/G/C composite are
evenly mixed. The amorphous carbon may efficiently enclose the Si and graphite particles
inside it. It is stated that the inclusion of amorphous carbon on the surface of the composite
would prevent the silicon particles from separating by providing effective constrain force
and is favorable for the electrical transmission, thus, it may increase the electrochemical
performance of the material. Figure 4b,c show the HRTEM pictures and the selected area
electron diffraction (SAED) pattern of the composite, from which we can discern the main
components of the composite.
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Figure 5a depicts the typical galvanostatic charge–discharge curves of the Si/G/C and
Si/C composite at the current density of 1 A g−1 within 0.01–2 V (vs. Li/Li+). The Si/G/C
anode produces a high initial discharge capacity reaching 1886 mAh g−1 with an initial
coulombic efficiency of 90.18% and irreversible capacity of 185.2 mAh g−1 as a consequence
of the creation of solid electrolyte interface (SEI) [21]. The capacity will increase with the
decreasing particle size of active materials, which is attributed to the reduced distance
travelled by the lithium-ion in smaller particles during the intercalation process at a given
C-rate and the greater proportion of edge sites and the increased utilization rate of smaller
particles during the intercalation process (charge storage) [22].The discharge curves feature
a lengthy and distinct platform at 0.2–0.01 V that may be related to the lithiation process
of Si, graphite, and amorphous carbon. Additionally, the charge curves exhibit potential
plateaus at around 0.5 V and the below are ascribed to the de-lithiation of Si and carbon,
respectively. The findings will be further validated by the CV curves in Figure 5f. As
shown in Figure 5c, the Si/G/C anodes display higher rate capability when the charge
current density is adjusted from 0.1 A g−1 to 2 A g−1 (Figure 5b), even when the charge and
discharge current density increased to 1 A g−1 to test the circulation properties (Figure 5d).
As shown in Figure 5e, the Si/G/C anodes exhibit the high initial coulombic efficiency
(90.18%) and average coulombic efficiency (99%) after about 30 cycles which are used as a
rate performance test.

The CV curves of the Si/G/C composite within the voltage of 0.01–1.5 V are presented
in Figure 5f. Figure 5f depicts the first five scanning curves at a scanning rate of 0.1 mV s−1,
a visible reduction peak at 0.2 V, and the oxidation peaks at 0.32 V and 0.48 V may be
ascribed to the silicon alloying/dealloying processes with Li+ [23]. During the initial
cathodic scanning operation, the faint peak at 0.5 V only observed in the first cycle may be
attributed to the creation of the SEI layer on the surface of the active materials. The strength
of the peaks rapidly grew throughout the successive cycles, suggesting that the Si-based
materials were increasingly activated. The CV profiles of the Si/C are similar to that of
Si/G/C except that there is only one obvious oxidation peak (Figure S2b).

In order to better understand the kinetics of lithium storage, CV curves for the Si/G/C
and Si/C were obtained throughout a scan rate range of 0.2 to 1.0 mV s−1 in a voltage
window of 0.01 to 1.5 V (Figure S2c,e). Even at a fast sweep speed, it is clear that all of the
samples’ CV curves, which include a cathodic peak and an anodic peak, are comparable.
The response currents of the samples’ redox peaks grew quickly with the stepwise increase
in scan speeds, although the peak locations hardly changed. Peak current (i) and scanning
rate (v) have the following connection, according to the literature [24–26]: i = a ∗ vb, where
a and b are the adjustable constants, and the b value may be derived using the slope
of log(i)–log(v). The diffusion-controlled process or the capacitance-limited mechanism
for lithium storage behavior, respectively, are indicated by a b value of 0.5 or 1.0. As
can be shown in Figure S2, all sample b values were near to 0.5, demonstrating that
diffusion behavior governed the processes of lithium storage in the produced electrode
materials. To gain an insight into the lithium diffusion kinetics and electrical resistance of
the samples, electrochemical impedance spectroscopy (EIS) measurements were carried
out in the frequency range of 0.01 Hz to 1 MHz with an amplitude of 10 mV. The Si/G/C
and Si/C Nyquist graphs are shown in Figure S3. Si/G/C has a considerably lower Rp
value than Si/C, which implies that graphite could improve the connection between active
materials and the current collector and increase the conductivity of anode materials. As a
result, the phase-separated graphite significantly improves the electrochemical performance
of the Si/G/C anode material. The lithium-ion diffusion coefficient was measured by GITT
with a pulse current of 0.1 A g−1 for a pulse time of 30 min between 1 h rest intervals

(Figure S4a) and calculated by Equation [26]: D = 4L2

πτ (
∆Es
∆Eτ

)
2
. From Figure S4b, it can

be observed that the calculated DLi
+ of Si/G/C for both the lithiation and de-lithiation

processes are close to those of the Si/C anode, which agrees well with the calculation results
from CV data (Figure S2c–f).
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Figure 5. (a) The initial charge and discharge profiles of Si/G/C and Si/C anodes at 0.1 A g−1.
(b) Charge/discharge profiles of the Si/G/C anode under various current densities. (c) Rate capabili-
ties of Si/G/C and Si/C anodes measured under various current densities from 0.1 A g−1 to 2 A g−1.
(d) The cycling performance of the Si/G/C and Si/C anodes at a current density of 1 A g−1. (e) The
coulombic efficiency of Si/G/C. (f) Cycle voltammetry of the Si/G/C composite at different cycles in
the potential range from 0.01 to 1.5 V (vs. Li/Li+).

3. Experimental Section

Synthesis of Si/C and Si/G/C Materials. Typically, 2 g of PVP (the molecular weight:
360,000) and 3 g of sucrose were successively dissolved in 60 mL of distilled water under
stirring within 30 ◦C. Then, 2 g micro-Si and 1 g flake graphite were orderly dispersed
into the above solution by vigorous stirring, followed by ball milling for 4 h to form a
homogeneous suspension solution. The resulting solution was used to fabricate Si/G/C
composites by the spray drying process. The obtained Si/G/C composites were annealed
at 200 ◦C for 2 h with a heating rate of 1 ◦C min−1 under an air atmosphere, then calcined
at 900 ◦C for 2 h in an argon atmosphere. After the calcination, the obtained Si/G/C com-
posites were denoted as Si/G/C (Si/Graphite/Carbon). For comparison, Si/C (Si/Carbon)
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was also prepared under the same condition except that 1 g of graphite was replaced by an
additional 3 g of sucrose.

Structural characterization. The X-ray diffraction (XRD) patterns were measured by
X-ray diffractometer (D8 ADVANCE DAVINCI, Cu kα radiation, λ = 0.154 nm). S4800 cold
field-emission scanning electron microscopy (SEM) and transmission electron microscopy
(TEM Tecnai F20) were used to reveal the microstructure of the as-obtained samples.
A Confocal Raman Reflectance Microscope (Ram Enishaw Invia REFLEX) was used to
accurately analyze the crystallinity and defects of the sample. Thermogravimetric analysis
(TGA) was carried out using TGA 8000-Spectrum two-Clarus SQ8T instrument at a heating
rate of 10 ◦C min−1 from 20 ◦C to 900 ◦C under air. The adsorption data of the multipoint
Brunauer–Emmett–Teller (BET) method were used to calculate the specific surface area and
pore size of the sample.

Preparation of anode electrode. The obtained products served as electrode active
material in half-cells for the study of their electrochemical lithium-storage performance.
The assembling of the half-cell involved the following phases. First and foremost, making
the electrode slurries, the active material (Si/G/C or Si/C), conductive carbon (Super P)
and sodium carboxymethyl cellulose (CMC) binder with a mass ratio of 8:1:1 were mixed
thoroughly and then transferred into the sample bottle, dissolved in the deionized water,
and stirred for 6 h. Then, the working electrodes were fabricated by spreading the electrode
slurries on Cu foil and dried at 80 ◦C overnight under vacuum conditions. Following
that, the sheet-punching machine cut 12 mm diameter electrode slices, which were then
pressed for 30 s at a pressure of 20 MPa. The mass loading of the active material was
between 0.99 and 1.13 mg cm−2 (based on the quality of Si/G/C or Si/C) in the prepared
electrode. Afterwards, the CR2032 type coin cells were assembled in argon-filled humidity-
free glove box using pure lithium foils as a counter electrode with 1M LiPF6 dissolved
in ethylene carbonate (EC)/diethyl Carbonate (DEC)/ethylene methyl carbonate (EMC)
(1:1:1, volumetric ratio) as the electrolyte.

Electrochemical measurements. The multichannel battery test system (LAND CT-
2001A; Wuhan Rambo Testing Equipment Co., Ltd., Wuhan, China) was applied to measure
the galvanostatic in the voltage range from 0.01 to 2 V (vs. Li/Li+) and different current
densities. Cyclic voltammetry (CV) curves and Electrochemical impedance spectroscopy
(EIS) measures were obtained by using a Solartron 1470E (Solartron Analytical, UK) multi-
channel potentiostat electrochemical workstation. All of the electrochemical experiments
indicated above were carried out at room temperature.

4. Conclusions

In summary, Si/G/C anode materials were effectively manufactured by a straight-
forward spray-drying and annealing technique. Both silicon and graphite were covered
with amorphous carbon. As a result, the Si/G/C anode displayed a superior cycling
performance and a greater initial coulombic efficiency as compared to the Si/C composite.
The high electrochemical performance was due to the covering of amorphous carbon, and
specifically the buffering of graphite substrate. The production of Si/G/C presents an
easy technique and unique microstructure which may be utilized for creating various
anode materials on a large scale, and concurrently provides a viable foundation for the
influence of graphite or sucrose carbon on the Si-based anodes in lithium-ion batteries.
Therefore, it is a good prospect to fabricate Si/G/C with better properties of graphite and
nano-silicon materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28020464/s1, Figure S1: (a) N2 adsorption–desorption
isotherms, and (b) pore size distribution of Si/G/C and Si/C; Figure S2: The initial five CV curves
of the (a) Si/G/C and (b) Si/C at 0.1 mV s−1, (c,e) CV curves at different scan rates, (d,f) linear
fitting relationship between log i and log v at different redox peaks; Figure S3: (a) electrochemical
impedance spectra and (b) fitting Z’ and ω−1/2 of Si/G/C and Si/C; Figure S4: (a) E vs. t curves
of Si/G/C electrode for a single discharge impulse and marked ∆ES and ∆Eτ, (b) GITT curves and
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corresponding Li+ diffusion coefficient at different lithiation/de-lithiation states of the Si/G/C and
Si/C electrodes.
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