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Abstract: Efficient and stable electrode materials are urgently required for wastewater treatment in
the electrocatalytic degradation of toxic and refractory organic pollutants. Ti3+ self-doping black TiO2

nanotube arrays (Ti/B-TiO2-NTs) as an interlayer were used for preparing a novel PbO2 electrode via
an electrochemical reduction technology, and a sodium dodecyl sulfate (SDS)-modified PbO2 catalytic
layer was successfully achieved via an electrochemical deposition technology. The physicochemical
characterization tests showed that the Ti/B-TiO2-NTs/PbO2-SDS electrodes have a denser surface
and finer grain size with the introduction of Ti3+ in the interlayer of Ti/TiO2-NTs and the addition of
SDS in the active layer of PbO2. The electrochemical characterization results showed that the Ti3+

self-doping black Ti/TiO2-NTs/PbO2-SDS electrode had higher oxygen evolution potential (2.11 V vs.
SCE), higher electrode stability, smaller charge-transfer resistance (6.74 Ω cm−2), and higher hydroxyl
radical production activity, leading to it possessing better electrocatalytic properties. The above
results indicated that the physicochemical and electrochemical characterization of the PbO2 electrode
were all enhanced significantly with the introduction of Ti3+ and SDS. Furthermore, the Ti/B-TiO2-
NTs/PbO2-SDS electrodes displayed the best performance on the degradation of methylene blue (MB)
in simulated wastewater via bulk electrolysis. The removal efficiency of MB and the chemical oxygen
demand (COD) could reach about 99.7% and 80.6% under the optimal conditions after 120 min,
respectively. The pseudo-first-order kinetic constant of the Ti/B-TiO2-NTs/PbO2-SDS electrode
was 0.03956 min−1, which was approximately 3.18 times faster than that of the Ti/TiO2-NTs/PbO2

electrode (0.01254 min−1). In addition, the Ti/B-TiO2-NTs/PbO2-SDS electrodes showed excellent
stability and reusability. The degradation mechanism of MB was explored via the experimental
identification of intermediates. In summary, the Ti3+ self-doping black Ti/TiO2-NTs/PbO2-SDS
electrode is a promising electrode in treating wastewater.

Keywords: Ti3+ self-doping black TiO2 nanotube arrays; PbO2 electrode; twelve sodium dodecyl
sulfate (SDS); electrocatalytic oxidation (EO); wastewater treatment

1. Introduction

The harmonious coexistence between humans and nature has always been the ultimate
aspiration of mankind. However, the excessive production of non-degradable organic pol-
lutants produced by human beings is putting enormous pressure on the environment [1,2].
Textile wastewater containing persistent and toxic carcinogens such as methyl orange,
rhodamine B, Congo red, and methylene blue (MB) is persistent and toxic carcinogens
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pose significant threats to both the aquatic environment and human health [3]. Therefore,
implementing effective strategies for the removal of organic dyes from wastewater is related
to the relationship between the sustainable development of society and nature.

Recently, several technologies have been developed for the removal of textile-dyeing
wastewater. However, the desired effect cannot be achieved due to the poor mineral-
ization effect in the treatment via conventional treatment methods [4]. Therefore, it is
imperative to develop a clean, energy-saving, versatile, and efficient new approach for
wastewater treatment.

The electrochemical oxidation (EO) process, as a promising method for degrading or-
ganic industrial effluents, has attracted growing interest nowadays due to its high efficiency,
simple operation, and environmentally friendly technology [4,5]. For the electrochemical
method, the anodic material is a crucial factor because it determines the effectiveness of
mechanisms and reaction pathways of electro-catalytic oxidation [6]. Accordingly, develop-
ing a high-catalytic-efficiency and stable electrode is essential for enhancing the sewage
treatment capacity.

Over the last few decades, various electrode materials have been reported for mineral-
izing refractory pollutants, including RuO2, IrO2, boron-doped diamond (BDD), and SnO2
electrodes [7,8]. Among them, the PbO2 electrode, known for its moderate price, simple
preparation, high electrocatalytic activity, and good corrosion resistance, has been widely
used as an anode material in the field of electrochemical water treatment [9]. However, tra-
ditional PbO2-coated anodes still have some disadvantages, such as a small specific surface
area, large internal stress, and easy deactivation and brittleness [10]. A PbO2 electrode is
usually easy to peel off from a flat Ti substrate because of the large internal stress, resulting
in the leakage of the Pb element into the environment [11].

To improve the service life and electrocatalytic properties of the PbO2-based an-
odes, various strategies have been exploited by doping metal or non-metallic ions, per-
forming substrate modification, using a nanostructured composite, and introducing an
intermediate layer [12].

Anodically formed vertically oriented TiO2 nanotube arrays (Ti/TiO2-NTs) have also
been extensively utilized as the catalyst or the middle layer in (photo-) electrochemical
advanced oxidation processes for wastewater treatment [13].

Nevertheless, the semiconductive properties of Ti/TiO2-NTs impeded their further use
in electrochemistry. To solve this problem, electrochemical self-doping via electrochemical
reduction under mild conditions has been employed to improve the semiconducting
behavior of Ti/TiO2-NTs. In this method, electrochemical reduction generates Ti3+, which
increases the electrical conductivity of Ti/TiO2-NTs and creates more active sites [14].

Therefore, doping the interlayer with Ti3+ is supposed to significantly improve the
electron-transfer efficiency between the PbO2 coating layer and the Ti substrate, hence im-
proving the electrocatalytic activity and stability of the PbO2 anode for the electrochemical
degradation of refractory organic pollutants.

To enhance both the electrocatalytic performance and stability of the PbO2 electrode,
a novel Ti3+ self-doping black Ti/TiO2-NTs (Ti/B-TiO2-NTs) layer was fabricated as an
interlayer for making a more stable PbO2 anode. Additionally, sodium dodecyl sulfate
(SDS) was adopted to modify the PbO2 active layer via electrochemical deposition. The
physicochemical and electrochemical properties of this novel PbO2 anode were character-
ized. The electrochemical oxidation behavior of MB on the different types of PbO2 anodes
was investigated fully. The degradation efficiencies of MB were also evaluated under
various experimental parameters. Radical trapping experiments were performed to further
explore the role of ·OH and ·SO4

−1 in the degradation of MB.

2. Results and Discussion
2.1. Morphology and Phase Analysis

The morphologies of the different electrodes were observed using SEM, and the results
are shown in Figures 1 and S1. From Figure S1, it can be seen that the high-ordered TiO2-



Molecules 2023, 28, 6993 3 of 18

NTs without Ti3+ self-doping possess a large specific volume with an average diameter of
approximately 140 nm. Figure 1a shows the Ti3+ self-doping TiO2-NTs after electrochemical
reduction treatment, where the nanostructure of TiO2NTs has not been destroyed, similar
to that shown in Figure S1. Figure 1b–d display SEM images of three types of electrodes:
Ti/TiO2-NTs/PbO2 without Ti3+ self-doping, Ti3+ self-doping Ti/B-TiO2-NTs/PbO2, and
Ti/B-TiO2-NTs/PbO2-SDS electrodes. From Figure 1b, we can see that the surface of the
coated PbO2 layer appears coarse with noticeable cracks on the surface of Ti/TiO2-NTs
without Ti3+ self-doping, which could result in the permeation of electrolytes and reduce
electrode stability. Figure 1c shows the morphology of deposited PbO2 on Ti3+ self-doping
TiO2-NTs. Compared with the Ti/TiO2-NTs/PbO2 electrode, the surface of the Ti/B-TiO2-
NTs/PbO2 electrode still exhibits the pyramid structures, but it becomes smoother and
the cracks have disappeared. The surface structure of PbO2 after SDS addition on Ti3+

self-doping TiO2-NTs is the smoothest, most uniform, and extraordinarily compact among
these three electrodes (Figure 1d); the pyramid structures disappeared, and the grain size
significantly decreased. This result indicates that adding SDS can help obtain a surface
coating that is uniform, compact, and smooth. This may be because of SDS’s ability to
disperse the Pb2+ evenly in the solution [15]. Furthermore, this result also suggests that
the surface morphology of the Ti/TiO2-NTs/PbO2 electrode is simultaneously affected by
both Ti3+ self-doping and SDS. The elemental mapping of the Ti/B-TiO2-NTs/PbO2-SDS
electrode further confirmed the homogeneous distribution of Pb, O, Ti, and C elements in
the Ti/B-TiO2-NTs/PbO2-SDS electrode (Figure 1e).
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Figure 1. SEM images of the surface morphology of (a) Ti/B-TiO2-NTs, (b) Ti/TiO2-NTs/PbO2,
(c) Ti/B-TiO2-NTs/PbO2, and (d) Ti/B-TiO2-NTs/PbO2-SDS electrode; EDS elemental mappings for
Ti (e), Pb (f), O (g), and C (h) on the Ti/B-TiO2-NTs/PbO2-SDS electrode surface.

The typical XRD patterns of three self-made electrodes are shown in Figures S2 and 2.
As shown in Figure S2, all the diffraction peaks of Ti3+ self-doping Ti/B-TiO2-NTs were
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identically in agreement with those of the no-doping Ti/TiO2-NTs, indicating no change
in the anatase phase of the Ti3+ self-doping TiO2NTs within their crystal structure during
electrochemical reduction process.

Molecules 2023, 28, x FOR PEER REVIEW 4 of 18 
 

 

The typical XRD patterns of three self-made electrodes are shown in Figures S2 and 
2. As shown in Figure S2, all the diffraction peaks of Ti3+ self-doping Ti/B-TiO2-NTs were 
identically in agreement with those of the no-doping Ti/TiO2-NTs, indicating no change 
in the anatase phase of the Ti3+ self-doping TiO2NTs within their crystal structure during 
electrochemical reduction process. 

 
Figure 2. XRD patterns of Ti/B-TiO2-NTs/PbO2-SDS electrode. 

For the XRD pattern of the PbO2 electrode in Figure 2, the diffraction peaks for all 
samples located at 2θ = 25.56°, 32.28°, 36.23°, 49.11°, 58.96°, 60.76°, and 62.53° can be at-
tributed to the (110), (101), (200), (211), (310), (211), and (301) planes of β-PbO2, respec-
tively, which matched with the standard diffraction peaks of the JCPDS card (No. 76-
0564). By comparison with three PbO2 electrodes, it can be clearly seen that the diffraction 
intensities of the (101), (211), and (301) planes of Ti/B-TiO2-NTs/PbO2 and Ti/B-TiO2-
NTs/PbO2-SDS electrodes increased, while the diffraction intensities of the (110), (200), 
and (211) planes decreased. This means that Ti3+ self-doping and the addition of SDS do 
not alter the crystal structure but would affect the crystal plane orientation of β-PbO2 [16]. 
It can be argued that Ti3+ self-doping or SDS addition will change the electric double-layer 
structure, altering the growth mechanism of the PbO2 phase and electrodeposition kinetic 
process on the anode surface, which could inhibit the growth of (110) and (200). The av-
erage grain sizes of three different PbO2 electrodes were calculated using the Debye–
Scherrer formula, as shown in Table S1. The results indicate that the average particle sizes 
of the β-PbO2 electrode significantly decreased upon doping with Ti3+ and adding the an-
ionic SDS surfactant. The small crystal particle size is favorable for forming a large specific 
area, which is conducive to improving the electrochemical activity of the electrode. Thus, 
the results from XRD are consistent with the above-mentioned result of SEM. 

For the purpose of analyzing the chemical composition and surface elements on the 
prepared PbO2 electrode materials, the XPS measurements were used to investigate the 
chemical states and elementary composition of PbO2 electrodes. The results are shown in 
Figure 3a–d. The binding energy was corrected using the C 1s peak at 284.6 eV. From the 
survey spectrum shown in Figure S3, characteristic binding energy peaks of Pb, Ti, C, and 
O elements were found on the surface of the Ti/B-TiO2-NTs/PbO2-SDS electrode. The de-
tailed spectrum of Ti 2p is shown in Figure 3a,b. The high-resolution XPS spectra of the Ti 

Figure 2. XRD patterns of Ti/B-TiO2-NTs/PbO2-SDS electrode.

For the XRD pattern of the PbO2 electrode in Figure 2, the diffraction peaks for
all samples located at 2θ = 25.56◦, 32.28◦, 36.23◦, 49.11◦, 58.96◦, 60.76◦, and 62.53◦ can
be attributed to the (110), (101), (200), (211), (310), (211), and (301) planes of β-PbO2,
respectively, which matched with the standard diffraction peaks of the JCPDS card (No. 76-
0564). By comparison with three PbO2 electrodes, it can be clearly seen that the diffraction
intensities of the (101), (211), and (301) planes of Ti/B-TiO2-NTs/PbO2 and Ti/B-TiO2-
NTs/PbO2-SDS electrodes increased, while the diffraction intensities of the (110), (200), and
(211) planes decreased. This means that Ti3+ self-doping and the addition of SDS do not
alter the crystal structure but would affect the crystal plane orientation of β-PbO2 [16]. It
can be argued that Ti3+ self-doping or SDS addition will change the electric double-layer
structure, altering the growth mechanism of the PbO2 phase and electrodeposition kinetic
process on the anode surface, which could inhibit the growth of (110) and (200). The average
grain sizes of three different PbO2 electrodes were calculated using the Debye–Scherrer
formula, as shown in Table S1. The results indicate that the average particle sizes of the
β-PbO2 electrode significantly decreased upon doping with Ti3+ and adding the anionic
SDS surfactant. The small crystal particle size is favorable for forming a large specific area,
which is conducive to improving the electrochemical activity of the electrode. Thus, the
results from XRD are consistent with the above-mentioned result of SEM.

For the purpose of analyzing the chemical composition and surface elements on the
prepared PbO2 electrode materials, the XPS measurements were used to investigate the
chemical states and elementary composition of PbO2 electrodes. The results are shown
in Figure 3a–d. The binding energy was corrected using the C 1s peak at 284.6 eV. From
the survey spectrum shown in Figure S3, characteristic binding energy peaks of Pb, Ti, C,
and O elements were found on the surface of the Ti/B-TiO2-NTs/PbO2-SDS electrode. The
detailed spectrum of Ti 2p is shown in Figure 3a,b. The high-resolution XPS spectra of the
Ti 2p peak of Ti/B-TiO2 can be deconvoluted into four peaks (Figure 3a). Two binding
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energies of 459.14 and 465.13 eV can be assigned to Ti4+, while the binding energies of
457.68 and 464.79 eV are attributed to Ti3+ [17]. Compared to Ti/TiO2-NTs (Figure 3b), the
peaks of Ti/B-TiO2-NTs show a slight red-shift to higher binding energy (Figure S4). The
results indicate that Ti3+ and oxygen vacancies exist in the Ti/B-TiO2-NTs, demonstrating
that the Ti3+ reduction is irreversible. Therefore, the conductivity of Ti/B-TiO2-NTs can be
markedly improved. In the detailed spectrum of Pb 4f in Figure 3c, the two peaks of Pb4f
corresponding to Pb4+ 4f5/2 and Pb4+ 4f7/2 are shown at around 137.08 eV and 141.97 eV,
which were identified as the spectral values of PbO2 [18]. The deconvolution of the O 1s
spectrum could also be fitted into two characteristic peaks at 528.5 and 529.3 eV (Figure 3d),
which belong to lattice oxygen (OL) and chemisorbed oxygen (Oads, OH) [19].
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2.2. Electrochemical Characterization

Figure S5a shows the CV data of the TiO2NTs electrodes before and after electrochemi-
cal reduction.

The pristine TiO2NTs exhibited a low response current within the potential window
of 0~2 V, indicating the poor conductivity of TiO2NTs caused by its semiconductive nature.
In contrast, the Ti3+ self-doping Ti/B-TiO2-NTs presented a much higher response current
in the same potential window, implying that the electrical conductivity was markedly
improved. EIS was adopted to probe the conductivity of the Ti/B-TiO2-NTs. Figure S5b
shows the Nyquist plot of Ti/TiO2NTs and Ti/B-TiO2-NTs electrodes. It can be clearly
observed that the Ti/B-TiO2-NTs show a smaller semicircle radius on Nyquist plots than
the pristine Ti/TiO2NTs, indicating that the resistance of the Ti/B-TiO2-NTs electrode
was significantly decreased. This is further proof that the introduction of Ti3+ ions into
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TiO2NTs can improve electrical conductivity [17]. It demonstrated that Ti3+ self-doping can
significantly improve the electrochemical performance of the TiO2NTs. The CV curves were
obtained for the different PbO2 electrodes under a 0.2 M Na2SO4 solution at a scanning rate
of 50 mV s−1. As observed from CV curves of the various PbO2 electrodes (Figure 4a), all
PbO2 electrodes exhibited similar shapes with a pair of redox peaks, which corresponded to
the reduction–oxidation reactions between Pb (II) and Pb (IV) at the electrode interface [20].
However, the peak oxidation current density of the Ti/B-TiO2-NTs/PbO2-SDS electrode
was higher than that of the other two PbO2 electrodes, which implies that the introduction
of Ti3+ in the interlayer of Ti/TiO2-NTs and the addition of SDS in the active layer of
PbO2 played a role in improving the electrode activity. It also means that the Ti/B-TiO2-
NTs/PbO2-SDS electrode has a greater number of active sites. Therefore, the Ti/B-TiO2-
NTs/PbO2-SDS electrode is much more suitable for the electrocatalytic degradation of MB
than other electrodes.
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solution at a scan rate of 50 mV s−1. (b) LSV of as-fabricated electrodes in the 0.2 M Na2SO4 solution
at a scan rate of 50 mV s−1. (c) EIS of different PbO2 electrodes in the 1 M H2SO4 solution and the
equivalent circuit. (d) Mott–Schottky analysis. (e) The relationship of (q*) and the reciprocal of scan
rate obtained on different PbO2 electrodes. (f) Evolution of OH radical concentration of various
electrodes at different periods during electrocatalytic oxidation.
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The LSV of the different PbO2 electrodes was examined in 0.2 M Na2SO4 at a scan rate
of 50 mV s−1 to investigate the anodic oxygen evolution potential (OEP). As presented in
Figure 4b, the Ti/B-TiO2-NTs/PbO2-SDS electrode achieved the highest OEP of 2.11 V vs.
SCE. This result might be due to the small crystal structure and the synergistic effect of SDS
and Ti3+. As is known, the oxygen evolution reaction is the main competitive side reaction
on the anode surface (Equation (1)), which can lead to increased energy consumption and
decreased oxidation efficiency.

·OHad +H2O→O2 +3H+ +3 e−1 (1)

Therefore, the highest OEP would favor the Ti/B-TiO2-NTs/PbO2-SDS electrode and
exhibit a stronger oxidation ability for the electrochemical oxidation of organics [21]. A
higher OEP value means a substantial amount of ·OH could be generated and accelerate the
electrochemical degradation of contaminants, leading to a stronger electrocatalytic ability
with higher current efficiency.

To further evaluate the electrochemical performance of all PbO2 electrodes, EIS was
carried out to investigate the electrical conductivity and charge-transfer resistance through
the electrolyte of different electrodes. The Nyquist plots for these electrodes obtained in
0.5 M H2SO4 solution with a frequency range of 10,000 to 0.01 Hz are displayed in Figure 3c.
As shown in Figure 4c, the semicircle arc of the Ti/B-TiO2-NTs/PbO2-SDS electrode in the
high-to-medium frequency range of Nyquist plots was smaller than that of the other PbO2
electrodes, suggesting that the charge-transfer capacity of modified Ti/B-TiO2-NTs/PbO2
electrode is dramatically enhanced. The suitable equivalent circuit model shown in the
inner part of Figure 4c and the EIS simulation results were obtained by fitting experimental
data as shown in Table S2, in which Rs is used to present the solution resistance and Rct
and W correspond to charge-transfer resistance and Warburg resistance, respectively. The
constant phase elements (CPE) refer to the real double-layer capacitors. It can be seen that
the Rct of the Ti/B-TiO2-NTs/PbO2-SDS electrode was smaller than that of the other PbO2
electrodes, indicating its better electrical conductivity and high charge-transfer rate [22].
The significantly promoted charge-transfer performance of the Ti/B-TiO2-NTs/PbO2-SDS
electrode may be attributed to its compact β-PbO2 crystal structure and the good conduc-
tivity of the Ti3+ self-doping Ti/B-TiO2-NTs interlayer. So, the electrochemical degradation
reaction can proceed more easily on this electrode. In addition, the improvement in electron-
transfer efficiency of the undoped Ti/TiO2-NTs, the Ti3+ self-doping Ti/B-TiO2-NTs and
Ti/B-TiO2-NTs/PbO2-SDS was further confirmed by the Mott–Schottky measurements at a
frequency of 500 Hz in the 0.5 M H2SO4 solution. Figure 4d presents the Mott–Schottky
plots of the pristine TiO2NTs and Ti3+ self-doping Ti/B-TiO2-NTs. It was intriguing to
note that the Ti3+ self-doping TiO2NTs material displayed a substantially smaller slope
of Mott–Schottky plots than the other pristine TiO2NTs, suggesting an increase in donor
density due to the presence of Ti3+ (oxygen vacancies) under the electrochemical reduction,
which effectively promotes the electrical conductivity and charge transport. Therefore,
compared with the traditional Ti/TiO2-NTs-PbO2 electrode, the Ti3+ self-doping Ti/B-TiO2-
NTs-PbO2 electrode with its improved electron-transfer efficiency possessed an enhanced
electrochemical activity in the degradation process.

The electrochemical activity of electrode materials is strongly associated with the
quantity of active sites on the surface of electrodes [23]. The voltammetric charge quantity
(q*) is considered to be related to the electrochemical activity and the number of active sites
of PbO2 electrodes. The higher q* means more accessible active sites on the anode surface.
The q* value can be calculated with the following equation [24]:

q* = qo* + kν−1/2 (2)

The outer charge quantity (qo*) is the total quantity of theoretically active sites on
the electrode surface, where ν is the scan rate of voltage and k is a constant. The linear
relationship between q* and v−1/2 by fitting with linear correlations is shown in Figure 4e.
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It was noticed that the Ti/B-TiO2-NTs/PbO2-SDS electrode obtained the largest q* among
the three PbO2 electrodes. This result indicates that the Ti/B-TiO2-NTs/PbO2-SDS electrode
would exhibit good electrocatalytic performance for the electrochemical degradation of
contaminants, which can be attributed to its larger specific surface area and a large number
of active sites.

The hydroxyl radical (·OH) generation capacity of PbO2 can also be used to evaluate its
electrochemical catalytic performance [25]. Hence, the ·OH radical generation ability of dif-
ferent electrodes was tested using fluorescent spectrometry. Terephthalic acid was used as
a probe for ·OH radicals, generating a highly fluorescent product of 2-hydroxyterephthalic
acid. So, the amounts of the generated ·OH radicals can be reflected by the fluorescence
intensity of 2-hydroxyterephthalic acid. A linear relationship between fluorescence inten-
sity and electrolysis time is shown in Figure 4f. According to Figure 4f, the fluorescence
intensity on the Ti/B-TiO2-NTs/PbO2-SDS electrode is higher than that of the other two
PbO2 electrodes, which implies that it has the strongest ·OH radical generation ability.
This demonstrates once again that the Ti/B-TiO2-NTs/PbO2-SDS electrode exhibits higher
electrocatalytic activity than the pristine PbO2 electrode for degrading organic pollutants.

2.3. Electrochemical Oxidation Degradation of Methylene Blue (MB)
2.3.1. Effects of Different Anodes

As the core component of the electrochemical oxidation process, anode materials play
a key role that strongly depends on the efficiency of organic wastewater degradation. The
electrocatalytic oxidation abilities of the three different PbO2 electrodes were investigated
for the degradation of 30 mg L−1 MB with an applied current density of 40 mA cm−2 at
25 ◦C. In Figure 5a, it can be found that an MB decolorization rate of up to 99.7% was
achieved by the Ti/B-TiO2-NTs/PbO2-SDS electrode during 120 min electrolysis, which
was higher than that of the Ti/TiO2-NTs/PbO2 and Ti/B-TiO2-NTs/PbO2 electrodes. From
Figure 5b, it is easy to observe that the Ti/B-TiO2-NTs/PbO2-SDS electrode exhibited the
highest COD removal efficiency among the three prepared electrodes during 120 min,
indicating its higher electrocatalytic oxidation capacity compared to the Ti/TiO2-NTs/PbO2
and Ti/B-TiO2-NTs/PbO2 electrodes.

In addition, the pseudo-first-order kinetics of the degradation of MB concentration
with time was analyzed, and the results are shown in Figure 5c. From Figure 5c, the
semilogarithmic plot was in good agreement with the pseudo-first-order kinetics, and
the highest rate constant (k) was obtained under the optimal conditions by employing
the enhancement of Ti/B-TiO2-NTs/PbO2-SDS electrode. The pseudo-first-order kinetic
constant of the Ti/B-TiO2-NTs/PbO2-SDS electrode was 0.03956 min−1, which was approx-
imately 3.18 times faster than that of the Ti/TiO2-NTs/PbO2 electrode (0.01254 min−1).
The results were attributed to the large specific surface area and more active sites of the
Ti/B-TiO2-NTs/PbO2-SDS electrode. Furthermore, the average current efficiency (ACE) of
the different PbO2 electrodes was investigated under different degradation time period,
and the results are exhibited in Figure 5d. The Ti/B-TiO2-NTs/PbO2-SDS electrode ex-
hibits a higher level of ACE than that of the Ti/TiO2-NTs/PbO2 and Ti/B-TiO2-NTs/PbO2
electrodes during the whole degradation of MB, which indicated its high-efficiency per-
formance and better energy conservation. Table S3 lists the COD removal efficiency of
other types of PbO2 electrodes reported in the literature. By comparison, obviously, the
Ti/B-TiO2-NTs/PbO2-SDS electrode had better activity.

The above results demonstrate that the Ti/B-TiO2-NTs/PbO2-SDS electrode possesses
the best electrochemical activity for the degradation of MB compared to the other two elec-
trodes. This can be attributed to its stronger hydroxyl radical generation rate, more electro-
chemical active sites, and smaller charge-transfer resistance than the other two electrodes.

2.3.2. Effect of Current Density

The current density is an important influencing parameter in the electrochemical
oxidation for the degradation of MB [26,27]. Therefore, it is necessary to investigate the
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influence of current density on the degradation of MB. The effect of current density on
the Ti/B-TiO2-NTs/PbO2-SDS electrode for the degradation of MB was investigated at
pH = 3, the MB concentration of 30 mg L−1, and the electrolyte Na2SO4 concentration of
0.2 M. It can be found from Figure 6a that the removal efficiency of MB increased from
87.60% to 99.9% when the current density changed from 20 to 60 mA cm−2. In addition, the
degradation of MB at different current densities was fitted by a pseudo-first-order kinetic
model, and the kinetics parameters are shown in the inset of Figure S6a. The corresponding
k value also increased with the increase in current density. As displayed in Figure 6b, the
COD degradation efficiencies also gradually increased with the increase in current densities.
The reason for this phenomenon is that a high yield of ·OH radicals can be formed at a
high current density [28,29]. However, according to Figure 5a,b, there was a slight increase
in decolorization efficiency and COD removal efficiency when the current density was
more than 50 mA cm−2. This could be attributed to the more serious oxygen evolution
side reaction, leading to a decreased current efficiency [30]. Therefore, 40 mA cm−2 was
selected as the optimal current density for the following studies.
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2.3.3. Effect of Initial pH

In this work, the influence of initial pH values ranging from 3 to 11 on the degradation
of MB is shown in Figure 6c,d. The results revealed that the decolorization ratio of MB and
COD in an acidic medium is higher than that in neutral and alkaline environments. The
highest removal ratio of MB and COD is achieved at pH= 3. The kinetic rate constant (k)
value at pH = 3 is 4.02 times higher than that at pH = 11 (Figure S6b). In an acid medium,
H+ can inhibit the decomposition reaction of ·OH into oxygen [31,32]. In order to keep a
high content of hydroxyl radicals, pH = 3 was selected for further research.

2.3.4. Effect of Initial Concentration

It is meaningful to investigate the effect of the initial concentration of MB in the
electrochemical oxidation process because MB exists in industrial wastewater with a wide
range of concentrations.

The influence of the initial MB concentration on the degradation rate is shown in
Figure 6e,f. As observed in Figure 5e,f, the MB decolorization ratio significantly decreased
from 99.98% to 71.45% and the removal efficiency of COD decreased from 88.70% to
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49.46% with an increase in initial MB concentration. The kinetic constant (k) increased
as the concentration decreased (Figure S6c). The possible reason for this phenomenon
was that more intermediates were generated and accumulated in large quantities on the
electrode surface with the increase in the initial concentration during the degradation of
MB. This hindered the formation of ·OH and indirect oxidation, leading to a decrease in the
degradation of MB [33]. The kinetic constant (k) gradually increased from 0.01145 min−1 to
0.05495 min−1 as the concentration decreased (Figure S6c).

2.3.5. Effect of Electrolyte Concentration

The supporting electrolyte concentration promotes the conductivity of the degradation
solution and is an essential factor in the electrochemical degradation process for reducing
energy consumption. The effect of Na2SO4 concentration from 0.05 to 0.25 M on the MB
degradation efficiency was investigated at different supporting electrolyte concentrations.
As displayed in Figure 7a,b, the MB decolorization and COD removal efficiency initially
increase and then decrease. A similar tendency can be observed for the kinetic constant (k)
(Figure S6d).
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with time and (b) COD removal efficiency with time on Ti/B-TiO2-NTs/PbO2-SDS electrode (initial
pH: 3; initial MB concentration: 30 mg L−1; current density: 40 mA cm−2).

This phenomenon is ascribed to the fact that Na2SO4 can improve the conductivity of
the solution with an increase in electrolyte concentration. However, when the concentration
of Na2SO4 is too high, the electrode would be coated with adsorbed SO4

2− and occupy
the active site on the electrode surface, thus leading to a reduction in the generation of
oxidizing radicals during electrochemical oxidation [34,35].

2.4. Degradation Mechanism of MB Wastewater
2.4.1. The UV-Vis Absorption Spectra Analysis

The UV–visible absorption spectra were measured at different times, and the results
are shown in Figure 8. As shown in Figure 8, the original UV-vis absorption peaks of MB
had three distinct absorption peaks at 292, 602 and 665 nm, respectively [36,37]. With the
increase in degradation time, the characteristic peaks at 610 nm and 664 nm decreased.
This may be ascribed to the N-demethylation of MB [37]. More importantly, no obvious
characteristic peaks of MB were found after a degradation period of 120 min, illustrating
that MB had been completely degraded. Therefore, the as-prepared Ti/B-TiO2-NTs/PbO2-
SDS electrode had an efficient capacity in the degradation of MB.
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2.4.2. Trapping Experiments of Radicals

Electron spin resonance (ESR, Hitachi JES-FA200) was employed to trap the possible
free radicals of ·OH and sulfate (·SO4

−1) generated in the electrochemical system using a
Ti/B-TiO2-NTs/PbO2-SDS electrode. 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) as spin-
trapping agent was used to capture possible free radicals generated in the electrochemical
system. As shown in Figure 9a, significant signals of DMPO-·OH and DMPO-·SO4

−1 can
be observed, suggesting that the reactive groups produced were ·OH and ·SO4

−1 in the
electrochemical oxidation process.
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To further explore the role of ·OH and ·SO4
−1 in the degradation of MB, radical

trapping experiments were performed to track the contribution of ·OH and ·SO4
−1 radicals

during the electrocatalytic reaction. Methanol (MA) and Tertbutanol (TBA) were used as
free radical scavengers. MA could capture both ·OH and ·SO4

−1 radicals, while TBA was
only adopted as the scavenger of ·OH radicals [38]. Figure 9b clearly indicates that ·OH
played a primary role in MB degradation. From Figure 9b, it can be observed that the
efficiency of MB degradation decreased significantly when MA and TBA were added to the
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wastewater containing MB. The high suppression ratios indicate that the indirect oxidation
process is mainly responsible for the degradation of MB.

2.5. Electrode Stability and Recyclability

The stability of the electrodes is a significant factor in evaluating the electrochemical
oxidation performance of the electrodes. It can be inferred from the data displayed in
Figure 10 that the Ti/B-TiO2-NTs/PbO2-SDS electrode possessed a longer service life
(442 h), which was 4.49 times longer than that of the Ti/TiO2-NTs/PbO 2 electrode (99 h).
This result indicates that the stability of Ti/TiO2-NTs/PbO2 was significantly improved
after introducing Ti3+ and SDS. Meantime, the electrochemical recycling test was also
carried out under the optimal conditions. Figure S7 shows that the MB removal efficiency
slightly decreased from 99.2 to 96.1% after 20 consecutive cycles. Such a small reduction
in MB removal percentage demonstrates the high chemical stability and recyclability for
electrochemical oxidation, which can be attributed to the compact structure of PbO2 film
with the introduction of Ti3+ and SDS. These results indicate that the Ti/B-TiO2-NTs/PbO2-
SDS is a promising electrode anode material for the treatment of textile wastewater.
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3. Experimental
3.1. Materials and Reagents

All chemical reagents were analytical-grade and provided by Sinopharm Chemical
Regent Co. Ltd., Shanghai, China. The solutions were prepared using ultrapure water.

3.2. Preparation of Ti3+ Self-Doping Ti/B-TiO2-NTs/PbO2-SDS Electrode

As illustrated in Scheme 1, the Ti3+ self-doping Ti/B-TiO2-NTs/PbO2-SDS electrode
was prepared by using two main steps.

(1) Fabrication of the Ti3+ self-doping Ti/B-TiO2-NTs middle layer on the Ti substrate.

The method for preparing the Ti3+ self-doping Ti/B-TiO2-NTs material was consistent
with our previous work [39]. Firstly, a Ti sheet (1.0 cm× 2.0 cm× 0.8 cm) was mechanically
polished using different sizes of the abrasive papers in sequence and then was cleaned
ultrasonically. Afterward, the cleaned Ti sheet was chemically etched in a mixture of HF
and ethylene glycol for several minutes. The pre-treated Ti sheet was electrochemically
oxidized at 60 V for 7 h to obtain as-grown nanotube arrays. For the fabrication of Ti3+

self-doping Ti/B-TiO2-NTs, Ti/TiO2-NTs were electrochemically reduced in 1 M (NH4)2SO4
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solution under a constant current (5 mA cm−2) for 10 min with Ti/TiO2-NTs and platinum
foil serving as cathode and anode, respectively. Then, it was calcined at 550 ◦C in a muffle
furnace for 2 h under Ar condition. Ti3+ self-doping Ti/B-TiO2-NTs were prepared to obtain
the intermediate layer. The reduced electrode was labeled as Ti/B-TiO2-NTs.

(2) Deposition of the PbO2 coating on the middle layer

Afterward, the Ti3+ self-doping Ti/B-TiO2-NTs/PbO2-SDS electrode was prepared by
the electrodeposition method in an electrolyte containing 0.1 M HNO3, 0.5 M Pb(NO3)2
10 mg L−1 SDS and 0.02 M NaF under 20 mA cm−2 for 1 h at 60 ◦C. For comparison, the
Ti/B-TiO2-NTs/PbO2 and Ti/TiO2-NTs/PbO2 without Ti3+ self-doping electrodes were
prepared using the same electrodeposition method.
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Scheme 1. The preparation procedure of the Ti/B-TiO2-NTs/PbO2-SDS electrode.

3.3. Characterization

The surface morphologies and crystallographic structures of the as-fabricated elec-
trodes were observed by field emission scanning electron microscopy (SEM, ZEISS, Sigma
300, Sigma Aldrich, St. Louis, MO, USA) and X-ray diffraction (XRD, PHILIPS, Amster-
dam, The Netherlands, X’Pert PRO). The chemical composition and valence state of the
electrode were determined by X-ray photoelectron spectroscopy (XPS, Thermo, Waltham,
MA, USA, ESCALAB 250). In addition, a UV-vis spectrophotometer (UV-vis, Shimadzu,
Kyoto, Japan, UV-3600Plus) analyzer was used to determine the various MB concentrations
during different degradation processes.

3.4. Electrochemical Measurement

The studies of electrochemical performances were performed on an electrochemical
workstation (Metrohm, Autolab302N, Utrecht, The Netherlands) with a three-electrode
cell. The as-fabricated PbO2 electrode, platinum foil and saturated calomel electrode
(SCE) were used as the working electrode, auxiliary electrode and reference electrode,
respectively. Cyclic voltammetry (CV) in a 0.2 M Na2SO4 solution was utilized for analyzing
the oxidative properties of all different electrodes. Linear sweep voltammetry (LSV) was
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performed from 0 to 2.5 V with a scan speed of 10 mV s−1. Electrochemical impedance
spectroscopy (EIS) was implemented in a frequency range of 100 kHz to 10 MHz with a
potential amplitude of 5 mV. The accelerated service lifetime tests of all different electrodes
were performed at a high current density of 1 A·cm−2 in 2 M H2SO4. The electrode was
deactivated when the cell voltage reached 10 V higher than the initial voltage.

3.5. Electrocatalytic Degradation

MB was selected as the simulated pollutant because it is widely used in printing, the
dyeing industry and coloring paper [13,40]. During the process of experiments, a model
dye wastewater of MB was electrochemically oxidized in a 100 mL beaker with a rotor
stirring function. In the electrolytic cell, the prepared electrode (2 cm × 3 cm) was used
as an anode, and a same-sized Ti sheet was used as the cathode. The liquid samples were
drawn from the reactor every 20 min and analyzed, including the removal of MB through
a UV–vis spectrophotometer and the variation in chemical oxygen demand (COD) by
using a COD analyzer (Lianhua Tech. Co. Ltd., Shenzhen, China). The absorbance of
MB at different times was monitored by using the UV-vis spectrophotometer analyzer at
240–800 nm. The decolorization rate (ηMB) was calculated by the following formula [41]:

ηMB =
A0 − At

At
×100% (3)

A0 and At are the absorbance of MB at the initial and different times (t).
The COD removal efficiency (ηCOD) was calculated by the following formula [42]:

ηCOD =
COD0 − CODt

COD0
× 100% (4)

COD0 is the COD of the initial concentration, and CODt is the COD at a given time t.
The average current efficiency of different current densities was calculated using

Equation (3) [43]:

ACE =
(COD 0− CODt )·F·Vl

8I·∆t·1000
×100% (5)

where COD0 and CODt are the chemical oxygen demand at time 0(s) and t(s), respectively;
the Faraday constant F is equal to 96,487 C·mol−1; VL is the volume of electrolyte solution
(L);4t is the degradation time (s); and I is the current intensity (A). The electrochemical
degradation of MB was found to well fit pseudo-first-order kinetics [44,45]:

ln(
C0

Ct
) = kt (6)

where C0 is the initial MB concentration, Ct is the concentration of MB at the given time t,
and k is the kinetic rate constant.

The hydroxyl (·OH) radicals generated during the electrochemical processes were
detected using terephthalic acid as a fluorescence probe and then analyzed using a fluo-
rescence spectrophotometer (Cary Elipse, Agilent, Santa Clara, CA, USA) in the range of
370–520 nm (excitation wavelength: 315 nm).

4. Conclusions

The target Ti3+ self-doping black Ti/TiO2-NTs/PbO2-SDS electrode was successfully
prepared through electrochemical reduction and electrodeposition methods in this study.
The morphology and crystal structure were confirmed by SEM and XRD, respectively. The
experimental results demonstrated that the Ti/B-TiO2-NTs/PbO2-SDS electrode possessed
a more compact structure and finer grain size than the no-doping TiO2NTs/PbO2 elec-
trode. Moreover, the introduction of the Ti3+ self-doping middle layer (Ti/B-TiO2-NTs)
and doping of SDS significantly enhanced the electrochemical activity of the resulting
Ti/B-TiO2-NTs/PbO2-SDS electrode. The enhanced electrocatalytic performance of the
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Ti/B-TiO2-NTs/PbO2-SDS electrode was due to its higher oxygen evolution potential
(2.11 V), smaller charge-transfer resistance (6.74 Ω) and stronger ·OH generating ability.
After 120 min of electrolysis, the MB decolorization rate and COD removal rate were 99.7%
and 80.6%, respectively. Importantly, the value of ACE was significantly higher than
that of the TiO2NTs/PbO2 electrode, indicating superior current efficiency and energy
conservation capabilities. The electrochemical degradation of MB followed pseudo-first-
order kinetics, and the kinetic constant of the Ti/B-TiO2-NTs/PbO2-SDS electrode reached
0.03958 min−1, which was 3.18 times higher than that of the pristine Ti/TiO2NTs/PbO2
electrode (0.01254 min−1). Furthermore, the accelerated lifetime tests confirmed the excel-
lent stability of the prepared Ti/B-TiO2-NTs/PbO2-SDS electrode with a lifetime about
4.49 times longer than that of the pristine Ti/TiO2-NTs/PbO2 electrode. As a whole, the
synthesized Ti/B-TiO2-NTs/PbO2-SDS electrode has the potential for application in the
electrocatalytic oxidation degradation of refractory pollutants.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28196993/s1, Figure S1: Ti/TiO2-NTs without Ti3+ self-
doping; Figure S2: XRD patterns of Ti/TiO2-NTs without Ti3+ self-doping and Ti3+ self-doping
Ti/B-TiO2-NTs; Figure S3: XPS survey spectra of the Ti/B-TiO2-NTs/PbO2-SDS electrode; Figure S4:
XPS spectra of Ti 2p orbital of Ti/TiO2-NTs and Ti/B-TiO2-NTs; Figure S5: (a) Cyclic voltammograms
of the Ti/B-TiO2-NTs and Ti/TiO2-NTs electrodes; (b) EIS of the Ti/B-TiO2-NTs and Ti/TiO2-NTs
electrodes; Figure S6: Pseudo-first-order kinetic fitting curves at different current density (a), initial
MB concentration (b), initial pH (c) and electrolyte concentration (d); Figure S7: Repetitive experiment
of Ti/B-TiO2-NTs/PbO2-SDS electrode in electrochemical oxidation of MB for 120 min. Conditions:
current density: 40 mA cm−2, initial MB concentration: 30 mg L−1, initial pH = 3, T = 25 ◦C, Na2SO4
concentration = 0.2 M; Table S1: Crystal sizes of β-PbO2 grains on different electrodes; Table S2:
The fitted EIS parameters; Table S3: Comparison of the performance of PbO2 electrodes with other
reported MB degradation methods; [37,46–48].
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