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Abstract: The removal of antibiotics from wastewater to prevent their environmental accumulation is
significant for human health and ecosystems. Herein, iron (Fe)-atom-doped anatase TiO2 nanofibers
(Fe-TNs) were manufactured for the photocatalytic Fenton-like decomposition of tylosin (TYL) under
LED illumination. Compared with the pristine TiO2 nanofibers (TNs), the optimized Fe-TNs exhibited
improved visible-light-driven photocatalytic Fenton-like activity with a TYL degradation efficiency
of 98.5% within 4 h. The effective TYL degradation could be attributed to the expanded optical light
absorption and accelerated separation and migration of photogenerated electrons and holes after the
introduction of Fe. The photogenerated electrons were highly conducive to the generation of active
SO4

•− radicals as they facilitated Fe(III)/Fe(II) cycles, and to oxidizing TYL. Moreover, the holes
could be involved in TYL degradation. Thus, a significant enhancement in TYL degradation could be
achieved. This research verifies the use of iron-doped anatase nanofibers as an effective method to
synthesize novel photocatalytic Fenton-like catalysts through surface engineering for wastewater
remediation.
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1. Introduction

Antibiotic accumulation in water environments could produce drug-resistant bacteria
and resistance genes, posing great threats to ecosystems and human health [1,2]. Therefore,
efficient and environmentally friendly measures are urgently needed to remove antibiotics
before they are discharged into natural water environments. Traditional biochemical
treatment has limitations in treating antibiotics in wastewater due to its inhibitory effect
on microbial growth [3]. Through physical treatment methods such as adsorption, the
membrane could concentrate and transfer pollutants, but they face the problem of further
processing to completely eliminate contamination [4,5]. Fenton-like technology based on
advanced oxidation processes (AOPs) has been demonstrated to be an efficient strategy
to mineralize antibiotics by reacting with the produced reactive oxygen species [6–10].
Furthermore, the light-assisted photocatalytic Fenton-like reaction approach, combining
the advantages of photocatalysis and Fenton-like reactions, shows great promise in the
elimination of antibiotic pollutants in wastewater [11,12].

Heterogeneous Fenton-like photocatalysts play a decisive role in this oxidation pro-
cess [13–16]. TiO2, possessing a band gap of about 3.0–3.2 eV, has been extensively in-
vestigated as a photocatalyst to degrade pollutants because of its bio-safety, low price,
and chemical stability [17,18]. In particular, one-dimensional TiO2 nanofibers (TNs) have
better photogenerated charge separation and transport performance than nanoparticles,
leading to higher photocatalytic activity [19]. However, the critical problems, such as a
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limited light absorption edge, and massive charge carrier recombination and deactivation,
need to be resolved to achieve high activity [20]. Thus, researchers have attempted to
modify TiO2 with the purpose of inhibiting the recombination and deactivation of charge
carriers or enhancing the response to visible light of TiO2 [21,22]. Among various types of
modification methods, doping a transition metal into TiO2 is a good strategy. The stabilized
M-O(OH) structure and the interaction between transition metal atoms and TiO2 could
promote catalytic activity [23]. In addition, Fe is considered an environmentally friendly
element in wastewater purification treatment. Fe atom-doped substrates could catalyze
oxidizing agents such as H2O2 and peroxymonosulfate (PMS) to produce reactive oxygen
species, which possess strong oxidation capabilities to mineralize contaminants [24–29].
Yin et al. [30] developed Fe-doped carbon-based catalysts for boosting Fenton-like reactions.
Guo et al. [31] doped Fe atom-modified g-C3N4 and discovered that different kinds of
pollutants could be degraded by photocatalytic Fenton-like reactions driven by visible light.
Thus, the coupling of Fe atoms and TiO2 is assumed to be an appropriate approach to obtain
photocatalytic Fenton-like catalysts with high efficiency to degrade antibiotic pollutants by
adjusting the visible-light absorption range and photoinduced charge transfer.

Herein, Fe atom-anchored anatase TiO2 nanofibers (Fe-TNs) were prepared for photo-
catalytic Fenton-like antibiotic tylosin (TYL) degradation driven by white LED illumination.
Compared with the pristine TiO2, Fe-TNs obviously displayed enhanced TYL degradation
performance. TYL could be degraded by 98.5% within 4 h for optimal Fe-TN catalysis. The
confined Fe atom on TiO2 could extend the visible-light absorption region and increase the
charge transport efficiency, guaranteeing that more photoinduced electrons would be in-
volved in the Fe(III)/Fe(II) cycle to facilitate PMS activation. And the formed active species
could accelerate TYL degradation. Moreover, the photoinduced holes could participate in
TYL degradation.

2. Results and Discussion
2.1. Structural and Morphological Characterization

X-ray diffraction (XRD) patterns and Raman spectra were used to examine the crys-
talline forms of TNs and Fe-TN catalysts prepared with varying iron loading amounts.
According to the XRD results shown in Figure 1A, the TNs and Fe-TN catalysts all dis-
played typical diffraction peaks at 25.28◦, 37.80◦, 48.05◦, 53.89◦, 62.30◦, and 75.03◦, which
are indexed to the (101), (004), (200), (105), (204), and (215) crystal facets of anatase TiO2 [32].
Diffraction peaks of Fe-related compounds were not found, suggesting that the crystalline
form of TNs remains unchanged after Fe modification. Furthermore, the TNs and all Fe-TN
samples revealed the same Raman spectra (Figure 1B). The Fe-TN samples had similar
Raman spectra to the TNs, with bands centered at 141 cm−1, 394 cm−1, 514 cm−1, and
636 cm−1 corresponding to anatase TiO2 Raman vibration modes.
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Figure 1. XRD patterns (A) and Raman spectra (B) of TNs and Fe-TNs with different iron amounts.

The morphology and the elemental distribution of the produced TNs and Fe-TN
catalysts were characterized via SEM and TEM coupled with energy-dispersive X-ray
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spectroscopy (EDX). Apparently, the TNs and all the Fe-TN samples appeared as a one-
dimensional fibrous structures, as shown in the SEM (Figure 2A–C) and TEM (Figure 2D)
images. The modification of TiO2 though Fe doping did not alter the one-dimensional
fibrous structure. And the aggregation of crystalline-phase substances and Fe-related
nanoparticles was not detected on the surface of the Fe-TNs, which was attributed to the
dispersion of Fe at an atomic level. The lattice fringe with a spacing of 0.35 nm is due to
the (101) plane of anatase TiO2 (Figure 2E). The N2 adsorption–desorption experiments
suggested that the SBET values of the TNs and Fe-TNs 5% were 26 and 18 m2/g. The
introduction of Fe atoms slightly reduced the specific surface area (Figures S1 and S2). As
shown in the HRTEM images (Figure 2F), the regular lattice fringe with a distance of 3.5 Å
was attributed to the (101) crystal face of anatase TiO2. Moreover, Figures 2F and S3 further
confirmed that Fe-related nanoparticle aggregation was not detected on the surface of the
Fe-TNs. The well-distributed elements of Ti, O, and Fe in the associated EDX elemental
mapping images (Figure 2G–I) reveal the successful introduction of Fe on TNs.
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Figure 2. SEM images of (A) TNs and (B,C) Fe-TNs 5%. TEM (D–F) and EDX elemental mapping
images (G–I) of Fe-TNs 5%.

The XPS full-scan spectrum (Figure 3A) of Fe-TNs 5% before and after the reaction
shows the existence of Fe, Ti, O, and C elements in the Fe-TNs. The appearance of an Fe 2p
signal in the Fe-TN sample proves the successful introduction of Fe into the TNs. The Ti 2p
XPS spectrum (Figure 3B) consists of two major peaks at 458.4, 464.1 eV assigned to the
binding energies of Ti 2p5/2 and Ti 2p3/2 of Ti4+, respectively. Both the surface adsorbed
oxygen (Oads) and lattice oxygen (Olatt) are clearly observed at binding energies of 531.4 eV
and 529.7 eV in the Fe-TNs (Figure 3C). The Fe 2p spectra (Figure 3D) are deconvoluted into
peaks centered at 713.6 eV and 728.3 eV for Fe 2p3/2 and Fe 2p1/2 of Fe(III), and the peaks at
710.3 eV and 724.1 eV for Fe 2p3/2 and Fe 2p1/2 of Fe(II). The fitted results suggest that the
valence states of both Fe(III) and Fe(II) existed in the Fe-TNs. The proportions of Fe(III) to
Fe(II) in Fe-TNs 5% after the reactions are higher than that before the reactions, indicating
that Fe(II) was transformed into Fe(III) in the PMS activation process. The Fe(III)/Fe(II)
cycle could realize PMS activation to generate radicals to degrade pollutants.
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2.2. Tylosin Degradation Performance via Photocatalytic Fenton-like Reactions

The photocatalytic Fenton-like degradation of TYL by Fe-TNs in the presence of PMS
was studied with TYL as the objective pollutant. The influence of Fe modification with
different loadings on the degradation performance of TYL was investigated and the results
are shown in Figure 4A. It shows that the Fe-TNs with 5% loading had the best performance
in TYL degradation. And the degradation performance of Fe-TNs with 5% Fe loading
was similar to those with 6% Fe loading, indicating that the further increase in Fe loading
had no effect on TYL removal. The influences of PMS concentration, catalyst dosage,
and TYL concentration on TYL degradation performance in this photocatalytic Fenton-
like reaction catalyzed by TNs and Fe-TNs were separately investigated. As displayed
in Figure 4B, as the PMS dosage increases, the TYL removal rate increased due to the
generation of more SO4

•− species. Figure 4C shows that as the dosage of Fe-TNs increases,
both the degradation efficiency and rate for TYL are significantly improved. As the TYL
concentration increases, the degradation efficiency decreases (Figure 4D) because the
photocatalyst’s limited active sites can be consumed by TYL by-products. Therefore,
0.5 g/L of Fe-TN catalysts and 1 mM PMS were chosen for the degradation of 20 mg/L
TYL solution in the subsequent studies. Under these conditions, the optimized Fe-TNs
5% catalyst exhibits improved visible-light-driven photocatalytic Fenton-like activity with
TYL degradation efficiency of 98.5% within 4 h, which is more advantageous than the
other previous reported catalysts [13,14,20,33–35] (Table S1). Moreover, the TEM image
(Figure S4) shows that there is no change in the morphology of Fe-TNs 5% after the reaction,
indicating its structural stability.

The radical capture experiments were carried out to examine the primary reactive
species involved in TYL degradation in this photocatalytic Fenton-like process catalyzed
by Fe-TNs [36–38]. Methanol (MeOH) was utilized as an •OH and SO4

•− scavenger,
and potassium dichromate (K2Cr2O7) as an electronic trapping agent. Tert-butanol (TBA)
could quench •OH, and p-benzoquinone (BQ) could capture •O2

−, •OH, and •O2
−. As

illustrated in Figure 5A, SO4
•−, electrons, and •OH contributed to the degradation of

TYL and SO4
•− and also play a significant role in this process. Furthermore, the electron

paramagnetic resonance (EPR) spectra (Figure 5B) show that no radical signals appear
under dark conditions. When PMS, catalysts, and LED light coexisted in the system, clearly,
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EPR signal peaks were presented, showing that radicals of SO4
•− and •OH could be

produced under the condition of visible-light radiation.
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Figure 4. Photocatalytic Fenton-like degradation of TYL by TNs and Fe-TNs driven by visible light
and the effect of the reaction parameter. (A) Fe loading amount, (B) PMS concentration, (C) catalyst
dosage, (D) TYL concentration (conditions: 0.5 g/L catalyst, 20 mg/L TYL, 1 mM PMS unless
otherwise stated).
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Figure 5. (A) Influence of different capture agents on TYL degradation (conditions: 0.5 g/L catalyst,
20 mg/L TYL, 1 mM PMS). (B) EPR spectra of DMPO adducts in this photocatalytic Fenton-like
system catalyzed by Fe-TNs under the conditions of white LED light illumination and darkness.

The light absorption properties of TNs and Fe-TNs 5% were surveyed by assessing
their UV-Vis absorption spectra (Figure 6A). Compared with TNs, the Fe-TNs revealed
obvious extended and enhanced visible light absorption, proving that they promoted
visible light absorption capacity after the introduction of Fe atoms. Based on the Tauc plots
shown in Figure S5, the optical band gap values of the TNs and Fe-TNs 5% are 3.36 and
3.31 eV, suggesting that Fe doping reduced the optical band gap of TiO2. Furthermore,
the migration and recombination performance of photoinduced e− and h+ was measured
via PL measurement. As shown in Figure 6B, the PL intensity of Fe-TNs was reduced
obviously compared with that of TNs, demonstrating that the introduction of Fe sites
in TNs was favorable for the generation and separation of photogenerated e− and h+,
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thus accelerating the Fe(III)/Fe(II) oxidation–reduction cycle in the Fenton-like reactions.
According to the above results, the photo-assisted Fenton-like reaction mechanism for
TYL degradation is illustrated in Figure 6C. The photogenerated e− from TiO2 migrated
along the Ti–O–Fe bonds to the Fe sites. Then, the produced Fe(II) generated from the
reduction of Fe(III) could easily react with PMS to generate SO4

•− and Fe(III). The Fe(III)
continued to receive photogenerated e− to complete the Fe(III)/Fe(II) oxidation–reduction
cycle. Simultaneously, the photogenerated h+, possessing strong oxidation, would also
react with TYL directly or oxidize H2O to produce •OH to degrade TYL. In conclusion,
SO4

•− •OH, h+, and e− are active species involved in TYL degradation. By splitting the
C–O, C–N, and C–C bonds in the molecular structure of TYL, CO2 and H2O were generated
to realize the final mineralization and achieve degradation (Figures S6 and S7).
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3. Materials and Methods
3.1. Synthesis of Fe-TNs

The used chemicals of analytical grade were commercially purchased and directly
applied without further purification. First, the precursor H2Ti3O7 nanofibers were obtained
via hydrothermal treatment of the mixture solution of anatase TiO2 powder and NaOH, and
subsequently, the H+ ion-exchange process. Detailed preparation information for H2Ti3O7
nanofibers is shown in the Supplementary Materials. Subsequently, 1.0 g H2Ti3O7 and a
certain amount of FeCl2·4H2O (0.2~0.5 g) were put into 200 mL of distilled water. The
mixture was exposed to agitation for 2 h, collected via centrifugation, and washed with
deionized water three times. After drying, the materials were sealed in a quartz ampoule
and heated in a tube furnace at 500 ◦C for 4 h. The TNs doped with Fe atoms (Fe-TNs)
at different ratios were donated as Fe-TNs 2%, Fe-TNs 3%, Fe-TNs 4%, Fe-TNs 5%, and
Fe-TNs 6%.

3.2. Structural Characterization

XRD (DX2700) was used to survey the composition and the crystalline phase of TNs
and Fe-TNs. The surface chemical composition, valence state and chemical bond of Fe-TNs
were characterized via X-ray Photoelectron Spectroscopy (XPS, Escalab 250, Thermo Fisher
Scientific, Waltham, MA, USA). The morphology and element compositions were surveyed
using scanning transmission electron microscopy (STEM, JSM-7001F, Tokyo, Japan). Raman
spectra analysis was performed using Thermo Scientific DXR2 equipment at an excitation
wavelength of 532 nm. The kinds of radicals were recorded via electron paramagnetic
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resonance spectroscopy. N2 adsorption–desorption experiments were performed using
a specific surface area analyzer (BSD-PS2). The optical properties were obtained using a
UV-Vis-NIR spectrophotometer (Agilent Cary 5000, Santa Clara, CA, USA). The photolumi-
nescence (PL) spectra were tested using a fluorescence spectrophotometer (FLS9800).

3.3. Photocatalytic Fenton-like Degradation for TYL

The catalytic performance of TNs and Fe-TN catalysts for TYL degradation was evalu-
ated in a photocatalytic Fenton-like system. Specifically, 50 mg of materials were weighed
and added into 100 mL of TYL solution with an initial concentration of 20 mg/L under dark
conditions. Before catalytic reactions took place, the adsorption process proceeded for 1.5 h
to reach adsorption equilibrium. Subsequently, 1 mM of PMS was added and the above
mixtures were exposed to white LED (300 mW/cm2) illumination. The reaction equipment
was outfitted with circulating cooling water to keep the solution at 20 ◦C. In the process of
the degradation reaction, 2.0 mL of the samples were taken out at a predetermined time and
filtered through a 0.22 µm filter membrane. The remaining TYL concentration in the filtrate
was measured via high-performance liquid chromatography (HPLC, EClassical3100). The
intermediates of NOR degradation were detected via liquid chromatography (Thermo
U3000) and coupled mass spectromery (maXis, Q-TOF, Bruker, Billerica, MA, USA).

4. Conclusions

In summary, Fe atom-anchored anatase TiO2 nanofibers were fabricated through a
hydrothermal process, proton exchange, and an annealing treatment process. The obtained
Fe-TN catalyst displayed significantly enhanced TYL degradation performance compared
with the pristine TiO2 nanofibers in the photocatalytic Fenton-like system. The optimized
Fe-TNs-5% catalyst could reach 98.5% TYL degradation efficiency within 4 h. Overall, the
introduction of Fe atom sites can extend the light response of TiO2 to the visible region and
improve the separation of photoexcited electrons and holes. The electrons could transfer
to Fe atom sites, realize the Fe(III)/Fe(II) oxidation–reduction cycle, and improve the
generation of more SO4

•− species to degrade TYL. Moreover, the photoinduced holes could
be involved in oxidizing TYL, thus significantly enhancing TYL degradation performance
efficiency. Therefore, this research proposed a practical strategy to design high-performance
and environmentally friendly photocatalytic Fenton-like catalysts for eliminating antibiotic
pollution in environmental water.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28196977/s1, Figure S1. (A) N2 adsorption and desorp-
tion of Fe-TNs; (B) Pore size distribution of Fe-TNs. Figure S2. (A) N2 adsorption and desorption of
TNs; (B) Pore size distribution of TNs. Figure S3. TEM images of Fe-TNs. Figure S4. TEM images of
Fe-TNs 5% after reactions. Figure S5. Tauc plots for TNs and Fe-TNs 5%. Figure S6. LCMS results of
TYL in the reactions (0 and 20 min). Figure S7. Degradation pathway of TYL. Table S1. Comparison
of several catalysts for degradation of TYL.
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