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Abstract: A new series of spirooxindoles based on benzimidazole, triazole, and isatin moieties
were synthesized via a [3+2] cycloaddition reaction protocol in one step. The single X-ray crystal
structure of the intermediate triazole-benzimidazole 4 was solved. The new chemical structures of
these spirooxindole molecules have been achieved for the first time. The final synthesized chemical
architecture has differently characterized electronic effects. An MEDT study of the key 32CA reaction
between in situ generated azomethine ylide (AY) and chalcones explained the low reaction rates and
the total selectivities observed. The supernucleophilic character of AY and the strong electrophilicity
of chalcones favor these reactions through a highly polar two-stage one-step mechanism in which bond
formation at the β-conjugated carbon of the chalcones is more advanced. The present combined ex-
perimental and theoretical study reports the synthesis of new spirooxindoles with potential biological
activities and fully characterizes the molecular mechanisms for their formation through the key 32CA
reaction step.

Keywords: spirooxindoles; benzimidazole; triazoles; molecular electron density theory (MEDT)

1. Introduction

There are excellent moieties in spiro-heterocyclic compounds that have garnered the
attention of researchers due to their numerous biological activities. Among these moieties,
the 1,2,3-triazole moiety represents an important class of pharmacophore in medicinal
chemistry with a wide range of biological activities, such as antimicrobial, anticancer,
anti-inflammatory, and antiviral activity, among others. Because of their higher stability
toward light, oxygen, moisture, and metabolism in the body, they are useful building blocks
in chemistry and play an important role in pharmacological applications [1–4]. On the
other hand, isatin derivatives have recently drawn considerable attention from researchers
worldwide due to their wide applications as anti-HIV, anti-tubercular, sedative, hypnotic,
and anticancer agents [5,6]. The important biological activities of both isatin and triazole
derivatives as discussed above impelled us to take up the synthesis of these new combined
heterocycles, which are likely to have augmented, diverse types of biological activity.

To develop potent anticancer candidates, Bin Yu et al. [4] reported, in 2016, a series of
new isatin/triazole conjugates with anti-proliferative activity and evaluated their cytotoxic
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potential against MGC-803 and MCF-7 (breast) cells. Some of these conjugates are shown in
Figure 1 (compounds I–III). These compounds showed selective inhibition toward MGC-
803 cells and were less toxic to normal cells HL-7702 and GES-1. Of these compounds,
compound IV showed the best inhibitory activity against MGC-803 cells (IC50 = 9.78 µM),
induced apoptosis through multiple mechanisms, and inhibited the migration of MGC-
803 cells.
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Benzimidazole Lead compound for breast adenocarcinoma treatment.

Senwar et al. [7], in 2015, synthesized a series of new spirooxindole-derived morpholine-
fused-1,2,3-triazole derivatives from isatin spiro-epoxides. These compounds were evalu-
ated for their antiproliferative activity against lung (A549), breast (MCF–7), cervical (HeLa),
and prostate (DU–145) tumor cell lines. Among the tested compounds, V–VIII (see Figure 1)
showed potent growth inhibition against the A549 cell line, with IC50 values in the range of
1.87–4.36 µM, and decreased migration potential, constituting results that are comparable to
those obtained for the reference standards 5-flourouracil and doxorubicin. In another study,
Kishore Kumar et al. [8], in 2016, synthesized and developed a new series of 1,2,3-triazole
derivatives. The products were tested for their anti-inflammatory activity in vivo. The
several tested compounds demonstrated potent anti-inflammatory activity compared to
the reference drug ibuprofen [8]. In 2016, Rajeswari et al. [9] developed an efficient, one-
pot, four-component condensation procedure for the synthesis of selective spirooxindole-
pyrrolizine-linked 1,2,3-triazole conjugates via a [3+2] cycloaddition (32CA) reaction using
coumarin-3-carboxylic acid, N-propargylated isatin, L-proline/sarcosine, and aryl azides
and using Cu(I) as a catalyst in the presence of glacial CH3COOH at 60 ◦C [9]. In 2019,
Malarkodi et al. [10] synthesized and compared 3’-(1-benzyl-5-methyl-1H-1,2,3-triazole-
4carbonyl)-1’methyl-4’-phenyl-2H-spiro[acenaphthylene-1,2’-pyrrolidin]-2-one (BTANP)
against a few bacterial and fungal strains as well as standard drugs. In addition, molecular
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docking mockups were developed on BTANP against topoisomerase II gyrase and human
lanosterol 14 α demethylase enzymes [10].

Recently, Barakat et al. reported the synthesis of new spirooxindoles, IX, with the
triazole moiety and a ferrocene scaffold using the 32CA reaction approach, and their
mechanism was studied via molecular electron density theory (MEDT) [11,12]. Another
representative example is the spirooxindole with a benzimidazole scaffold (see SP1 in
Figure 1), which has been extensively studied and has shown to be a potent anti-cancer
agent [13]. In continuation of our research program about spirooxindoles [14–16], we report
herein the synthesis of new spiro compounds containing benzimidazole and 1,2,3–triazole
scaffolds as well as the theoretical study of the reaction mechanisms of these relevant 32CA
reactions based on MEDT [17].

2. Results and Discussion

1,2,3-Triazoles represent an important class of heterocyclic compounds with a wide
range of biological activities, constituting useful building blocks in chemistry and pharma-
cological applications. In this context, an attempt was made to synthesize a novel series of
spiro compounds having a triazole nucleus combined with the benzimidazole scaffold, as
depicted in Scheme 1.
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2.1. Synthesis of Chalcones (5a-n)

The four steps of the synthesis of the target α,β-unsaturated compounds (5a-n) are
presented in (Scheme 1). The first step was to synthesize 2-(chloromethyl) benzimidazole
(2) via the Phillip’s reaction, involving the condensation of o-phenylenediamine with
chloroacetic acid in the presence of dilute hydrochloric acid. The second step was the
reaction of a mixture of 2-(chloromethyl) benzimidazole (1.0 equiv.) and sodium azide
(1.1 equiv.) in DMSO (15 mL), followed by stirring at room temperature. The reaction was
completed in 3 h, affording 2-(azidomethyl) benzimidazole (3) in a 75% yield (1HNMR
and 13CNMR data provided in Supplementary materials; Figures S1 and S2). In the third
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step, we used the cycloaddition reaction between 2-(azidomethyl) benzimidazole and
acetylacetone in DMSO in the presence of an equimolar amount of K2CO3 at 25 ◦C (3 h); in
this case, the yield of 1,2,3-triazole compound (4) was 85%, which is required for preparing
chalcone derivatives.

As shown in Scheme 1, in the last step, a mixture of 1,2,3-triazolyl ketone (4, 1.0 eq),
aromatic aldehydes (1.1 eq) and a 10% solution of KOH in ethanol (20 mL) was stirred at
room temperature. The reaction was completed in 5–10 h, affording 1,2,3-triazolyl chalcone
derivatives (5a-n) in an 81–97% yield. Thus, the diversity points in this scheme are the aro-
matic substituents in the 1,2,3-triazolyl chalcones, which are later used in the production of
a variety of spiro compounds. The structures of the synthesized compounds were assigned
based on spectroscopy techniques, including IR spectral analyses, 1H- and 13C-NMR, and
CHN analysis, which showed that the synthesized structures had high consistency with
the proposed chemical structures. The 1H-NMR spectrum of azide compound (3) showed
the assigned protons and matched with the proposed structure (Figure S1). A singlet at δ
12.57 ppm was assigned to the -NH proton, and a singlet at δ 4.64 ppm was assigned to
the –CH2 protons. The 13C-NMR spectrum showed the characteristic carbon signals of the
proposed compound (Figure S2). Similarly, for 1,2,3-triazolyl ketone (4), the corresponding
1H-NMR spectrum (Figure S3) exhibited a singlet in the region at δ 12.62 ppm for one
proton of the –NH group of benzimidazole, a singlet in the region at δ 5.86 ppm related
to the two protons of the –CH2 group that was apparent, and two singlets at δ 2.54 ppm
and δ 2.53 ppm corresponding to the protons present in the two methyl groups –CH3
and –COCH3, respectively. The 13C-NMR spectrum (Figure S4) exhibited a signal at δ
193.88 ppm for one carbon of the C=O group and two carbon signals for –COCH3 and –CH3
groups at δ 27.99 and 9.37 ppm, respectively. Additionally, compound (4) was obtained in a
crystalline form suited for single-crystal X-ray diffraction analysis. Similarly, the proposed
structures of 1,2,3-triazolyl chalcones (5a-n) were confirmed using the same spectroscopic
analysis tools. The infrared (IR) spectrum (Figure S10) data for compound 5f supported the
proposed structure of the compound. In the IR spectrum, (C=O) stretching was found in
the expected region at 1666 cm−1. In addition, the derivative showed a typical absorption
band due to (–NH) at 3430 cm−1. The 1H-NMR spectrum (Figure S11) of compound (5f)
exhibited a singlet at δ 12.63 ppm for the –NH proton and two doublet peaks at δ 7.88 ppm
and 7.75 ppm for the α,β-unsaturated protons Hβ and Hα, respectively, with a J value of
16 Hz, confirming trans coupling and indicating the presence of olefinic protons in the E
form. The 13C-NMR spectrum (Figure S12) showed the characteristic carbon signals of the
proposed compound 5f.

2.2. Synthesis of Spiro Compounds (8a-n)

Spiro compounds (8a-n) were synthesized via a three-component reaction in which
the 32CA reaction between 1,2,3 triazolyl chalcones (5a-n) and the azomethine ylide (AY),
generated by the interaction between isatin and octahydroindole-2-carboxylic acid, was a
key-reaction step (Scheme 1). All three-component reactions were carried out by heating an
equimolar mixture of the chalcones (5a-n), isatin (7), and octahydroindole-2-carboxylic acid
(6) in MeOH under reflux conditions for 3–6 h. After the completion of the reaction (which
was checked using TLC), the solvent was evaporated, and the cyclized spiro compounds
were purified via column chromatography to afford target spiro compounds in a pure
form and in a good to excellent yield (60–85%). The structures of the synthesized spiro
compounds were characterized using different spectroscopic techniques, such as FT-IR,
1H-NMR, 13C-NMR, and CHN analysis. For example, the FT-IR spectrum (Figure S22) of
compound (8f) showed two strong absorption bands at 1724 and 1684 cm−1 corresponding
to the oxindole ring carbonyl and the benzimidazole ring carbonyl, respectively. The
strongest absorption band appeared at 3428 cm−1 due to the –NH functionality in the
oxindole ring and benzimidazole ring. The 1H-NMR spectrum (Figure S23) of compound
(8f) showed a singlet at δ 12.48 ppm due to the –NH proton of the benzimidazole ring, a
singlet at δ 9.91 ppm due to the –NH proton of the isatin ring, and a multiplet between δ
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7.57 and 6.35 ppm due to the presence of aromatic protons. A singlet at δ 5.74 ppm due to
–CH2 protons and two singlets at δ 2.23 ppm and δ 1.98 ppm corresponding to protons of
the two –CH3 groups were also observed. The 13C-NMR spectrum (Figure S24) showed
the characteristic carbon signals of the proposed compound 8f. The final cycloadduct
stereochemistry was aligned with and matched a similar type of [3+2] cycloaddition
reaction, which proceeded via complete ortho/endo selectivity [13]. Based on the reported
X-ray single-crystal structure of the reported compound in Ref. [13] and a comparison of its
1H-NMR spectrum with the 1H-NMR data for compound 8a as an example, we observed
that the chemical shifts of the protons for the stereogenic centers totally matched.

2.3. Structural Features

The synthesized 1,2,3-triazolyl ketone (4), a precursor of chalcones 5a-n, crystallizes in
tetragonal space group P4(3), having four asymmetric units inside the unit cell (see Figure 2
and Table 1). The compound is a benzimidazole derivative that contains a methyl- and
acetaldehyde-substituted triazole at the C8 position having a bond length of 1.450 Å. The
nine-membered benzimidazole ring C1-C7/N1/N2 and the triazole ring N3-N5/C9/C10
form a dihedral angle [18] of 81.15◦. All the other bond lengths and angles observed were
not unusual. The mean plane deviation in the benzimidazole ring C1-C7/N1/N2 was
0.022 Å for C1. The CCDC number for the synthesized 1,2,3-triazolyl ketone (4) is 2282490.
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Table 1. Crystal data and structural refinement data for 1,2,3-triazolyl ketone (4).

Compound 4

Empirical formula C13H13N5O

Formula weight 255.28

Temperature 102(2) K

Wavelength 1.54178 Å

Crystal system Tetragonal

Space group P(4)3

Unit-cell dimensions
a = 8.1744(2) Å σ = 90
b = 8.1744(2) Å β = 90◦

c = 19.3863(8) Å δ = 90◦.

Volume 1295.41(8) Å3

Z 4
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Table 1. Cont.

Density (calculated) 1.309 Mg/m3

Absorption coefficient 0.724 mm−1

F(000) 536

Crystal size 0.280 × 0.070 × 0.040 mm3

Theta range for data collection 5.411 to 67.814◦

Index ranges −9 ≤ h ≤ 9, −9 ≤ k ≤ 9, −22 ≤ l ≤ 23

Reflections collected 10,956

Independent reflections 2023 [R(int) = 0.0591]

Completeness to theta = 67.679◦ 86.8%

Absorption correction Semi-empirical from equivalents

Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 2023/1/180

Goodness-of-fit on F2 1.061

Final R indices [I > 2sigma(I)] R1 = 0.0319, wR2 = 0.0762

R indices (all data) R1 = 0.0337, wR2 = 0.0771

Absolute structure parameter 0.4(4)

Extinction coefficient 0.0147(16)

Largest diff. peak and hole 0.172 and −0.186 e.Å−3

2.4. Supramolecular Features

PLATON [19] analysis revealed the presence of both conventional and non-conventional
hydrogen bonding [20]. Generally, this analysis showed that N(1)–H2A···N2, C8–H8AB···O1,
and C4–H4···O1 inter-molecular interactions were involved in the unit-cell packing. Among
them, the N1–H2A···N2 interaction, involved in connecting molecules along the c-axis, is the
strongest one, having a bond distance of 2.06 Å. The O1 carbonyl oxygen of the acetaldehyde
moiety is responsible for connecting two molecules along the a-axis via C8–H8AB···O1 and
C4–H4···O1 interactions, with hydrogen bond distances of 2.50 and 2.58 Å, respectively
(see Table 2). Hence, the unit-cell packing was determined to be two-dimensional, as chain
elongation occurred in both a- and c-axis accordingly (see Figure 3).

Table 2. Hydrogen bonds of 1,2,3-triazolyl ketone (4). Distances are given in angstroms Å, and angles
are given in degrees ◦.

D–H···A d(D–H) d(H···A) d(D···A) <(DHA)

N1–H2A···N2 0.87(4) 2.01(4) 2.878(3) 178(4)

C8–H8AB···O1 0.99 2.50 3.029(3) 113

C8–H8AB···N4 0.99 2.57 3.400(3) 142

C4–H4···O1 0.95 2.58 3.448(4) 151

C11–H11B···01 0.98 2.54 3.189(4) 123

C11–H11C···N5 0.98 2.53 3.388(4) 146
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2.5. MEDT Study of the 32CA Reaction between AY 9 and Chalcone 5a

In order to understand the experimental formation of spiro compounds 8a-n, the
32CA reaction of chalcone 5a with AY 9, generated in situ through the reaction between
(2R)-octahydro-1H-indole-2-carboxylic acid 6 and isatin 7, was theoretically studied from
the perspective of MEDT [17].

2.5.1. Analysis of Reactivity Indicators

The reactivity indices defined within Conceptual DFT (CDFT) [21,22] provide valuable
insights into the prediction and comprehension of reactivity in polar reactions [23]. Table 3
summarizes the global reactivity indices, including the electronic chemical potential (µ),
chemical hardness (η), electrophilicity (ω), and nucleophilicity (N), for both AY 9 and
chalcone 5a.

Table 3. ωB97X-D/6-311G(d,p) gas-phase electronic chemical potential (µ), chemical hardness (η),
electrophilicity (ω), and nucleophilicity (N) indices, in eV, of AY 9 and chalcone 5a.

µ η ω N

Chalcone 5a −4.46 7.97 1.25 2.96
AY 9 −2.92 6.92 0.61 5.02

The electronic chemical potential (µ) [24] of AY 9 is −2.92 eV, which is higher than
that of chalcone 5a (−4.46 eV). This disparity indicates that in a polar 32CA reaction, a
global electron density transfer (GEDT) [25] will occur between AY 9 and chalcone 5a.
Consequently, AY 9 acts as a nucleophile, while chalcone 5a serves as an electrophile,
classifying the corresponding 32CA reaction as a forward electron density flux (FEDF)
process [26].

AY 9 exhibits an electrophilicity (ω) index [27] of 0.61 eV, categorizing it as a moderate
electrophile according to the electrophilicity scale [22,28]. Additionally, it possesses a
nucleophilicity (N) index [29] of 5.02 eV, classifying it as a strong nucleophile based on the
nucleophilicity scale [22,28]. In fact, its nucleophilic character exceeds 4.0 eV, earning it the
title of a supernucleophile [23,28]. On the other hand, chalcone 5a presents electrophilicity
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(ω) and nucleophilicity (N) indices of 1.25 eV and 2.96 eV, respectively. This character-
izes it as a strong electrophile and positions it at the borderline between moderate and
strong nucleophiles.

The combination of the supernucleophilic character of AY 9 and the strong electrophilic
character of chalcone 5a suggests that the corresponding FEDF 32CA reaction will possess a
highly polar character [23]. This heightened polarity enhances reaction rates by reducing activa-
tion energies due to the generation of more favorable nucleophilic/electrophilic interactions.

2.5.2. Study of the Competitive Reaction Paths

Due to the non-symmetry of the reagents, the 32CA reaction between AY 9 and
chalcone 5a can take place along two ortho/meta regioisomeric reaction paths, two endo/exo
stereoisomeric paths, and two facial diastereoisomeric paths, thus leading to up to eight
different cycloadducts. However, as the octahydroindole substituent of AY 9 hinders
one of its two diastereoisomeric faces, only the less-hindered approach leading to the
four isomeric reaction paths depicted in Scheme 2 was studied. For clarity, a reaction
mechanism roadmap showing the main isomeric possibilities is provided in Figure S32
in the Supplementary Materials. Note that due to the presence of a methylene (–CH2) in
chalcone 5a, the benzimidazole (–BIZ) substituent can be oriented either towards or away
from AY 9, thus adding four possible isomeric paths. All of the eight paths were studied,
but only the most favourable ones, with the –BIZ fragment situated away from the AY
framework, are discussed herein. In addition, a conformational analysis of the reagents and
products was performed whenever different conformers were possible in order to consider
only the most stable structures. The Gibbs free energy profiles associated with the four
competitive reaction paths are represented in Figure 4, while full thermodynamic data are
given in Table S1 in the Supplementary Materials.
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Upon analyzing the stationary points along the four reaction paths, it becomes evident
that the 32CA reaction occurs through a one-step mechanism. Each reaction path exhibits a
stable molecular complex (MC) formed through weak intermolecular interactions between
the reagents. However, due to the thermodynamic equilibrium between the several MCs,
only the most stable complex, MC-on, was chosen as the energy reference. The formation of
MC-on is slightly exergonic, releasing 1.2 kcal·mol−1 of energy (see Figure 4). Considering
the formation of MC-on, the activation Gibbs free energies for the selected isomeric paths
range from 11.1 kcal·mol−1 (TS-on) to 16.6 kcal·mol−1 (TS-mx). On the other hand, the
reaction Gibbs free energies fall between −18.1 kcal·mol−1 (10a) and −24.0 kcal·mol−1 (8a).
The highly exergonic nature of this reaction suggests irreversibility under the experimental
conditions, indicating that the reaction is controlled kinetically. Using the Eyring–Polanyi
kinetics equation [30], the following product distribution was predicted: 97.0% (8a), 0.1%
(10a), 2.8% (11a), and 0.0% (12a). This demonstrates complete ortho/endo selectivity, exclu-
sively yielding the formation of 8a through TS-on, aligning with the experimental data.

Figure 5 presents the optimized geometries of the four isomeric transition states (TSs)
in methanol. The C–C distances between the interacting carbons provide insights into
the C–C single-bond formation processes. Except for the most unfavorable TS-mx, the
other three TSs exhibit an asynchronous behavior, with the shorter C–C distance involving
the most electrophilic β-conjugated C4 carbon of chalcone 5a. The most favorable TS-
on, characterized by C3–C4 and C1–C5 distances of 2.094 and 2.711 Å, respectively, has
the highest degree of asynchronicity. Examining the intrinsic reaction coordinate (IRC)
path [31] from the highly asynchronous TS-on to 8a reveals that the 32CA reaction follows
a non-concerted two-stage, one-step mechanism [32]. In this mechanism, the formation of
the second C1–C5 single bond commences only after the first C3–C4 single bond is fully
formed (see Figure S33 in the Supplementary Materials).

Figure 5 also provides the GEDT [25] values for the four isomeric TSs. The GEDT
taking place in the TS is a measure of the polarity of the 32CA reaction. GEDT values below
0.05 e indicate non-polar processes, while values above 0.20 e indicate polar processes.
Among the TSs, the most favorable TS-on exhibits a GEDT value of 0.27 e. This high value
arises from the supernucleophilic nature of AY 9 and the strong electrophilic character of
chalcone 5a (refer to Table 3). Consequently, the 32CA reaction through TS-on possesses
a significant polar character, which accounts for its low activation Gibbs free energy of
11.1 kcal·mol−1 and the overall endo stereoselectivity observed. Note that polar cycloaddi-
tion reactions typically exhibit endo stereoselectivity. Furthermore, the positive GEDT sign
computed at the AY framework of the TS indicates an electron density flow from AY 9 to
chalcone 5a, classifying this 32CA reaction as FEDF, [26] in accordance with the previous
analysis of the reactivity indices.
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3. Materials and Methods
3.1. Synthesis of Chalcones (5a-n) and Spiro Compounds (8a-n)
3.1.1. Synthesis of 2-(Chloromethyl)-1H-benzo[d]imidazole 2

In accordance with the Phillip’s reaction, a mixture of o-phenylenediamine (10 mmol,
1.08 g) and chloroacetic acid (10 mmol, 0.945 g) was stirred under reflux conditions in the
presence of 4N HCl (40 mL) for approximately 4 h. Then, the reaction mixture was cooled at
room temperature, and the pH was adjusted to 9 by adding NH4OH solution. The obtained
precipitate was collected via filtration, washed with water, dried, and recrystallized from
ethanol. The pure product was a pale-yellow-colored solid whose melting point was
approximately 150–152 ◦C, and the yield was 92%.

3.1.2. Synthesis of 2-(Azidomethyl)-1H-benzo[d]imidazole 3

NaN3 (11 mmol, 0.715 g) was added to a solution of 2-(chloromethyl)-1H-benzo[d]imidazole
2 (10 mmol, 1.66 g) in DMSO (10 mL), and the mixture was stirred for 3–4 h. After comple-
tion of reaction (as indicated via TLC), water (50 mL) was added with consistent stirring for
10 min. Then, the organic phase was separated using ethyl acetate. The extract was dried over
anhydrous sodium sulphate. Evaporation of the solvent gave the crude product which was
purified via column chromatography using hexane: ethylacetate (80:20), as an eluent, which
was recrystallized from absolute ethanol.
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Yield: 75%; m.p.: 119–121 ◦C; a pale-yellow-colored solid compound; 1H-NMR (500 MHz,
DMSO-d6) δ 12.57 (s, 1H, NH), 7.52–7.50 (m, 2H, ArH), 7.16–7.13 (m, 2H, ArH), and 4.64 (s,
2H, CH2); 13C-NMR (126 MHz, DMSO-d6) δ 149.8 (C-8), 134.4 (C-5), 122.5 (C-4), 118.6 (C-6),



Molecules 2023, 28, 6976 11 of 27

113.9 (C-3), 109.4 (C-2, C-1), and 47.8 (C-10); Anal. for C8H7N5; Calcd: C, 55.48; H, 4.07; N,
40.44 Found: C, 55.52; H, 4.03; N, 40.38; [M+] m/z: 173.

3.1.3. Synthesis of 1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)
ethan-1-one 4

2-(Azidomethyl)-1H-benzo[d]imidazole 3 (2 mmol, 0.346 g) was added to a solution of
(2 mmol, 0.2 g) of acetylacetone and (2 mmol, 0.276 g) of K2CO3 in 10 mL of DMSO. The
mixture was stirred for 3 h at 25 ◦C and poured into ice water, and the precipitate was
filtered off and recrystallized from ethylacetate/ethanol. The yield was 0.4 g (78%) of white
crystalline compound 4.
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Yield: 78%; m.p.: 192–194 ◦C; a white, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ
12.62 (s, 1H, NH), 7.49 (m, 2H, ArH), 7.14 (m, 2H, ArH), 5.86 (s, 2H, CH2), 2.54 (s, 3H, CH3),
and 2.53 (s, 3H, COCH3). 13C-NMR (126 MHz, DMSO-d6) δ 193.9 (C-15), 148.5 (C-11), 143.4
(C-8), 138.6 (C-5), 134.0 (C-4), 123.2 (C-12), 122.1 (C-2, C-1), 119.4 (C-6), 112.1 (C-3), 45.9
(C-19), 28.0 (C-18), and 9.4 (C-16); Anal. for C13H13N5O; Calcd: C, 61.17; H, 5.13; N, 27.43
Found: C, 61.12; H, 5.08; N, 27.39; [M+] m/z: 255.

3.1.4. General Procedure for Synthesis of Chalcones 5a-n

A mixture of 1.1 mmol of aromatic aldehydes was added to a solution of acetyl
derivative 4 (1 mmol, 0.255 g) in EtOH (20 mL). Then, a 10% solution of KOH was added
dropwise at 20 ◦C with stirring. The reaction mixture was stirred for 10 h. After the
completion of the reaction (monitored via TLC), the mixture was poured over crushed
ice. The separated precipitate was filtered, washed with water, and dried. The residue
was purified via column chromatography (30% ethyl acetate/n-hexane) to afford purely
derived chalcones 5a-n.
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-phenylprop-2-en-
1-one 5a.
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119.5 (C-18), 115.2 (C-6, C-3), 112.2 (C-25, C-23), 56.0 (C-27), 46.0 (C-21), and 9.6 (C-16); 
Anal. for C21H19N5O2; Calcd: C, 67.55; H, 5.13; N, 18.76 Found: C, 67.64; H, 5.10; N, 18.69; 
[M+] m/z: 373; IR (KBr, cm−1): 1568 (C=N), 1665 (C=O), 3432 (NH). 

  

Yield: 83%; m.p.: 158–160 ◦C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ
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DMSO-d6) δ 183.9 (C-15), 148.5 (C-11), 143.6 (C-19), 143.5 (C-8), 143.4 (C-5), 139.9 (C-4),
135.1 (C-20), 134.9 (C-12), 131.3 and 130.0 (C-26, (C-22), 129.8 (C-24), 129.7 and 129.6 ((C-23,
C-25), 129.2 (C-2), 123.3 (C-1), 122.2 (C-18), 119.4 (C-6), 112.1 (C-3), 46.0 (C-21), and 9.6
(C-16); Anal. for C20H17N5O; Calcd: C, 69.96; H, 4.99; N, 20.40 Found: C, 69.92; H, 5.03; N,
20.35; [M+] m/z: 343; IR (KBr, cm−1): 1572 (C=N), 1663 (C=O), 3431 (NH).
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(4-methoxyphenyl)
prop-2-en-1-one 5b.
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1H, ArH), 7.50 (d, J = 7.3 Hz, 1H, ArH), 7.27–7.11 (m, 3H, ArH), 7.02 (d, J = 8.8 Hz, 2H,
ArH), 5.95 (s, 2H, CH2), 3.82 (s, 3H, OCH3), and 2.67 (s, 3H, CH3); 13C-NMR (126 MHz,
DMSO-d6) δ 183.9 (C-15), 162.0 (C-24), 148.6 (C-11), 143.8 (C-19), 143.5 (C-8), 143.4 (C-5),
139.7 (C-4), 134.9 (C-12), 131.2 and 127.6 (C-26, C-22), 123.2 (C-20), 122.2 (C-2), 120.9 (C-1),
119.5 (C-18), 115.2 (C-6, C-3), 112.2 (C-25, C-23), 56.0 (C-27), 46.0 (C-21), and 9.6 (C-16); Anal.
for C21H19N5O2; Calcd: C, 67.55; H, 5.13; N, 18.76 Found: C, 67.64; H, 5.10; N, 18.69; [M+]
m/z: 373; IR (KBr, cm−1): 1568 (C=N), 1665 (C=O), 3432 (NH).
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(2,4-dichlorophenyl)
prop-2-en-1-one 5c.
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Yield: 84%; m.p.: 200–202 °C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
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11), 143.6 (C-19), 143.4 (C-8), 142.1 (C-5), 140.0 (C-4), 135.8 (C-24), 134.9 (C-20), 133.9 (C-
12), 131.0 (C-22, C-28), 129.7 (C-25, C-23), 124.0 (C-2), 123.2 (C-1), 122.1 (C-18), 119.4 (C-6), 
112.1 (C-3), 46.0 (C-21), and 9.6 (C-16); Anal. for C20H16ClN5O; Calcd: C, 63.58; H, 4.27; N, 
18.54 Found: C, 63.61; H, 4.21; N, 18.59; [M+] m/z: 377; IR (KBr, cm−1): 1567 (C=N), 1665 
(C=O), 3433 (NH). 
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(4-
fluorophenyl)prop-2-en-1-one 5e. 

            7 

Yield: 98%; m.p.: 220–222 °C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.63 (s, 1H, NH), 7.88 (d, J = 16.0 Hz, 1H, CHβ), 7.85 (dd, J = 6.0, 2.8 Hz, 2H, ArH), 
7.78 (d, J = 16.0 Hz, 1H, COCHα), 7.54–7.44 (m, 2H, ArH), 7.26 (t, J = 8.8 Hz, 2H, ArH), 7.17–

Yield: 88%; m.p.: 182–185 ◦C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6)
δ 12.60 (s, 1H, NH), 8.03 (d, J = 12.1 Hz, 1H, CHβ), 7.97 (d, J = 12.9 Hz, 1H, CHα), 7.83
(d, J = 8.4 Hz, 1H, Ar-H), 7.58 (d, J = 8.4 Hz, 2H, Ar-H), 7.06–7.01 (m, 3H, Ar-H), 6.86
(d, J = 8.4 Hz, 1H, Ar-H), 5.92 (s, 2H, CH2), and 2.63 (s, 3H, CH3); 13C-NMR (126 MHz,
DMSO-d6) δ 189.4 (C-15), 149.6 (C-11), 148.4 (C-19), 144.6 (C-8), 143.4 (C-5), 143.2 (C-4),
140.4 (C-22), 138.9 (C-12), 137.1 (C-20), 131.7 (C-28), 130.8 (C-23), 130.2 (C-25), 129.6 (C-24),
128.8 (C-2), 128.7 (C-1), 125.6 (C-18), 122.2 (C-6, C-3), 45.9 (C-21), and 9.6 (C-16); Anal. for
C20H15Cl2N5O; calcd: C, 58.27; H, 3.67; N, 16.99 Found: C, 58.22; H, 3.63; N, 16.94; [M+]
m/z: 411; IR (KBr, cm−1): 1570 (C=N), 1664 (C=O), 3430 (NH).
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(4-chlorophenyl)
prop-2-en-1-one 5d.
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Yield: 84%; m.p.: 200–202 °C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.63 (s, 1H, NH), 7.93 (d, J = 16.1 Hz, 1H, CHβ), 7.81 (d, J = 8.6 Hz, 2H, ArH), 7.77 (d, 
J = 16.1 Hz, 1H, COCHα), 7.53 (d, J = 7.9 Hz, 1H, ArH), 7.48 (d, J = 8.6 Hz, 2H, ArH), 7.45 
(d, J = 7.9 Hz, 1H, ArH), 7.17 (t, J = 7.5 Hz, 1H, ArH), 7.12 (t, J = 7.5 Hz, 1H, ArH), 5.91 (s, 
2H, CH2), and 2.62 (s, 3H, CH3); 13C-NMR (126 MHz, DMSO-d6) δ 183.8 (C-15), 148.5 (C-
11), 143.6 (C-19), 143.4 (C-8), 142.1 (C-5), 140.0 (C-4), 135.8 (C-24), 134.9 (C-20), 133.9 (C-
12), 131.0 (C-22, C-28), 129.7 (C-25, C-23), 124.0 (C-2), 123.2 (C-1), 122.1 (C-18), 119.4 (C-6), 
112.1 (C-3), 46.0 (C-21), and 9.6 (C-16); Anal. for C20H16ClN5O; Calcd: C, 63.58; H, 4.27; N, 
18.54 Found: C, 63.61; H, 4.21; N, 18.59; [M+] m/z: 377; IR (KBr, cm−1): 1567 (C=N), 1665 
(C=O), 3433 (NH). 
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(4-
fluorophenyl)prop-2-en-1-one 5e. 

            7 

Yield: 98%; m.p.: 220–222 °C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.63 (s, 1H, NH), 7.88 (d, J = 16.0 Hz, 1H, CHβ), 7.85 (dd, J = 6.0, 2.8 Hz, 2H, ArH), 
7.78 (d, J = 16.0 Hz, 1H, COCHα), 7.54–7.44 (m, 2H, ArH), 7.26 (t, J = 8.8 Hz, 2H, ArH), 7.17–

Yield: 84%; m.p.: 200–202 ◦C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.63 (s, 1H, NH), 7.93 (d, J = 16.1 Hz, 1H, CHβ), 7.81 (d, J = 8.6 Hz, 2H, ArH), 7.77
(d, J = 16.1 Hz, 1H, COCHα), 7.53 (d, J = 7.9 Hz, 1H, ArH), 7.48 (d, J = 8.6 Hz, 2H, ArH),
7.45 (d, J = 7.9 Hz, 1H, ArH), 7.17 (t, J = 7.5 Hz, 1H, ArH), 7.12 (t, J = 7.5 Hz, 1H, ArH), 5.91
(s, 2H, CH2), and 2.62 (s, 3H, CH3); 13C-NMR (126 MHz, DMSO-d6) δ 183.8 (C-15), 148.5
(C-11), 143.6 (C-19), 143.4 (C-8), 142.1 (C-5), 140.0 (C-4), 135.8 (C-24), 134.9 (C-20), 133.9
(C-12), 131.0 (C-22, C-28), 129.7 (C-25, C-23), 124.0 (C-2), 123.2 (C-1), 122.1 (C-18), 119.4
(C-6), 112.1 (C-3), 46.0 (C-21), and 9.6 (C-16); Anal. for C20H16ClN5O; Calcd: C, 63.58; H,
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4.27; N, 18.54 Found: C, 63.61; H, 4.21; N, 18.59; [M+] m/z: 377; IR (KBr, cm−1): 1567 (C=N),
1665 (C=O), 3433 (NH).
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(4-fluorophenyl)
prop-2-en-1-one 5e.
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(d, J = 7.9 Hz, 1H, ArH), 7.17 (t, J = 7.5 Hz, 1H, ArH), 7.12 (t, J = 7.5 Hz, 1H, ArH), 5.91 (s, 
2H, CH2), and 2.62 (s, 3H, CH3); 13C-NMR (126 MHz, DMSO-d6) δ 183.8 (C-15), 148.5 (C-
11), 143.6 (C-19), 143.4 (C-8), 142.1 (C-5), 140.0 (C-4), 135.8 (C-24), 134.9 (C-20), 133.9 (C-
12), 131.0 (C-22, C-28), 129.7 (C-25, C-23), 124.0 (C-2), 123.2 (C-1), 122.1 (C-18), 119.4 (C-6), 
112.1 (C-3), 46.0 (C-21), and 9.6 (C-16); Anal. for C20H16ClN5O; Calcd: C, 63.58; H, 4.27; N, 
18.54 Found: C, 63.61; H, 4.21; N, 18.59; [M+] m/z: 377; IR (KBr, cm−1): 1567 (C=N), 1665 
(C=O), 3433 (NH). 
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(4-
fluorophenyl)prop-2-en-1-one 5e. 
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Yield: 98%; m.p.: 220–222 °C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.63 (s, 1H, NH), 7.88 (d, J = 16.0 Hz, 1H, CHβ), 7.85 (dd, J = 6.0, 2.8 Hz, 2H, ArH), 
7.78 (d, J = 16.0 Hz, 1H, COCHα), 7.54–7.44 (m, 2H, ArH), 7.26 (t, J = 8.8 Hz, 2H, ArH), 7.17–

Yield: 98%; m.p.: 220–222 ◦C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.63 (s, 1H, NH), 7.88 (d, J = 16.0 Hz, 1H, CHβ), 7.85 (dd, J = 6.0, 2.8 Hz, 2H, ArH),
7.78 (d, J = 16.0 Hz, 1H, COCHα), 7.54–7.44 (m, 2H, ArH), 7.26 (t, J = 8.8 Hz, 2H, ArH),
7.17–7.11 (m, 2H, ArH), 5.91 (s, 2H, CH2), and 2.62 (s, 3H, CH3); 13C-NMR (126 MHz,
DMSO-d6) δ 183.8 (C-15), 165.0 and 163.0 (C-24), 148.5 (C-11), 143.6 (C-19), 142.3 (C-8), 139.9
(C-5), 131.7 (C-4), 131.6 (C-12), 123.2 (C-20), 122.2 (C-26, C-22), 119.4 (C-2, C-1), 116.7 (C-18),
116.6 (C-6, C-3), 112.1 (C-25, C-23), 46.0 (C-21), and 9.6 (C-16); Anal. for C20H16FN5O; Calcd:
C, 66.47; H, 4.46; N, 19.38 Found: C, 66.41; H, 4.49; N, 19.43; [M+] m/z: 361; IR (KBr, cm−1):
1568 (C=N), 1661 (C=O), 3431 (NH).
1-(1-((1H-benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(p-tolyl)prop-2-
en-1-one 5f.
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           8 

Yield: 84%; m.p.: 207–209 °C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ 
12.63 (s, 1H, NH), 7.88 (d, J = 16.0 Hz, 1H, CHβ), 7.75 (d, J = 16.0 Hz, 1H, COCHα), 766 (d, J 
= 8.1 Hz, 2H, ArH), 7.54 (d, J = 7.6 Hz, 1H, ArH), 7.45 (d, J = 7.6 Hz, 1H, ArH), 7.24 (d, J = 
8.1 Hz, 2H, ArH), 7.16 (t, J = 7.5 Hz, 1H, ArH), 7.14 (t, J = 7.5 Hz, 1H, ArH), 5.91 (s, 2H, 
CH2), 2.62 (s, 3H, CH3), and 2.31 (s, 3H, Ph-CH3); 13C-NMR (126 MHz, DMSO-d6) δ 183.9 
(C-15), 148.5 (C-11), 143.7 (C-19), 143.6 (C-8), 143.4 (C-5), 141.4 (C-4), 139.8 (C-24), 134.9 (C-
20), 132.2 (C-25), 130.3 (C-23), 129.3 (C-26), 123.2 (C-22), 122.3 (C-2), 122.1 (C-1), 119.4 (C-
18), 112.1 (C-6, C-3), 46.0 (C-21), 21.6 (C-27), and 9.6 (C-16); Anal. for C21H19N5O; Calcd: C, 
70.57; H, 5.36; N, 19.59 Found: C, 70.62; H, 5.40; N, 19.54; [M+] m/z: 357; IR (KBr, cm−1): 
1569 (C=N), 1666 (C=O), 3430 (NH). 
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(4-
bromophenyl)prop-2-en-1-one 5g. 

             9 

Yield: 82%; m.p.: 194–196 °C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ 
12.61 (s, 1H, NH), 7.89 (d, J = 16.1 Hz, 1H, CHβ), 7.83 (d, J = 8.5 Hz, 2H, ArH), 7.76 (d, J = 
16.1 Hz, 1H, COCHα), 7.55 (d, J = 8.0 Hz, 1H, ArH), 7.46 (d, J = 8.5 Hz, 2H, ArH), 7.45 (d, J 
= 8.0 Hz, 1H, ArH), 7.16 (t, J = 7.5 Hz, 1H, ArH), 7.13 (t, J = 7.5 Hz, 1H, ArH), 5.92 (s, 2H, 
CH2), and 2.61 (s, 3H, CH3); 13C-NMR (126 MHz, DMSO-d6) δ 184.8 (C-15), 149.5 (C-11), 
142.6 (C-19), 142.2 (C-8), 140.1 (C-5), 134.8 (C-4), 133.9 (C-20), 132.9 (C-25), 131.0 (C-23), 
129.6 (C-12), 124.0 (C-26), 123.2 (C-22), 122.1 (C-2, C-1), 119.4 (C-18), 118.6 (C-24), 112.1 (C-
6, C-3), 46.1 (C-21), and 9.6 (C-16); Anal. for C20H16BrN5O; Calcd: C, 56.89; H, 3.82; N, 16.58 
Found: C, 56.85; H, 3.86; N, 16.55; [M+] m/z: 421; IR (KBr, cm−1): 1573 (C=N), 1664 (C=O), 
3433 (NH). 
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(m-tolyl)prop-
2-en-1-one 5h. 

Yield: 84%; m.p.: 207–209 ◦C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ
12.63 (s, 1H, NH), 7.88 (d, J = 16.0 Hz, 1H, CHβ), 7.75 (d, J = 16.0 Hz, 1H, COCHα), 766 (d,
J = 8.1 Hz, 2H, ArH), 7.54 (d, J = 7.6 Hz, 1H, ArH), 7.45 (d, J = 7.6 Hz, 1H, ArH), 7.24 (d,
J = 8.1 Hz, 2H, ArH), 7.16 (t, J = 7.5 Hz, 1H, ArH), 7.14 (t, J = 7.5 Hz, 1H, ArH), 5.91 (s, 2H,
CH2), 2.62 (s, 3H, CH3), and 2.31 (s, 3H, Ph-CH3); 13C-NMR (126 MHz, DMSO-d6) δ 183.9
(C-15), 148.5 (C-11), 143.7 (C-19), 143.6 (C-8), 143.4 (C-5), 141.4 (C-4), 139.8 (C-24), 134.9
(C-20), 132.2 (C-25), 130.3 (C-23), 129.3 (C-26), 123.2 (C-22), 122.3 (C-2), 122.1 (C-1), 119.4
(C-18), 112.1 (C-6, C-3), 46.0 (C-21), 21.6 (C-27), and 9.6 (C-16); Anal. for C21H19N5O; Calcd:
C, 70.57; H, 5.36; N, 19.59 Found: C, 70.62; H, 5.40; N, 19.54; [M+] m/z: 357; IR (KBr, cm−1):
1569 (C=N), 1666 (C=O), 3430 (NH).
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(4-bromophenyl)
prop-2-en-1-one 5g.
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70.57; H, 5.36; N, 19.59 Found: C, 70.62; H, 5.40; N, 19.54; [M+] m/z: 357; IR (KBr, cm−1): 
1569 (C=N), 1666 (C=O), 3430 (NH). 
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(4-
bromophenyl)prop-2-en-1-one 5g. 

             9 

Yield: 82%; m.p.: 194–196 °C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ 
12.61 (s, 1H, NH), 7.89 (d, J = 16.1 Hz, 1H, CHβ), 7.83 (d, J = 8.5 Hz, 2H, ArH), 7.76 (d, J = 
16.1 Hz, 1H, COCHα), 7.55 (d, J = 8.0 Hz, 1H, ArH), 7.46 (d, J = 8.5 Hz, 2H, ArH), 7.45 (d, J 
= 8.0 Hz, 1H, ArH), 7.16 (t, J = 7.5 Hz, 1H, ArH), 7.13 (t, J = 7.5 Hz, 1H, ArH), 5.92 (s, 2H, 
CH2), and 2.61 (s, 3H, CH3); 13C-NMR (126 MHz, DMSO-d6) δ 184.8 (C-15), 149.5 (C-11), 
142.6 (C-19), 142.2 (C-8), 140.1 (C-5), 134.8 (C-4), 133.9 (C-20), 132.9 (C-25), 131.0 (C-23), 
129.6 (C-12), 124.0 (C-26), 123.2 (C-22), 122.1 (C-2, C-1), 119.4 (C-18), 118.6 (C-24), 112.1 (C-
6, C-3), 46.1 (C-21), and 9.6 (C-16); Anal. for C20H16BrN5O; Calcd: C, 56.89; H, 3.82; N, 16.58 
Found: C, 56.85; H, 3.86; N, 16.55; [M+] m/z: 421; IR (KBr, cm−1): 1573 (C=N), 1664 (C=O), 
3433 (NH). 
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(m-tolyl)prop-
2-en-1-one 5h. 

Yield: 82%; m.p.: 194–196 ◦C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6)
δ 12.61 (s, 1H, NH), 7.89 (d, J = 16.1 Hz, 1H, CHβ), 7.83 (d, J = 8.5 Hz, 2H, ArH), 7.76 (d,
J = 16.1 Hz, 1H, COCHα), 7.55 (d, J = 8.0 Hz, 1H, ArH), 7.46 (d, J = 8.5 Hz, 2H, ArH), 7.45
(d, J = 8.0 Hz, 1H, ArH), 7.16 (t, J = 7.5 Hz, 1H, ArH), 7.13 (t, J = 7.5 Hz, 1H, ArH), 5.92
(s, 2H, CH2), and 2.61 (s, 3H, CH3); 13C-NMR (126 MHz, DMSO-d6) δ 184.8 (C-15), 149.5
(C-11), 142.6 (C-19), 142.2 (C-8), 140.1 (C-5), 134.8 (C-4), 133.9 (C-20), 132.9 (C-25), 131.0
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(C-23), 129.6 (C-12), 124.0 (C-26), 123.2 (C-22), 122.1 (C-2, C-1), 119.4 (C-18), 118.6 (C-24),
112.1 (C-6, C-3), 46.1 (C-21), and 9.6 (C-16); Anal. for C20H16BrN5O; Calcd: C, 56.89; H, 3.82;
N, 16.58 Found: C, 56.85; H, 3.86; N, 16.55; [M+] m/z: 421; IR (KBr, cm−1): 1573 (C=N),
1664 (C=O), 3433 (NH).
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(m-tolyl)prop-2-
en-1-one 5h.
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Yield: 93%; m.p.: 220–222 °C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.63 (s, 1H, NH), 7.92 (d, J = 16.0 Hz, 1H, CHβ), 7.75 (d, J = 16.0 Hz, 1H, COCHα), 7.60 
(s, 1H, ArH), 7.54 (dd, J = 7.9, 3.7 Hz, 2H ArH), 7.46 (d, J = 7.5 Hz, 1H, ArH), 7.31 (t, J = 7.6 
Hz, 1H ArH), 7.24 (d, J = 8.7 Hz, 1H, ArH), 7.17 (t, J = 7.6 Hz, 1H, ArH), 7.12 (t, J = 7.6 Hz, 
1H, ArH), 5.91 (s, 2H, CH2), 2.62 (s, 3H, CH3), and 2.32 (s, 3H, CH3); 13C-NMR (126 MHz, 
DMSO-d6) δ 183.9 (C-15), 148.5 (C-11), 143.6 (C-19), 143.4 (C-8), 139.9 (C-5), 138.9 (C-4), 
134.9 (C-23), 132.1 (C-20), 129.5 (C-12), 129.4 (C-25), 126.7 (C-24), 123.2 (C-22), 123.1 (C-26), 
122.1 (C-2, C-1), 119.4 (C-18), 112.1 (C-6, C-3), 46.0 (C-21), 21.4 (C-27), and 9.6 (C-16); Anal. 
for C21H19N5O; Calcd: C, 70.57; H, 5.36; N, 19.59 Found: C, 70.62; H, 5.31; N, 19.54; [M+] 
m/z: 357; IR (KBr, cm−1): 1567 (C=N), 1666 (C=O), 3431 (NH). 
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(thiophen-2-
yl)prop-2-en-1-one 5i. 

          11 

Yield: 95%; m.p.: 212–214 °C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.62 (s, 1H, NH), 7.95 (d, J = 15.8 Hz, 1H, CHβ), 7.75 (d, J = 5.1 Hz, 1H, thiophene), 
7.63 (d, J = 15.8 Hz, 1H, COCHα), 7.62 (d, J = 5.1 Hz, 1H, thiophene), 7.53 (d, J = 7.8 Hz, 1H, 
ArH), 7.45 (d, J = 7.8 Hz, 1H, ArH), 7.18–7.15 (m, 2H, ArH, thiophene), 7.11 (t, J = 7.5 Hz, 
1H, ArH), 5.90 (s, 2H, CH2), 2.61 (s, 3H, CH3); 13C-NMR (126 MHz, DMSO-d6) δ 183.3 (C-
15), 148.5 (C-11), 143.5 (C-8), 143.4 (C-20), 140.2 (C-5), 139.8 (C-4), 136.3 (C-19), 134.9 (C-
12), 134.0 (C-24), 130.9 (C-22), 129.4 (C-23), 123.2 (C-18), 122.1 (C-2), 121.6 (C-1), 119.4 (C-
6), 112.1 (C-3), 46.0 (C-21), and 9.6 (C-16); Anal. for C18H15N5OS; Calcd: C, 61.87; H, 4.33; 
N, 20.04 Found: C, 61.82; H, 4.36; N, 20.07; [M+] m/z: 349; IR (KBr, cm−1): 1567 (C=N), 1665 
(C=O), 3428 (NH). 
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(3,4,5-
trimethoxyphenyl)prop-2-en-1-one 5j. 

           12 

Yield: 89%; m.p.: 203–205 °C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ 
12.65 (s, 1H, NH), 7.90 (d, J = 16.0 Hz, 1H, CHβ), 7.79 (d, J = 16.0 Hz, 1H, COCHα), 7.61 (d, 
J = 8.0 Hz, 2H, ArH), 7.24 (d, J = 8.0 Hz, 2H, ArH), 7.12 (s, 2H, ArH), 5.93 (s, 2H, CH2), 3.69 
(s, 6H, OCH3), 3.48 (s, 3H, OCH3), and 2.64 (s, 3H, CH3); 13C-NMR (126 MHz, DMSO-d6) δ 
185.91 (C-15), 158.33 (C-25, C-23), 148.41 (C-11), 143.65 (C-19), 143.50 (C-8), 143.27 (C-5), 
141.42 (C-4), 139.78 (C-24), 134.82 (C-12), 132.21 (C-20), 131.26 (C-2), 129.25 (C-1), 123.14 

Yield: 93%; m.p.: 220–222 ◦C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.63 (s, 1H, NH), 7.92 (d, J = 16.0 Hz, 1H, CHβ), 7.75 (d, J = 16.0 Hz, 1H, COCHα),
7.60 (s, 1H, ArH), 7.54 (dd, J = 7.9, 3.7 Hz, 2H ArH), 7.46 (d, J = 7.5 Hz, 1H, ArH), 7.31 (t,
J = 7.6 Hz, 1H ArH), 7.24 (d, J = 8.7 Hz, 1H, ArH), 7.17 (t, J = 7.6 Hz, 1H, ArH), 7.12 (t,
J = 7.6 Hz, 1H, ArH), 5.91 (s, 2H, CH2), 2.62 (s, 3H, CH3), and 2.32 (s, 3H, CH3); 13C-NMR
(126 MHz, DMSO-d6) δ 183.9 (C-15), 148.5 (C-11), 143.6 (C-19), 143.4 (C-8), 139.9 (C-5), 138.9
(C-4), 134.9 (C-23), 132.1 (C-20), 129.5 (C-12), 129.4 (C-25), 126.7 (C-24), 123.2 (C-22), 123.1
(C-26), 122.1 (C-2, C-1), 119.4 (C-18), 112.1 (C-6, C-3), 46.0 (C-21), 21.4 (C-27), and 9.6 (C-16);
Anal. for C21H19N5O; Calcd: C, 70.57; H, 5.36; N, 19.59 Found: C, 70.62; H, 5.31; N, 19.54;
[M+] m/z: 357; IR (KBr, cm−1): 1567 (C=N), 1666 (C=O), 3431 (NH).
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(thiophen-2-yl)prop-
2-en-1-one 5i.
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Yield: 95%; m.p.: 212–214 °C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.62 (s, 1H, NH), 7.95 (d, J = 15.8 Hz, 1H, CHβ), 7.75 (d, J = 5.1 Hz, 1H, thiophene), 
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185.91 (C-15), 158.33 (C-25, C-23), 148.41 (C-11), 143.65 (C-19), 143.50 (C-8), 143.27 (C-5), 
141.42 (C-4), 139.78 (C-24), 134.82 (C-12), 132.21 (C-20), 131.26 (C-2), 129.25 (C-1), 123.14 

Yield: 95%; m.p.: 212–214 ◦C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.62 (s, 1H, NH), 7.95 (d, J = 15.8 Hz, 1H, CHβ), 7.75 (d, J = 5.1 Hz, 1H, thiophene),
7.63 (d, J = 15.8 Hz, 1H, COCHα), 7.62 (d, J = 5.1 Hz, 1H, thiophene), 7.53 (d, J = 7.8 Hz, 1H,
ArH), 7.45 (d, J = 7.8 Hz, 1H, ArH), 7.18–7.15 (m, 2H, ArH, thiophene), 7.11 (t, J = 7.5 Hz,
1H, ArH), 5.90 (s, 2H, CH2), 2.61 (s, 3H, CH3); 13C-NMR (126 MHz, DMSO-d6) δ 183.3
(C-15), 148.5 (C-11), 143.5 (C-8), 143.4 (C-20), 140.2 (C-5), 139.8 (C-4), 136.3 (C-19), 134.9
(C-12), 134.0 (C-24), 130.9 (C-22), 129.4 (C-23), 123.2 (C-18), 122.1 (C-2), 121.6 (C-1), 119.4
(C-6), 112.1 (C-3), 46.0 (C-21), and 9.6 (C-16); Anal. for C18H15N5OS; Calcd: C, 61.87; H,
4.33; N, 20.04 Found: C, 61.82; H, 4.36; N, 20.07; [M+] m/z: 349; IR (KBr, cm−1): 1567 (C=N),
1665 (C=O), 3428 (NH).
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(3,4,5-trimethoxy
phenyl)prop-2-en-1-one 5j.
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           12 
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12.65 (s, 1H, NH), 7.90 (d, J = 16.0 Hz, 1H, CHβ), 7.79 (d, J = 16.0 Hz, 1H, COCHα), 7.61 (d, 
J = 8.0 Hz, 2H, ArH), 7.24 (d, J = 8.0 Hz, 2H, ArH), 7.12 (s, 2H, ArH), 5.93 (s, 2H, CH2), 3.69 
(s, 6H, OCH3), 3.48 (s, 3H, OCH3), and 2.64 (s, 3H, CH3); 13C-NMR (126 MHz, DMSO-d6) δ 
185.91 (C-15), 158.33 (C-25, C-23), 148.41 (C-11), 143.65 (C-19), 143.50 (C-8), 143.27 (C-5), 
141.42 (C-4), 139.78 (C-24), 134.82 (C-12), 132.21 (C-20), 131.26 (C-2), 129.25 (C-1), 123.14 

Yield: 89%; m.p.: 203–205 ◦C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ
12.65 (s, 1H, NH), 7.90 (d, J = 16.0 Hz, 1H, CHβ), 7.79 (d, J = 16.0 Hz, 1H, COCHα), 7.61 (d,
J = 8.0 Hz, 2H, ArH), 7.24 (d, J = 8.0 Hz, 2H, ArH), 7.12 (s, 2H, ArH), 5.93 (s, 2H, CH2), 3.69



Molecules 2023, 28, 6976 15 of 27

(s, 6H, OCH3), 3.48 (s, 3H, OCH3), and 2.64 (s, 3H, CH3); 13C-NMR (126 MHz, DMSO-d6)
δ 185.91 (C-15), 158.33 (C-25, C-23), 148.41 (C-11), 143.65 (C-19), 143.50 (C-8), 143.27 (C-5),
141.42 (C-4), 139.78 (C-24), 134.82 (C-12), 132.21 (C-20), 131.26 (C-2), 129.25 (C-1), 123.14
(C-18), 122.45 (C-6), 121.76 (C-3), 122.11 (C-26), 119.42 (C-22), 60.45 (C-27), 52.12 (C-29,
C-28), 45.99 (C-21), and 9.57 (C-16); Anal. for C23H23N5O4; Calcd: C, 63.73; H, 5.35; N, 16.16
Found: C, 63.75; H, 5.31; N, 16.14; [M+] m/z: 433; IR (KBr, cm−1): 1568 (C=N), 1668 (C=O),
3432 (NH).
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(3-nitrophenyl)prop-
2-en-1-one 5k.
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m/z: 388; IR (KBr, cm−1): 1569 (C=N), 1667 (C=O), 3429 (NH). 
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(4-
(dimethylamino)phenyl)prop-2-en-1-one 5l. 

         14 

Yield: 83%; m.p.: 197–198 °C; a red, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ 
12.61 (s, 1H, NH), 7.68 (d, J = 6.6 Hz, 2H), 7.61–7.55 (m, 2H), 7.49 (d, J = 3.3 Hz, 2H), 7.14 
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144.5 (C-19), 144.0 (C-8), 139.2 (C-5, C-4), 131.1 (C-12), 122.2 (C-26, C-22), 117.5 (C-20), 112.4 
(C-2, C-1), 111.6 (C-25, C-23), 45.9 (C-27), and 9.5 (C-16); Anal. for C22H22N6O; Calcd: C, 
68.38; H, 5.74; N, 21.75 Found: C, 68.34; H, 5.69; N, 21.80; [M+] m/z: 386; IR (KBr, cm−1): 
1575(C=N), 1669 (C=O), 3434 (NH). 
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(3-
bromophenyl)prop-2-en-1-one 5m. 

          15 

Yield: 95%; m.p.: 185–187 °C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.59 (s, 1H, NH), 7.87 (d, J = 16.1 Hz, 1H, CHβ), 7.81 (d, J = 8.5 Hz, 2H, ArH), 7.74 (d, 

Yield: 86%; m.p.: 188–190 ◦C; a brown, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ
12.63 (s, 1H, NH), 8.13–8.02 (m, 2H, ArH), 7.84 (d, J = 16.0 Hz, 1H, CHβ), 7.75 (d, J = 16.0 Hz,
1H, COCHα), 7.61 (d, J = 8.1 Hz, 2H, ArH), 7.59 (d, J = 7.5 Hz, 1H, ArH), 7.55 (d, J = 7.5 Hz,
1H, ArH), 7.24 (d, J = 8.1 Hz, 2H, ArH), 5.95 (s, 2H, CH2), 2.63 (s, 3H, CH3); 13C-NMR (126
MHz, DMSO-d6) δ 185.9 (C-15), 148.5 (C-11), 146.8 (C-25), 143.7 (C-19), 143.4 (C-8), 141.5
(C-5), 139.9 (C-4), 134.9 (C-20), 132.2 (C-22), 130.3 (C-12), 129.3 (C-23), 123.3 (C-24), 122.4
(C-2, C-1), 122.1 (C-26), 119.5 (C-18), 112.2 (C-6, C-3), 46.0 (C-21), and 9.6 (C-16); Anal. for
C20H16N6O3; Calcd: C, 61.85; H, 4.15; N, 21.64 Found: C, 61.78; H, 4.10; N, 21.68; [M+] m/z:
388; IR (KBr, cm−1): 1569 (C=N), 1667 (C=O), 3429 (NH).
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(4-(dimethylamino)
phenyl)prop-2-en-1-one 5l.
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68.38; H, 5.74; N, 21.75 Found: C, 68.34; H, 5.69; N, 21.80; [M+] m/z: 386; IR (KBr, cm−1): 
1575(C=N), 1669 (C=O), 3434 (NH). 
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(3-
bromophenyl)prop-2-en-1-one 5m. 

          15 

Yield: 95%; m.p.: 185–187 °C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.59 (s, 1H, NH), 7.87 (d, J = 16.1 Hz, 1H, CHβ), 7.81 (d, J = 8.5 Hz, 2H, ArH), 7.74 (d, 

Yield: 83%; m.p.: 197–198 ◦C; a red, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ
12.61 (s, 1H, NH), 7.68 (d, J = 6.6 Hz, 2H), 7.61–7.55 (m, 2H), 7.49 (d, J = 3.3 Hz, 2H), 7.14
(dd, J = 6.1, 3.1 Hz, 2H), 6.71 (d, J = 9.1 Hz, 2H), 5.88 (s, 2H, CH2), 2.96 (s, 6H, NCH3), and
2.60 (s, 3H, CH3); 13C-NMR (126 MHz, DMSO-d6) δ 183.6 (C-15), 152.6 (C-24), 148.6 (C-11),
144.5 (C-19), 144.0 (C-8), 139.2 (C-5, C-4), 131.1 (C-12), 122.2 (C-26, C-22), 117.5 (C-20), 112.4
(C-2, C-1), 111.6 (C-25, C-23), 45.9 (C-27), and 9.5 (C-16); Anal. for C22H22N6O; Calcd: C,
68.38; H, 5.74; N, 21.75 Found: C, 68.34; H, 5.69; N, 21.80; [M+] m/z: 386; IR (KBr, cm−1):
1575(C=N), 1669 (C=O), 3434 (NH).
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-(3-bromophenyl)
prop-2-en-1-one 5m.
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bromophenyl)prop-2-en-1-one 5m. 
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Yield: 95%; m.p.: 185–187 °C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.59 (s, 1H, NH), 7.87 (d, J = 16.1 Hz, 1H, CHβ), 7.81 (d, J = 8.5 Hz, 2H, ArH), 7.74 (d, 

Yield: 95%; m.p.: 185–187 ◦C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.59 (s, 1H, NH), 7.87 (d, J = 16.1 Hz, 1H, CHβ), 7.81 (d, J = 8.5 Hz, 2H, ArH), 7.74
(d, J = 16.1 Hz, 1H, COCHα), 7.52 (d, J = 8.0 Hz, 1H, ArH), 7.41 (d, J = 8.5 Hz, 2H, ArH),
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7.45 (d, J = 8.0 Hz, 1H, ArH), 7.18 (t, J = 7.5 Hz, 1H, ArH), 7.15 (t, J = 7.5 Hz, 1H, ArH), 5.89
(s, 2H, CH2), and 2.63 (s, 3H, CH3); 13C-NMR (126 MHz, DMSO-d6) δ 185.2 (C-15), 149.5
(C-11), 142.6 (C-19), 143.4 (C-8), 142.2 (C-5, C-4), 140.1 (C-12), 134.8 (C-20), 133.9 (C-22),
132.9 (C-24), 131.0 (C-25), 129.6 (C-26), 124.0 (C-2), 123.2 (C-1), 122.1 (C-23), 119.4 (C-18),
112.1 (C-6, C-3), 46.1 (C-21), and 9.6 (C-16); Anal. for C20H16BrN5O; Calcd: C, 56.89; H, 3.82;
N, 16.58 Found: C, 56.89; H, 3.78; N, 16.52; [M+] m/z: 421; IR (KBr, cm−1): 1568 (C=N),
1666 (C=O), 3431 (NH).
1-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-mesitylprop-2-en-1-
one 5n.
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[M+] m/z: 385; IR (KBr, cm−1): 1567 (C=N), 1665 (C=O), 3430 (NH). 

3.1.5. General Procedure for [3+2] Cycloaddition Reactions for the Synthesis of Spiro 
Compounds 8a-n 

A mixture of the chalcone derivatives 5a-n (0.5 mmol), isatin (0.5 mmol, 73.5 mg), and 
octahydroindole-2-carboxylic acid (0.5 mmol, 84.5 mg) in methanol (15 mL) was refluxed 
using an oil bath for an appropriate time of 3–4 h. After completion of the reaction 
(Monitored using TLC), the solvent volume was removed under vacuum. The crude was 
purified via column chromatography on silica gel (30% ethyl acetate in n-hexane), yielding 
the spiro compounds as solids in a pure form. 
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-
carbonyl)-1’-phenyl-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo 
[1,2-a]indol]-2-one 8a. 

         17 

Yield: 81%; m.p.: 195–197 °C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.43 (s, 1H, NH), 9.87 (s, 1H, NH), 7.52 (d, J = 8.0 Hz, 1H, ArH), 7.42 (d, J = 8.0 Hz, 
1H, ArH), 7.33 (t, J = 7.4 Hz, 2H, ArH), 7.26 (t, J = 7.4 Hz, 2H, ArH), 7.19–7.09 (m, 4H, ArH), 

Yield: 92%; m.p.: 195–197 ◦C; a yellow, solid compound; 1H-NMR (400 MHz, DMSO-d6) δ
12.82 (s, 1H, NH), 7.95 (d, J = 16.1 Hz, 1H, CHβ), 7.62–7.50 (m, 3H, CHα, ArH), 7.20 (m, 2H,
ArH), 6.97 (s, 2H, ArH), 5.96 (s, 2H, CH2), 2.67 (s, 3H, CH3), 2.36 (s, 6H, CH3), and 2.25 (s,
3H, CH3); 13C NMR (101 MHz, DMSO-d6) δ 183.9 (C-15), 148.5 (C-11), 143.7 (C-19), 141.3
(C-8), 140.1 (C-5), 138.9 (C-4), 137.6 (C-24), 131.2 (C-26, C-22), 129.9 (C-20), 129.9 (C-12),
127.9 (C-25, C-23), 122.8 (C-2, C-1), 45.9 (C-21), 21.6 (C-27), 21.5 (C-29, C-29), and 9.6 (C-16);
Anal. for C23H23N5; Calcd: C,71.67; H,6.01; N,18.17 Found: C,71.63; H,5.97; N, 18.20; [M+]
m/z: 385; IR (KBr, cm−1): 1567 (C=N), 1665 (C=O), 3430 (NH).

3.1.5. General Procedure for [3+2] Cycloaddition Reactions for the Synthesis of Spiro
Compounds 8a-n

A mixture of the chalcone derivatives 5a-n (0.5 mmol), isatin (0.5 mmol, 73.5 mg),
and octahydroindole-2-carboxylic acid (0.5 mmol, 84.5 mg) in methanol (15 mL) was
refluxed using an oil bath for an appropriate time of 3–4 h. After completion of the reaction
(Monitored using TLC), the solvent volume was removed under vacuum. The crude was
purified via column chromatography on silica gel (30% ethyl acetate in n-hexane), yielding
the spiro compounds as solids in a pure form.
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-1’-
phenyl-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo [1,2-a]indol]-2-one 8a.
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using an oil bath for an appropriate time of 3–4 h. After completion of the reaction 
(Monitored using TLC), the solvent volume was removed under vacuum. The crude was 
purified via column chromatography on silica gel (30% ethyl acetate in n-hexane), yielding 
the spiro compounds as solids in a pure form. 
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-
carbonyl)-1’-phenyl-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo 
[1,2-a]indol]-2-one 8a. 

         17 

Yield: 81%; m.p.: 195–197 °C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.43 (s, 1H, NH), 9.87 (s, 1H, NH), 7.52 (d, J = 8.0 Hz, 1H, ArH), 7.42 (d, J = 8.0 Hz, 
1H, ArH), 7.33 (t, J = 7.4 Hz, 2H, ArH), 7.26 (t, J = 7.4 Hz, 2H, ArH), 7.19–7.09 (m, 4H, ArH), 

Yield: 81%; m.p.: 195–197 ◦C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.43 (s, 1H, NH), 9.87 (s, 1H, NH), 7.52 (d, J = 8.0 Hz, 1H, ArH), 7.42 (d, J = 8.0 Hz,
1H, ArH), 7.33 (t, J = 7.4 Hz, 2H, ArH), 7.26 (t, J = 7.4 Hz, 2H, ArH), 7.19–7.09 (m, 4H, ArH),
6.89 (t, J = 7.6 Hz, 1H, ArH), 6.81 (t, J = 7.6 Hz, 1H, ArH), 6.29 (d, J = 7.5 Hz, 1H, ArH), 5.69
(s, 2H, CH2), 5.05 (d, J = 12.3 Hz, 1H, COCH), 4.05–3.98 (m, 1H), 3.81 (t, J = 11.1 Hz, 1H),
3.18 (d, J = 7.2 Hz, 1H, aliphatic-H), 2.08–2.01 (m, 1H, aliphatic-H), 1.92 (s, 3H, CH3), 1.83
(dt, J = 12.4, 6.4 Hz, 1H, aliphatic-H), 1.53 (dd, J = 12.1, 6.5 Hz, 1H, aliphatic-H), 1.47–1.37
(m, 2H, aliphatic-H), 1.33–1.24 (m, 2H, aliphatic-H), 1.07–0.95 (m, 2H, aliphatic-H), 0.76 (d,
J = 8.8 Hz, 1H, aliphatic-H), and 0.66 (d, J = 11.1 Hz, 1H, aliphatic-H); 13C-NMR (126 MHz,
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DMSO-d6) δ 191.6 (C-38), 180.3 (C-9), 148.1 (C-12), 143.2 (C-36), 142.5 (C-23), 140.3 (C-11),
138.5 (C-24), 134.8 (C-27), 129.3 (C-26), 129.1 (C-15), 128.3 (C-35), 128.0 (C-44, C-42), 127.2
(C-45, C-41), 124.3 (C-14), 123.1 (C-43), 122.1 (C-31, C-30), 120.7 (C-16), 119.4 (C-32, 29), 112.1
(C-13), 109.5 (C-2), 71.3 (C-6), 65.9 (C-4), 57.1 (C-1), 52.9 (C-40), 45.7 (C-7), 41.7 (C-20), 37.2
(C-17), 28.3 (C-5), 28.0 (C-8), 25.0 (C-19), 19.8 (C-18), and 8.5 (37); Anal. for C36H35N7O2;
Calcd: C, 72.34; H, 5.90; N, 16.40 Found: C, 72.32; H, 5.88; N, 16.44; [M+] m/z: 597; IR (KBr,
cm−1): 1617 (C=N), 1681–1724 (C=O), 3427(NH).
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-
1’-(4-methoxyphenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]
indol]-2-one 8b.
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Yield: 89%; m.p.: 178–180 °C; a pale-yellow, solid compound; 1H-NMR (400 MHz, DMSO-
d6) δ 12.50 (s, 1H, NH), 9.92 (s, 1H, NH), 7.57 (d, J = 8.1 Hz, 1H, ArH), 7.47 (d, J = 8.1 Hz, 
1H, ArH), 7.29 (d, J = 8.8 Hz, 2H, ArH), 7.18 (m, 3H, ArH), 6.94 (t, J = 7.7 Hz, 1H, ArH), 6.86 
(dd, J = 7.7, 5.5 Hz, 3H, ArH), 6.35 (d, J = 8.1 Hz, 1H, ArH), 5.74 (s, 2H, CH2), 5.04 (d, J = 
12.5 Hz, 1H, COCH), 4.04 (q, J = 8.1 Hz, 1H), 3.79 (t, J = 11.4 Hz, 1H), 3.69 (s, 3H, OCH3), 
3.21 (d, J = 4.4 Hz, 1H, aliphatic-H), 2.08–2.03 (m, 1H, aliphatic-H), 1.98 (s, 3H, CH3), 1.88–
1.79 (m, 1H, aliphatic-H), 1.56 (dd, J = 12.1, 6.2 Hz, 1H, aliphatic-H), 1.52–1.41 (m, 2H, 
aliphatic-H), 1.34 (d, J = 13.2 Hz, 2H, aliphatic-H), 0.98 (dt, J = 24.2, 11.0 Hz, 2H, aliphatic-
H), 0.80 (t, J = 12.8 Hz, 1H, aliphatic-H), and 0.70 (d, J = 11.7 Hz, 1H, aliphatic-H); 13C-NMR 
(126 MHz, DMSO-d6) δ 191.7 (C-38), 180.3 (C-9), 158.5 (C-43), 148.1 (C-12), 143.2 (C-36), 
142.5 (C-23), 138.5 (C-11), 135.3 (C-27), 132.0 (C-26), 129.3 (C-15), 129.0 (C-35), 128.3 (C-24), 
124.4 (C-45, C-41), 123.2 (C-14), 122.1 (C-31, C-30), 120.6 (C-16), 119.4 (C-32, C-29), 114.5 
(C-13), 112.1 (C-44, C-42), 109.5 (C-2), 71.3 (C-6), 71.2 (C-4), 66.0 (C-51), 65.5 (C-1), 57.1 (C-
40), 55.5 (C-7), 52.2 (C-20), 45.7 (C-17), 41.7 (C-5), 37.2 (C-8), 28.3 (C-19), 28.0 (C-18), and 
8.5 (C-37); Anal. for C37H37N7O3; Calcd: C, 70.79; H, 5.94; N, 15.62 Found: C, 70.82; H, 5.90; 
N, 15.64; [M+] m/z: 627; IR (KBr, cm−1): 1618 (C=N), 1682–1722 (C=O), 3429 (NH). 
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-
carbonyl)-1’-(2,4-dichlorophenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-
3,3’-pyrrolo[1,2-a]indol]-2-one 8c. 

Yield: 89%; m.p.: 178–180 ◦C; a pale-yellow, solid compound; 1H-NMR (400 MHz, DMSO-
d6) δ 12.50 (s, 1H, NH), 9.92 (s, 1H, NH), 7.57 (d, J = 8.1 Hz, 1H, ArH), 7.47 (d, J = 8.1 Hz,
1H, ArH), 7.29 (d, J = 8.8 Hz, 2H, ArH), 7.18 (m, 3H, ArH), 6.94 (t, J = 7.7 Hz, 1H, ArH),
6.86 (dd, J = 7.7, 5.5 Hz, 3H, ArH), 6.35 (d, J = 8.1 Hz, 1H, ArH), 5.74 (s, 2H, CH2), 5.04
(d, J = 12.5 Hz, 1H, COCH), 4.04 (q, J = 8.1 Hz, 1H), 3.79 (t, J = 11.4 Hz, 1H), 3.69 (s, 3H,
OCH3), 3.21 (d, J = 4.4 Hz, 1H, aliphatic-H), 2.08–2.03 (m, 1H, aliphatic-H), 1.98 (s, 3H,
CH3), 1.88–1.79 (m, 1H, aliphatic-H), 1.56 (dd, J = 12.1, 6.2 Hz, 1H, aliphatic-H), 1.52–1.41
(m, 2H, aliphatic-H), 1.34 (d, J = 13.2 Hz, 2H, aliphatic-H), 0.98 (dt, J = 24.2, 11.0 Hz, 2H,
aliphatic-H), 0.80 (t, J = 12.8 Hz, 1H, aliphatic-H), and 0.70 (d, J = 11.7 Hz, 1H, aliphatic-H);
13C-NMR (126 MHz, DMSO-d6) δ 191.7 (C-38), 180.3 (C-9), 158.5 (C-43), 148.1 (C-12), 143.2
(C-36), 142.5 (C-23), 138.5 (C-11), 135.3 (C-27), 132.0 (C-26), 129.3 (C-15), 129.0 (C-35), 128.3
(C-24), 124.4 (C-45, C-41), 123.2 (C-14), 122.1 (C-31, C-30), 120.6 (C-16), 119.4 (C-32, C-29),
114.5 (C-13), 112.1 (C-44, C-42), 109.5 (C-2), 71.3 (C-6), 71.2 (C-4), 66.0 (C-51), 65.5 (C-1), 57.1
(C-40), 55.5 (C-7), 52.2 (C-20), 45.7 (C-17), 41.7 (C-5), 37.2 (C-8), 28.3 (C-19), 28.0 (C-18), and
8.5 (C-37); Anal. for C37H37N7O3; Calcd: C, 70.79; H, 5.94; N, 15.62 Found: C, 70.82; H, 5.90;
N, 15.64; [M+] m/z: 627; IR (KBr, cm−1): 1618 (C=N), 1682–1722 (C=O), 3429 (NH).
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-
1’-(2,4-dichlorophenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]
indol]-2-one 8c.
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Yield: 71%; m.p.: 202–204 °C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ 
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(C-18), 19.8 (C-5), and 8.6 (C-37); Anal. for C36H33Cl2N7O2; Calcd: C, 64.87; H, 4.99; N, 14.71 
Found: C, 64.83; H, 5.02; N, 14.73; [M+] m/z: 665; IR (KBr, cm−1): 1615 (C=N), 1683–1724 
(C=O), 3428 (NH). 
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-
carbonyl)-1’-(4-chlorophenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-
pyrrolo[1,2-a]indol]-2-one 8d. 

          20 

Yield: 85%; m.p.: 179–181 °C; a yellow, solid compound; 1H-NMR (400 MHz, DMSO-d6) δ 
12.48 (s, 1H, NH), 9.93 (s, 1H, NH), 7.57 (d, J = 8.1 Hz, 1H, ArH), 7.47 (d, J = 8.1 Hz, 1H, 
ArH), 7.41 (d, J = 8.1 Hz, 2H, ArH), 7.37 (d, J = 8.1 Hz, 2H, ArH), 7.22 (d, J = 7.3 Hz, 1H, 
ArH), 7.17 (m, 2H, ArH), 6.93 (t, J = 7.7 Hz, 1H, ArH), 6.84 (t, J = 7.7 Hz, 1H, ArH), 6.34 (d, 
J = 8.1 Hz, 1H, ArH), 5.74 (s, 2H, CH2), 5.03 (d, J = 12.5 Hz, 1H,COCH), 4.05 (q, J = 8.8, 8.1 
Hz, 1H), 3.86 (t, J = 11.0 Hz, 1H), 3.21 (d, J = 3.7 Hz, 1H, aliphatic-H), 2.08 (dd, J = 11.0, 5.9 
Hz, 1H, aliphatic-H), 1.97 (s, 3H, CH3), 1.86 (q, J = 6.2 Hz, 1H, aliphatic-H), 1.56 (dd, J = 
11.7, 6.6 Hz, 1H, aliphatic-H), 1.47 (t, J = 16.5 Hz, 2H, aliphatic-H), 1.37–1.28 (m, 2H, 
aliphatic-H), 1.07–0.93 (m, 2H, aliphatic-H), 0.80 (t, J = 12.8 Hz, 1H, aliphatic-H), and 0.70 
(d, J = 13.9 Hz, 1H, aliphatic-H); 13C-NMR (101 MHz, DMSO-d6) δ 191.5 (C-38), 180.3 (C-9), 
148.1 (C-12), 143.3 (C-36), 143.2 (C-23), 142.6 (C-11), 139.4 (C-27), 138.6 (C-26), 134.9 (C-24), 
131.8 (C-15), 130.0 (C-43), 129.1 (C-35), 128.3 (C-45, C-41), 127.1 (C-44, C-42), 124.3 (C-14), 
123.2 (C-31, C-30), 122.2 (C-16), 120.7 (C-32), 119.2 (C-29), 112.2 (C-13), 109.6 (C-2), 71.9 (C-
6), 66.1 (C-4), 58.1 (C-1), 50.9 (C-40), 45.6 (C-7), 41.3 (C-20), 36.6 (C-17), 28.3 (C-5), 27.6 (C-
8), 24.6 (C-19), 18.8 (C-18), and 8.5 (C-37); Anal. for C36H34ClN7O2; Calcd: C, 68.40; H, 5.42; 

Yield: 71%; m.p.: 202–204 ◦C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ
12.44 (s, 1H, NH), 9.94 (s, 1H, NH), 7.53 (s, 1H, ArH), 7.37 (dd, J = 8.5, 2.3 Hz, 2H, ArH),
7.14–6.82 (m, 7H, ArH), 6.30 (d, J = 7.6 Hz, 1H, ArH), 5.68 (s, 2H, CH2), 5.13 (d, J = 12.2 Hz,
1H, COCH), 4.40–4.32 (m, 1H), 3.93 (t, J = 6.6 Hz, 1H), 3.15 (d, J = 4.3 Hz, 1H, aliphatic-
H), 2.24–2.14 (m, 2H, aliphatic-H), 1.93 (s, 3H, CH3), and 1.83–0.71 (m, 7H, aliphatic-H);
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13C-NMR (126 MHz, DMSO-d6) δ 191.2 (C-38), 180.0 (C-9), 148.1 (C-12), 142.9 (C-36), 142.7
(C-23), 139.6 (C-11), 138.7 (C-27), 136.2 (C-26), 135.2 (C-15), 132.3 (C-43), 129.8 (C-41), 129.5
(C-24), 128.4 (C-35), 127.7 (C-45), 124.6 (C-42), 124.1 (C-44), 121.8 (C-14), 121.4 (C-31, 30),
120.9 (C-16), 114.7 (C-32, C-29), 112.4 (C-13), 109.7 (C-2), 71.7 (C-6), 71.1 (C-4), 66.2 (C-1),
57.2 (C-40), 52.7 (C-7), 48.1 (C-20), 45.7 (C-8), 41.6 (C-17), 36.8, 35.0, 30.3, 24.8 (C-19), 22.6
(C-18), 19.8 (C-5), and 8.6 (C-37); Anal. for C36H33Cl2N7O2; Calcd: C, 64.87; H, 4.99; N, 14.71
Found: C, 64.83; H, 5.02; N, 14.73; [M+] m/z: 665; IR (KBr, cm−1): 1615 (C=N), 1683–1724
(C=O), 3428 (NH).
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-1’-
(4-chlorophenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-
one 8d.
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Found: C, 64.83; H, 5.02; N, 14.73; [M+] m/z: 665; IR (KBr, cm−1): 1615 (C=N), 1683–1724 
(C=O), 3428 (NH). 
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carbonyl)-1’-(4-chlorophenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-
pyrrolo[1,2-a]indol]-2-one 8d. 
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Yield: 85%; m.p.: 179–181 °C; a yellow, solid compound; 1H-NMR (400 MHz, DMSO-d6) δ 
12.48 (s, 1H, NH), 9.93 (s, 1H, NH), 7.57 (d, J = 8.1 Hz, 1H, ArH), 7.47 (d, J = 8.1 Hz, 1H, 
ArH), 7.41 (d, J = 8.1 Hz, 2H, ArH), 7.37 (d, J = 8.1 Hz, 2H, ArH), 7.22 (d, J = 7.3 Hz, 1H, 
ArH), 7.17 (m, 2H, ArH), 6.93 (t, J = 7.7 Hz, 1H, ArH), 6.84 (t, J = 7.7 Hz, 1H, ArH), 6.34 (d, 
J = 8.1 Hz, 1H, ArH), 5.74 (s, 2H, CH2), 5.03 (d, J = 12.5 Hz, 1H,COCH), 4.05 (q, J = 8.8, 8.1 
Hz, 1H), 3.86 (t, J = 11.0 Hz, 1H), 3.21 (d, J = 3.7 Hz, 1H, aliphatic-H), 2.08 (dd, J = 11.0, 5.9 
Hz, 1H, aliphatic-H), 1.97 (s, 3H, CH3), 1.86 (q, J = 6.2 Hz, 1H, aliphatic-H), 1.56 (dd, J = 
11.7, 6.6 Hz, 1H, aliphatic-H), 1.47 (t, J = 16.5 Hz, 2H, aliphatic-H), 1.37–1.28 (m, 2H, 
aliphatic-H), 1.07–0.93 (m, 2H, aliphatic-H), 0.80 (t, J = 12.8 Hz, 1H, aliphatic-H), and 0.70 
(d, J = 13.9 Hz, 1H, aliphatic-H); 13C-NMR (101 MHz, DMSO-d6) δ 191.5 (C-38), 180.3 (C-9), 
148.1 (C-12), 143.3 (C-36), 143.2 (C-23), 142.6 (C-11), 139.4 (C-27), 138.6 (C-26), 134.9 (C-24), 
131.8 (C-15), 130.0 (C-43), 129.1 (C-35), 128.3 (C-45, C-41), 127.1 (C-44, C-42), 124.3 (C-14), 
123.2 (C-31, C-30), 122.2 (C-16), 120.7 (C-32), 119.2 (C-29), 112.2 (C-13), 109.6 (C-2), 71.9 (C-
6), 66.1 (C-4), 58.1 (C-1), 50.9 (C-40), 45.6 (C-7), 41.3 (C-20), 36.6 (C-17), 28.3 (C-5), 27.6 (C-
8), 24.6 (C-19), 18.8 (C-18), and 8.5 (C-37); Anal. for C36H34ClN7O2; Calcd: C, 68.40; H, 5.42; 

Yield: 85%; m.p.: 179–181 ◦C; a yellow, solid compound; 1H-NMR (400 MHz, DMSO-d6) δ
12.48 (s, 1H, NH), 9.93 (s, 1H, NH), 7.57 (d, J = 8.1 Hz, 1H, ArH), 7.47 (d, J = 8.1 Hz, 1H,
ArH), 7.41 (d, J = 8.1 Hz, 2H, ArH), 7.37 (d, J = 8.1 Hz, 2H, ArH), 7.22 (d, J = 7.3 Hz, 1H,
ArH), 7.17 (m, 2H, ArH), 6.93 (t, J = 7.7 Hz, 1H, ArH), 6.84 (t, J = 7.7 Hz, 1H, ArH), 6.34
(d, J = 8.1 Hz, 1H, ArH), 5.74 (s, 2H, CH2), 5.03 (d, J = 12.5 Hz, 1H,COCH), 4.05 (q, J = 8.8,
8.1 Hz, 1H), 3.86 (t, J = 11.0 Hz, 1H), 3.21 (d, J = 3.7 Hz, 1H, aliphatic-H), 2.08 (dd, J = 11.0,
5.9 Hz, 1H, aliphatic-H), 1.97 (s, 3H, CH3), 1.86 (q, J = 6.2 Hz, 1H, aliphatic-H), 1.56 (dd,
J = 11.7, 6.6 Hz, 1H, aliphatic-H), 1.47 (t, J = 16.5 Hz, 2H, aliphatic-H), 1.37–1.28 (m, 2H,
aliphatic-H), 1.07–0.93 (m, 2H, aliphatic-H), 0.80 (t, J = 12.8 Hz, 1H, aliphatic-H), and 0.70
(d, J = 13.9 Hz, 1H, aliphatic-H); 13C-NMR (101 MHz, DMSO-d6) δ 191.5 (C-38), 180.3 (C-9),
148.1 (C-12), 143.3 (C-36), 143.2 (C-23), 142.6 (C-11), 139.4 (C-27), 138.6 (C-26), 134.9 (C-24),
131.8 (C-15), 130.0 (C-43), 129.1 (C-35), 128.3 (C-45, C-41), 127.1 (C-44, C-42), 124.3 (C-14),
123.2 (C-31, C-30), 122.2 (C-16), 120.7 (C-32), 119.2 (C-29), 112.2 (C-13), 109.6 (C-2), 71.9
(C-6), 66.1 (C-4), 58.1 (C-1), 50.9 (C-40), 45.6 (C-7), 41.3 (C-20), 36.6 (C-17), 28.3 (C-5), 27.6
(C-8), 24.6 (C-19), 18.8 (C-18), and 8.5 (C-37); Anal. for C36H34ClN7O2; Calcd: C, 68.40; H,
5.42; N, 15.51 Found: C, 68.45; H, 5.44; N, 15.48; [M+] m/z: 631; IR (KBr, cm−1): 1617 (C=N),
1684–1723 (C=O), 3426 (NH).
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-1’-
(4-fluorophenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-
one 8e.
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Yield: 96%; m.p.: 183–185 °C; a white, solid compound; 1H-NMR (400 MHz, DMSO-d6) δ 
12.50 (s, 1H, NH), 9.94 (s, 1H, NH), 7.57 (d, J = 8.1 Hz, 1H, ArH), 7.47 (d, J = 7.3 Hz, 1H, 
ArH), 7.44–7.39 (m, 2H, ArH), 7.22 (d, J = 7.3 Hz, 1H, ArH), 7.18 (d, J = 7.3 Hz, 1H, ArH), 
7.14 (t, J = 8.8 Hz, 3H, ArH), 6.93 (t, J = 7.3 Hz, 1H, ArH), 6.85 (t, J = 7.3 Hz, 1H, ArH), 6.34 
(d, J = 7.3 Hz, 1H, ArH), 5.74 (s, 2H, CH2), 5.03 (d, J = 11.7 Hz, 1H, COCH), 4.06 (q, J = 8.8, 
8.1 Hz, 1H), 3.86 (t, J = 11.4 Hz, 1H), 3.21 (d, J = 3.7 Hz, 1H, aliphatic-H), 2.07 (dt, J = 11.0, 
5.5 Hz, 1H, aliphatic-H), 1.97 (s, 3H, CH3), 1.90–1.81 (m, 1H, aliphatic-H), 1.56 (dd, J = 11.7, 
5.9 Hz, 1H, aliphatic-H), 1.52–1.41 (m, 2H, aliphatic-H), 1.33 (d, J = 12.5 Hz, 2H, aliphatic-
H), 1.06–0.91 (m, 2H, aliphatic-H), 0.80 (t, J = 13.2 Hz, 1H, aliphatic-H), and 0.70 (d, J = 11.7 
Hz, 1H, aliphatic-H); 13C-NMR (101 MHz, DMSO-d6) δ 191.6 (C-38), 180.3 (C-9), 162.8 and 
160.4 (C-43), 148.2 (C-12), 143.3 (C-36), 143.2 (C-23), 142.6 (C-11), 138.6 (C-27), 136.4 (C-26), 
134.9 (C-24), 130.5 (C-15), 129.8 (C-35), 129.2 (C-45, C-41), 124.3 (C-14), 122.4 (C-31, C-30), 
120.2 (C-16), 118.7 (C-44, C-42), 115.5 (C-32, C-29), 113.4 (C-13), 109.4 (C-2) 71.3 (C-6), 64.2 
(C-4), 60.1 (C-1), 52.9 (C-40), 45.8 (C-7), 41.9 (C-20), 37.4 (C-17), 28.9 (C-5), 28.8 (C-8), 24.2 
(C-19), 19.2 (C-18), and 9.9 (C-37); Anal. for C36H34FN7O2; Calcd: C, 70.23; H, 5.57; N, 15.92 
Found: C, 70.19; H, 5.60; N, 15.56; [M+] m/z: 615; IR (KBr, cm−1): 1618 (C=N), 1686–1725 
(C=O), 3429 (NH). 
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-
carbonyl)-1’-(p-tolyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-
pyrrolo[1,2-a]indol]-2-one 8f. 

          22 

Yield: 88%; m.p.: 182–184 °C; a yellow, solid compound; 1H-NMR (400 MHz, DMSO-d6) δ 
12.48 (s, 1H, NH), 9.91 (s, 1H, NH), 7.57 (d, J = 8.1 Hz, 1H, ArH), 7.47 (d, J = 8.1 Hz, 1H, 
ArH), 7.26 (d, J = 8.1 Hz, 2H, ArH), 7.20 (t, J = 6.6 Hz, 2H, ArH), 7.15 (d, J = 8.8 Hz, 1H, 
ArH), 7.10 (d, J = 8.1 Hz, 2H, ArH), 6.93 (t, J = 7.7 Hz, 1H, ArH), 6.85 (t, J = 7.7 Hz, 1H, ArH), 
6.35 (d, J = 8.1 Hz, 1H, ArH), 5.74 (s, 2H, CH2), 5.08 (d, J = 11.7 Hz, 1H,COCH), 4.03 (m, 

Yield: 96%; m.p.: 183–185 ◦C; a white, solid compound; 1H-NMR (400 MHz, DMSO-d6) δ
12.50 (s, 1H, NH), 9.94 (s, 1H, NH), 7.57 (d, J = 8.1 Hz, 1H, ArH), 7.47 (d, J = 7.3 Hz, 1H,
ArH), 7.44–7.39 (m, 2H, ArH), 7.22 (d, J = 7.3 Hz, 1H, ArH), 7.18 (d, J = 7.3 Hz, 1H, ArH),
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7.14 (t, J = 8.8 Hz, 3H, ArH), 6.93 (t, J = 7.3 Hz, 1H, ArH), 6.85 (t, J = 7.3 Hz, 1H, ArH),
6.34 (d, J = 7.3 Hz, 1H, ArH), 5.74 (s, 2H, CH2), 5.03 (d, J = 11.7 Hz, 1H, COCH), 4.06 (q,
J = 8.8, 8.1 Hz, 1H), 3.86 (t, J = 11.4 Hz, 1H), 3.21 (d, J = 3.7 Hz, 1H, aliphatic-H), 2.07 (dt,
J = 11.0, 5.5 Hz, 1H, aliphatic-H), 1.97 (s, 3H, CH3), 1.90–1.81 (m, 1H, aliphatic-H), 1.56 (dd,
J = 11.7, 5.9 Hz, 1H, aliphatic-H), 1.52–1.41 (m, 2H, aliphatic-H), 1.33 (d, J = 12.5 Hz, 2H,
aliphatic-H), 1.06–0.91 (m, 2H, aliphatic-H), 0.80 (t, J = 13.2 Hz, 1H, aliphatic-H), and 0.70
(d, J = 11.7 Hz, 1H, aliphatic-H); 13C-NMR (101 MHz, DMSO-d6) δ 191.6 (C-38), 180.3 (C-9),
162.8 and 160.4 (C-43), 148.2 (C-12), 143.3 (C-36), 143.2 (C-23), 142.6 (C-11), 138.6 (C-27),
136.4 (C-26), 134.9 (C-24), 130.5 (C-15), 129.8 (C-35), 129.2 (C-45, C-41), 124.3 (C-14), 122.4
(C-31, C-30), 120.2 (C-16), 118.7 (C-44, C-42), 115.5 (C-32, C-29), 113.4 (C-13), 109.4 (C-2) 71.3
(C-6), 64.2 (C-4), 60.1 (C-1), 52.9 (C-40), 45.8 (C-7), 41.9 (C-20), 37.4 (C-17), 28.9 (C-5), 28.8
(C-8), 24.2 (C-19), 19.2 (C-18), and 9.9 (C-37); Anal. for C36H34FN7O2; Calcd: C, 70.23; H,
5.57; N, 15.92 Found: C, 70.19; H, 5.60; N, 15.56; [M+] m/z: 615; IR (KBr, cm−1): 1618 (C=N),
1686–1725 (C=O), 3429 (NH).
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-1’-
(p-tolyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-one 8f.
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12.50 (s, 1H, NH), 9.94 (s, 1H, NH), 7.57 (d, J = 8.1 Hz, 1H, ArH), 7.47 (d, J = 7.3 Hz, 1H, 
ArH), 7.44–7.39 (m, 2H, ArH), 7.22 (d, J = 7.3 Hz, 1H, ArH), 7.18 (d, J = 7.3 Hz, 1H, ArH), 
7.14 (t, J = 8.8 Hz, 3H, ArH), 6.93 (t, J = 7.3 Hz, 1H, ArH), 6.85 (t, J = 7.3 Hz, 1H, ArH), 6.34 
(d, J = 7.3 Hz, 1H, ArH), 5.74 (s, 2H, CH2), 5.03 (d, J = 11.7 Hz, 1H, COCH), 4.06 (q, J = 8.8, 
8.1 Hz, 1H), 3.86 (t, J = 11.4 Hz, 1H), 3.21 (d, J = 3.7 Hz, 1H, aliphatic-H), 2.07 (dt, J = 11.0, 
5.5 Hz, 1H, aliphatic-H), 1.97 (s, 3H, CH3), 1.90–1.81 (m, 1H, aliphatic-H), 1.56 (dd, J = 11.7, 
5.9 Hz, 1H, aliphatic-H), 1.52–1.41 (m, 2H, aliphatic-H), 1.33 (d, J = 12.5 Hz, 2H, aliphatic-
H), 1.06–0.91 (m, 2H, aliphatic-H), 0.80 (t, J = 13.2 Hz, 1H, aliphatic-H), and 0.70 (d, J = 11.7 
Hz, 1H, aliphatic-H); 13C-NMR (101 MHz, DMSO-d6) δ 191.6 (C-38), 180.3 (C-9), 162.8 and 
160.4 (C-43), 148.2 (C-12), 143.3 (C-36), 143.2 (C-23), 142.6 (C-11), 138.6 (C-27), 136.4 (C-26), 
134.9 (C-24), 130.5 (C-15), 129.8 (C-35), 129.2 (C-45, C-41), 124.3 (C-14), 122.4 (C-31, C-30), 
120.2 (C-16), 118.7 (C-44, C-42), 115.5 (C-32, C-29), 113.4 (C-13), 109.4 (C-2) 71.3 (C-6), 64.2 
(C-4), 60.1 (C-1), 52.9 (C-40), 45.8 (C-7), 41.9 (C-20), 37.4 (C-17), 28.9 (C-5), 28.8 (C-8), 24.2 
(C-19), 19.2 (C-18), and 9.9 (C-37); Anal. for C36H34FN7O2; Calcd: C, 70.23; H, 5.57; N, 15.92 
Found: C, 70.19; H, 5.60; N, 15.56; [M+] m/z: 615; IR (KBr, cm−1): 1618 (C=N), 1686–1725 
(C=O), 3429 (NH). 
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-
carbonyl)-1’-(p-tolyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-
pyrrolo[1,2-a]indol]-2-one 8f. 

          22 

Yield: 88%; m.p.: 182–184 °C; a yellow, solid compound; 1H-NMR (400 MHz, DMSO-d6) δ 
12.48 (s, 1H, NH), 9.91 (s, 1H, NH), 7.57 (d, J = 8.1 Hz, 1H, ArH), 7.47 (d, J = 8.1 Hz, 1H, 
ArH), 7.26 (d, J = 8.1 Hz, 2H, ArH), 7.20 (t, J = 6.6 Hz, 2H, ArH), 7.15 (d, J = 8.8 Hz, 1H, 
ArH), 7.10 (d, J = 8.1 Hz, 2H, ArH), 6.93 (t, J = 7.7 Hz, 1H, ArH), 6.85 (t, J = 7.7 Hz, 1H, ArH), 
6.35 (d, J = 8.1 Hz, 1H, ArH), 5.74 (s, 2H, CH2), 5.08 (d, J = 11.7 Hz, 1H,COCH), 4.03 (m, 

Yield: 88%; m.p.: 182–184 ◦C; a yellow, solid compound; 1H-NMR (400 MHz, DMSO-d6) δ
12.48 (s, 1H, NH), 9.91 (s, 1H, NH), 7.57 (d, J = 8.1 Hz, 1H, ArH), 7.47 (d, J = 8.1 Hz, 1H,
ArH), 7.26 (d, J = 8.1 Hz, 2H, ArH), 7.20 (t, J = 6.6 Hz, 2H, ArH), 7.15 (d, J = 8.8 Hz, 1H,
ArH), 7.10 (d, J = 8.1 Hz, 2H, ArH), 6.93 (t, J = 7.7 Hz, 1H, ArH), 6.85 (t, J = 7.7 Hz, 1H, ArH),
6.35 (d, J = 8.1 Hz, 1H, ArH), 5.74 (s, 2H, CH2), 5.08 (d, J = 11.7 Hz, 1H,COCH), 4.03 (m, 1H),
3.80 (t, J = 11.0 Hz, 1H), 3.22 (d, J = 4.4 Hz, 1H, aliphatic-H), 2.23 (s, 3H, Ph-CH3), 2.08 (d,
J = 5.9 Hz, 1H, aliphatic-H), 1.98 (s, 3H, CH3), 1.84 (dt, J = 13.9, 6.2 Hz, 1H, aliphatic-H), 1.56
(dd, J = 12.1, 6.2 Hz, 1H, aliphatic-H), 1.46 (m, 2H, aliphatic-H), 1.34 (m, 2H, aliphatic-H),
1.07–0.93 (m, 2H, aliphatic-H), 0.79 (d, J = 12.5 Hz, 1H, aliphatic-H), and 0.70 (d, J = 13.9 Hz,
1H, aliphatic-H); 13C-NMR (101 MHz, DMSO-d6) δ 191.7 (C-38), 180.4 (C-9), 148.2 (C-12),
143.3 (C-36), 142.6 (C-23), 138.5 (C-11), 137.2 (C-27), 136.3 (C-26), 135.0 (C-24), 129.7 (C-43),
129.3 (C-15), 128.3 (C-35), 128.0 (C-44, C-42), 127.9 (C-45, C-41), 124.4 (C-14), 123.6 (C-31,
C-30), 120.7 (C-16), 119.6 (C-32, C-29), 112.4 (C-13), 109.6 (C-2), 71.4 (C-6), 65.9 (C-4), 57.2
(C-1), 52.7 (C-40), 45.8 (C-7), 41.8 (C-20), 37.3 (C-17), 28.0 (C-5), 25.0 (C-8), 21.1 (C-19), 19.8
(C-18), 14.7 (C-51), and 8.6 (C-37); Anal. for C37H37N7O2; Calcd: C, 72.65; H, 6.10; N, 16.03
Found: C, 72.68; H, 6.06; N, 15.97; [M+] m/z: 611; IR (KBr, cm−1): 1617 (C=N), 1684–1724
(C=O), 3428 (NH).
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-1’-
(4-bromophenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-
one 8g.
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1H), 3.80 (t, J = 11.0 Hz, 1H), 3.22 (d, J = 4.4 Hz, 1H, aliphatic-H), 2.23 (s, 3H, Ph-CH3), 2.08 
(d, J = 5.9 Hz, 1H, aliphatic-H), 1.98 (s, 3H, CH3), 1.84 (dt, J = 13.9, 6.2 Hz, 1H, aliphatic-H), 
1.56 (dd, J = 12.1, 6.2 Hz, 1H, aliphatic-H), 1.46 (m, 2H, aliphatic-H), 1.34 (m, 2H, aliphatic-
H), 1.07–0.93 (m, 2H, aliphatic-H), 0.79 (d, J = 12.5 Hz, 1H, aliphatic-H), and 0.70 (d, J = 
13.9 Hz, 1H, aliphatic-H); 13C-NMR (101 MHz, DMSO-d6) δ 191.7 (C-38), 180.4 (C-9), 148.2 
(C-12), 143.3 (C-36), 142.6 (C-23), 138.5 (C-11), 137.2 (C-27), 136.3 (C-26), 135.0 (C-24), 129.7 
(C-43), 129.3 (C-15), 128.3 (C-35), 128.0 (C-44, C-42), 127.9 (C-45, C-41), 124.4 (C-14), 123.6 
(C-31, C-30), 120.7 (C-16), 119.6 (C-32, C-29), 112.4 (C-13), 109.6 (C-2), 71.4 (C-6), 65.9 (C-
4), 57.2 (C-1), 52.7 (C-40), 45.8 (C-7), 41.8 (C-20), 37.3 (C-17), 28.0 (C-5), 25.0 (C-8), 21.1 (C-
19), 19.8 (C-18), 14.7 (C-51), and 8.6 (C-37); Anal. for C37H37N7O2; Calcd: C, 72.65; H, 6.10; 
N, 16.03 Found: C, 72.68; H, 6.06; N, 15.97; [M+] m/z: 611; IR (KBr, cm−1): 1617 (C=N), 1684–
1724 (C=O), 3428 (NH). 
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-
carbonyl)-1’-(4-bromophenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-
pyrrolo[1,2-a]indol]-2-one 8g. 

            23 

Yield: 82%; m.p.: 186–188 °C; a yellow, solid compound; 1H-NMR (400 MHz, DMSO-d6) δ 
12.46 (s, 1H, NH), 9.91 (s, 1H, NH), 7.57 (d, J = 7.3 Hz, 1H, ArH), 7.50 (d, J = 8.8 Hz, 2H, 
ArH), 7.47 (d, J = 8.1 Hz, 1H, ArH), 7.35 (d, J = 8.1 Hz, 2H, ArH), 7.22–7.12 (m, 3H, ArH), 
6.93 (t, J = 7.7 Hz, 1H, ArH), 6.84 (t, J = 7.7 Hz, 1H, ArH), 6.33 (d, J = 8.1 Hz, 1H, ArH), 5.73 
(s, 2H, CH2), 5.02 (d, J = 11.7 Hz, 1H, COCH), 4.04 (q, J = 9.2 Hz, 1H), 3.85 (t, J = 11.0 Hz, 
1H), 3.21 (d, J = 4.4 Hz, 1H, aliphatic-H), 2.08 (dt, J = 11.0, 5.5 Hz, 1H, aliphatic-H), 1.97 (s, 
3H, CH3), 1.90–1.83 (m, 1H, aliphatic-H), 1.56 (dd, J = 11.7, 5.9 Hz, 1H, aliphatic-H), 1.45 
(dt, J = 15.4, 3.3 Hz, 2H, aliphatic-H), 1.32 (dd, J = 14.7, 7.3 Hz, 2H, aliphatic-H), 1.07–0.95 
(m, 2H, aliphatic-H), 0.83–0.75 (m, 1H, aliphatic-H), 0.69 (d, J = 13.9 Hz, 1H, aliphatic-H); 
13C-NMR (101 MHz, DMSO-d6) δ 191.5 (C-38), 180.2 (C-9), 148.1 (C-12), 143.3 (C-36), 143.1 
(C-23), 142.6 (C-11), 139.8 (C-27), 138.6 (C-26), 134.9 (C-24), 132.0 (C-15), 131.6 (C-35), 131.3 
(C-44, C-42),130.3 (C-45, C-41), 124.3 (C-14), 122.7 (C-43), 121.8 (C-31, C-30), 120.7 (C-16), 
120.3 (C-32, C-29), 112.1 (C-13), 109.6 (C-2), 71.3 (C-6), 65.3 (C-4), 57.2 (C-1), 52.4 (C-40), 
45.8 (C-7), 41.7 (C-20), 37.3 (C-17), 28.3 (C-5), 28.0 (C-8), 25.0 (C-19), 19.8 (C-18), and 8.5 (C-
37); Anal. for C36H34BrN7O2; Calcd: C, 63.91; H, 5.07; N, 14.49 Found: C, 63.94; H, 5.10; N, 
14.45; [M+] m/z: 675; IR (KBr, cm−1): 1616 (C=N), 1684–1724(C=O), 3427 (NH). 
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-
carbonyl)-1’-(m-tolyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-
pyrrolo[1,2-a]indol]-2-one 8h. 

Yield: 82%; m.p.: 186–188 ◦C; a yellow, solid compound; 1H-NMR (400 MHz, DMSO-d6) δ
12.46 (s, 1H, NH), 9.91 (s, 1H, NH), 7.57 (d, J = 7.3 Hz, 1H, ArH), 7.50 (d, J = 8.8 Hz, 2H,
ArH), 7.47 (d, J = 8.1 Hz, 1H, ArH), 7.35 (d, J = 8.1 Hz, 2H, ArH), 7.22–7.12 (m, 3H, ArH),
6.93 (t, J = 7.7 Hz, 1H, ArH), 6.84 (t, J = 7.7 Hz, 1H, ArH), 6.33 (d, J = 8.1 Hz, 1H, ArH), 5.73
(s, 2H, CH2), 5.02 (d, J = 11.7 Hz, 1H, COCH), 4.04 (q, J = 9.2 Hz, 1H), 3.85 (t, J = 11.0 Hz,
1H), 3.21 (d, J = 4.4 Hz, 1H, aliphatic-H), 2.08 (dt, J = 11.0, 5.5 Hz, 1H, aliphatic-H), 1.97 (s,
3H, CH3), 1.90–1.83 (m, 1H, aliphatic-H), 1.56 (dd, J = 11.7, 5.9 Hz, 1H, aliphatic-H), 1.45
(dt, J = 15.4, 3.3 Hz, 2H, aliphatic-H), 1.32 (dd, J = 14.7, 7.3 Hz, 2H, aliphatic-H), 1.07–0.95
(m, 2H, aliphatic-H), 0.83–0.75 (m, 1H, aliphatic-H), 0.69 (d, J = 13.9 Hz, 1H, aliphatic-H);
13C-NMR (101 MHz, DMSO-d6) δ 191.5 (C-38), 180.2 (C-9), 148.1 (C-12), 143.3 (C-36), 143.1
(C-23), 142.6 (C-11), 139.8 (C-27), 138.6 (C-26), 134.9 (C-24), 132.0 (C-15), 131.6 (C-35), 131.3
(C-44, C-42),130.3 (C-45, C-41), 124.3 (C-14), 122.7 (C-43), 121.8 (C-31, C-30), 120.7 (C-16),
120.3 (C-32, C-29), 112.1 (C-13), 109.6 (C-2), 71.3 (C-6), 65.3 (C-4), 57.2 (C-1), 52.4 (C-40),
45.8 (C-7), 41.7 (C-20), 37.3 (C-17), 28.3 (C-5), 28.0 (C-8), 25.0 (C-19), 19.8 (C-18), and 8.5
(C-37); Anal. for C36H34BrN7O2; Calcd: C, 63.91; H, 5.07; N, 14.49 Found: C, 63.94; H, 5.10;
N, 14.45; [M+] m/z: 675; IR (KBr, cm−1): 1616 (C=N), 1684–1724(C=O), 3427 (NH).
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-1’-
(m-tolyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-one 8h.
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Yield: 71%; m.p.: 175–177 °C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.44 (s, 1H, NH), 9.86 (s, 1H, NH), 7.51 (d, J = 8.1 Hz, 1H, ArH), 7.43 (d, J = 8.1 Hz, 
1H, ArH), 7.19–7.10 (m, 6H, ArH), 6.95 (dd, J = 6.7, 1.9 Hz, 1H, ArH), 6.88 (t, J = 7.5 Hz, 1H, 
ArH), 6.80 (t, J = 7.5 Hz, 1H, ArH), 6.28 (d, J = 7.8 Hz, 1H, ArH), 5.68 (s, 2H, CH2), 5.02 (d, 
J = 12.2 Hz, 1H, COCH), 4.02 (q, J = 5.1, 4.6 Hz, 1H), 3.78–3.71 (m, 1H), 3.17 (d, J = 4.4 Hz, 
1H, aliphatic-H), 2.23 (s, 3H, Ph-CH3), 2.06–2.00 (m, 1H, aliphatic-H), 1.91 (s, 3H, CH3), 
1.83–1.77 (m, 1H, aliphatic-H), 1.52 (dd, J = 11.9, 6.2 Hz, 1H, aliphatic-H), 1.47–1.38 (m, 2H, 
aliphatic-H), 1.32–1.25 (m, 2H, aliphatic-H), 1.02–0.97 (m, 1H, aliphatic-H), 0.96–0.87 (m, 
1H, aliphatic-H), 0.76 (t, J = 13.1 Hz, 1H, aliphatic-H), 0.66 (d, J = 11.4 Hz, 1H, aliphatic-H); 
13C-NMR (126 MHz, DMSO-d6) δ 191.6 (C-38), 180.3 (C-9), 148.1 (C-12), 143.2 (C-36), 142.5 
(C-23), 140.3 (C-11), 138.5 (C-24), 138.1 (C-27), 130.1 (C-26), 129.3 (C-42), 129.0 (C-15), 128.6 
(C-35), 128.2 (C-41), 127.9 (C-44), 125.3 (C-43), 124.3 (C-14), 122.9 (C-45), 121.9 (C-31,C-30), 
120.6 (C-16), 119.3 (C-32, C-29), 113.2 (C-13), 109.5 (C-2), 71.3 (C-6), 66.0 (C-4), 57.1 (C-1), 
52.9 (C-40), 45.7 (C-7), 41.7 (C-20), 37.3 (C-17), 28.3 (C-5), 28.0 (C-8), 25.0 (C-19), 21.6 (C-
51), 19.8 (C-18), and 8.5 (C-37); Anal. for C37H37N7O2; Calcd: C, 72.65; H, 6.10; N, 16.03 
Found: C, 72.62; H, 6.13; N, 15.98; [M+] m/z: 611; IR (KBr, cm−1): 1617 (C=N), 1682–1721 
(C=O), 3432 (NH). 
(1’R,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-
carbonyl)-1’-(thiophen-2-yl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-
pyrrolo[1,2-a]indol]-2-one 8i. 

         25 

Yield: 89%; m.p.: 193–195 °C; a yellow, solid compound; 1H-NMR (400 MHz, DMSO-d6) δ 
12.52 (s, 1H, NH), 9.94 (s, 1H, NH), 7.58 (d, J = 8.8 Hz, 1H, ArH), 7.48 (d, J = 8.8 Hz, 
1H,ArH), 7.34 (d, J = 5.1 Hz, 1H, thiophene-H), 7.19 (m, 3H, ArH), 6.98–6.91 (m, 3H, ArH, 
thiophene-H), 6.84 (t, J = 7.7 Hz, 1H, thiophene-H), 6.34 (d, J = 8.1 Hz, 1H, ArH), 5.76 (s, 
2H, CH2), 4.93 (d, J = 11.7 Hz, 1H, COCH), 4.19–4.09 (m, 2H), 3.22 (d, J = 4.4 Hz, 1H, 
aliphatic-H), 2.09 (q, J = 5.1 Hz, 1H, aliphatic-H), 2.01 (s, 3H, CH3), 1.88 (q, J = 6.2 Hz, 1H, 
aliphatic-H), 1.70 (dd, J = 11.7, 5.9 Hz, 1H, aliphatic-H), 1.53–1.44 (m, 2H, aliphatic-H), 1.34 
(t, J = 10.3 Hz, 2H, aliphatic-H), 1.08–0.94 (m, 2H, aliphatic-H), 0.80 (t, J = 13.2 Hz, 1H, 
aliphatic-H), and 0.68 (d, J = 13.9 Hz, 1H, aliphatic-H); 13C-NMR (101 MHz, DMSO-d6) δ 
191.4 (C-38), 180.1 (C-9), 148.1 (C-12), 143.4 (C-36), 143.2 (C-24), 142.5 (C-23), 138.7 (C-11), 
134.5 (C-27), 129.4 (C-26), 128.4 (C-15), 127.6 (C-35), 125.1 (C-47), 124.6 (C-14), 124.1 (C-46), 
123.1 (C-48), 122.6 (C-31, C-30), 122.2 (C-16), 120.7 (C-32), 119.5 (C-29), 112.3 (C-13), 109.6 

Yield: 71%; m.p.: 175–177 ◦C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.44 (s, 1H, NH), 9.86 (s, 1H, NH), 7.51 (d, J = 8.1 Hz, 1H, ArH), 7.43 (d, J = 8.1 Hz,
1H, ArH), 7.19–7.10 (m, 6H, ArH), 6.95 (dd, J = 6.7, 1.9 Hz, 1H, ArH), 6.88 (t, J = 7.5 Hz, 1H,
ArH), 6.80 (t, J = 7.5 Hz, 1H, ArH), 6.28 (d, J = 7.8 Hz, 1H, ArH), 5.68 (s, 2H, CH2), 5.02 (d,
J = 12.2 Hz, 1H, COCH), 4.02 (q, J = 5.1, 4.6 Hz, 1H), 3.78–3.71 (m, 1H), 3.17 (d, J = 4.4 Hz,
1H, aliphatic-H), 2.23 (s, 3H, Ph-CH3), 2.06–2.00 (m, 1H, aliphatic-H), 1.91 (s, 3H, CH3),
1.83–1.77 (m, 1H, aliphatic-H), 1.52 (dd, J = 11.9, 6.2 Hz, 1H, aliphatic-H), 1.47–1.38 (m, 2H,
aliphatic-H), 1.32–1.25 (m, 2H, aliphatic-H), 1.02–0.97 (m, 1H, aliphatic-H), 0.96–0.87 (m,
1H, aliphatic-H), 0.76 (t, J = 13.1 Hz, 1H, aliphatic-H), 0.66 (d, J = 11.4 Hz, 1H, aliphatic-H);
13C-NMR (126 MHz, DMSO-d6) δ 191.6 (C-38), 180.3 (C-9), 148.1 (C-12), 143.2 (C-36), 142.5
(C-23), 140.3 (C-11), 138.5 (C-24), 138.1 (C-27), 130.1 (C-26), 129.3 (C-42), 129.0 (C-15), 128.6
(C-35), 128.2 (C-41), 127.9 (C-44), 125.3 (C-43), 124.3 (C-14), 122.9 (C-45), 121.9 (C-31,C-30),
120.6 (C-16), 119.3 (C-32, C-29), 113.2 (C-13), 109.5 (C-2), 71.3 (C-6), 66.0 (C-4), 57.1 (C-1),
52.9 (C-40), 45.7 (C-7), 41.7 (C-20), 37.3 (C-17), 28.3 (C-5), 28.0 (C-8), 25.0 (C-19), 21.6 (C-51),
19.8 (C-18), and 8.5 (C-37); Anal. for C37H37N7O2; Calcd: C, 72.65; H, 6.10; N, 16.03 Found:
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C, 72.62; H, 6.13; N, 15.98; [M+] m/z: 611; IR (KBr, cm−1): 1617 (C=N), 1682–1721 (C=O),
3432 (NH).
(1’R,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-
1’-(thiophen-2-yl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-
one 8i.
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Yield: 71%; m.p.: 175–177 °C; a pale-yellow, solid compound; 1H-NMR (500 MHz, DMSO-
d6) δ 12.44 (s, 1H, NH), 9.86 (s, 1H, NH), 7.51 (d, J = 8.1 Hz, 1H, ArH), 7.43 (d, J = 8.1 Hz, 
1H, ArH), 7.19–7.10 (m, 6H, ArH), 6.95 (dd, J = 6.7, 1.9 Hz, 1H, ArH), 6.88 (t, J = 7.5 Hz, 1H, 
ArH), 6.80 (t, J = 7.5 Hz, 1H, ArH), 6.28 (d, J = 7.8 Hz, 1H, ArH), 5.68 (s, 2H, CH2), 5.02 (d, 
J = 12.2 Hz, 1H, COCH), 4.02 (q, J = 5.1, 4.6 Hz, 1H), 3.78–3.71 (m, 1H), 3.17 (d, J = 4.4 Hz, 
1H, aliphatic-H), 2.23 (s, 3H, Ph-CH3), 2.06–2.00 (m, 1H, aliphatic-H), 1.91 (s, 3H, CH3), 
1.83–1.77 (m, 1H, aliphatic-H), 1.52 (dd, J = 11.9, 6.2 Hz, 1H, aliphatic-H), 1.47–1.38 (m, 2H, 
aliphatic-H), 1.32–1.25 (m, 2H, aliphatic-H), 1.02–0.97 (m, 1H, aliphatic-H), 0.96–0.87 (m, 
1H, aliphatic-H), 0.76 (t, J = 13.1 Hz, 1H, aliphatic-H), 0.66 (d, J = 11.4 Hz, 1H, aliphatic-H); 
13C-NMR (126 MHz, DMSO-d6) δ 191.6 (C-38), 180.3 (C-9), 148.1 (C-12), 143.2 (C-36), 142.5 
(C-23), 140.3 (C-11), 138.5 (C-24), 138.1 (C-27), 130.1 (C-26), 129.3 (C-42), 129.0 (C-15), 128.6 
(C-35), 128.2 (C-41), 127.9 (C-44), 125.3 (C-43), 124.3 (C-14), 122.9 (C-45), 121.9 (C-31,C-30), 
120.6 (C-16), 119.3 (C-32, C-29), 113.2 (C-13), 109.5 (C-2), 71.3 (C-6), 66.0 (C-4), 57.1 (C-1), 
52.9 (C-40), 45.7 (C-7), 41.7 (C-20), 37.3 (C-17), 28.3 (C-5), 28.0 (C-8), 25.0 (C-19), 21.6 (C-
51), 19.8 (C-18), and 8.5 (C-37); Anal. for C37H37N7O2; Calcd: C, 72.65; H, 6.10; N, 16.03 
Found: C, 72.62; H, 6.13; N, 15.98; [M+] m/z: 611; IR (KBr, cm−1): 1617 (C=N), 1682–1721 
(C=O), 3432 (NH). 
(1’R,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-
carbonyl)-1’-(thiophen-2-yl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-
pyrrolo[1,2-a]indol]-2-one 8i. 

         25 

Yield: 89%; m.p.: 193–195 °C; a yellow, solid compound; 1H-NMR (400 MHz, DMSO-d6) δ 
12.52 (s, 1H, NH), 9.94 (s, 1H, NH), 7.58 (d, J = 8.8 Hz, 1H, ArH), 7.48 (d, J = 8.8 Hz, 
1H,ArH), 7.34 (d, J = 5.1 Hz, 1H, thiophene-H), 7.19 (m, 3H, ArH), 6.98–6.91 (m, 3H, ArH, 
thiophene-H), 6.84 (t, J = 7.7 Hz, 1H, thiophene-H), 6.34 (d, J = 8.1 Hz, 1H, ArH), 5.76 (s, 
2H, CH2), 4.93 (d, J = 11.7 Hz, 1H, COCH), 4.19–4.09 (m, 2H), 3.22 (d, J = 4.4 Hz, 1H, 
aliphatic-H), 2.09 (q, J = 5.1 Hz, 1H, aliphatic-H), 2.01 (s, 3H, CH3), 1.88 (q, J = 6.2 Hz, 1H, 
aliphatic-H), 1.70 (dd, J = 11.7, 5.9 Hz, 1H, aliphatic-H), 1.53–1.44 (m, 2H, aliphatic-H), 1.34 
(t, J = 10.3 Hz, 2H, aliphatic-H), 1.08–0.94 (m, 2H, aliphatic-H), 0.80 (t, J = 13.2 Hz, 1H, 
aliphatic-H), and 0.68 (d, J = 13.9 Hz, 1H, aliphatic-H); 13C-NMR (101 MHz, DMSO-d6) δ 
191.4 (C-38), 180.1 (C-9), 148.1 (C-12), 143.4 (C-36), 143.2 (C-24), 142.5 (C-23), 138.7 (C-11), 
134.5 (C-27), 129.4 (C-26), 128.4 (C-15), 127.6 (C-35), 125.1 (C-47), 124.6 (C-14), 124.1 (C-46), 
123.1 (C-48), 122.6 (C-31, C-30), 122.2 (C-16), 120.7 (C-32), 119.5 (C-29), 112.3 (C-13), 109.6 

Yield: 89%; m.p.: 193–195 ◦C; a yellow, solid compound; 1H-NMR (400 MHz, DMSO-d6)
δ 12.52 (s, 1H, NH), 9.94 (s, 1H, NH), 7.58 (d, J = 8.8 Hz, 1H, ArH), 7.48 (d, J = 8.8 Hz,
1H,ArH), 7.34 (d, J = 5.1 Hz, 1H, thiophene-H), 7.19 (m, 3H, ArH), 6.98–6.91 (m, 3H, ArH,
thiophene-H), 6.84 (t, J = 7.7 Hz, 1H, thiophene-H), 6.34 (d, J = 8.1 Hz, 1H, ArH), 5.76
(s, 2H, CH2), 4.93 (d, J = 11.7 Hz, 1H, COCH), 4.19–4.09 (m, 2H), 3.22 (d, J = 4.4 Hz, 1H,
aliphatic-H), 2.09 (q, J = 5.1 Hz, 1H, aliphatic-H), 2.01 (s, 3H, CH3), 1.88 (q, J = 6.2 Hz, 1H,
aliphatic-H), 1.70 (dd, J = 11.7, 5.9 Hz, 1H, aliphatic-H), 1.53–1.44 (m, 2H, aliphatic-H), 1.34
(t, J = 10.3 Hz, 2H, aliphatic-H), 1.08–0.94 (m, 2H, aliphatic-H), 0.80 (t, J = 13.2 Hz, 1H,
aliphatic-H), and 0.68 (d, J = 13.9 Hz, 1H, aliphatic-H); 13C-NMR (101 MHz, DMSO-d6) δ
191.4 (C-38), 180.1 (C-9), 148.1 (C-12), 143.4 (C-36), 143.2 (C-24), 142.5 (C-23), 138.7 (C-11),
134.5 (C-27), 129.4 (C-26), 128.4 (C-15), 127.6 (C-35), 125.1 (C-47), 124.6 (C-14), 124.1 (C-46),
123.1 (C-48), 122.6 (C-31, C-30), 122.2 (C-16), 120.7 (C-32), 119.5 (C-29), 112.3 (C-13), 109.6
(C-2), 71.4 (C-6), 71.0, 67.2 (C-6), 57.2 (C-1), 48.1 (C-40), 45.8 (C-7), 41.7 (C-20), 37.3 (C-17),
28.2 (C-5), 28.1 (C-8), 25.0 (C-19), 19.8 (C-18), and 8.6 (C-37); Anal. for C34H33N7O2S; Calcd:
C, 67.64; H, 5.51; N, 16.24 Found: C, 67.61; H, 5.48; N, 16.21; [M+] m/z: 603; IR (KBr, cm−1):
1682–1724 (C=N), 1665 (C=O), 3426 (NH).
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-1’-
(3,4,5-trimethoxyphenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]
indol]-2-one 8j.
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Yield: 68%; m.p.: 193–195 °C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ 
12.46 (s, 1H, NH), 9.88 (s, 1H, NH), 7.52 (d, J = 7.8 Hz, 1H, ArH), 7.42 (d, J = 7.8 Hz, 1H, 
ArH), 7.24 (dd, J = 7.5, 1.3 Hz, 1H, ArH), 7.17–7.13 (m, 1H, ArH), 7.10 (td, J = 7.6, 1.3 Hz, 
1H, ArH), 6.93 (td, J = 7.6, 1.3 Hz, 1H, ArH), 6.83 (td, J = 7.5, 1.3 Hz, 1H, ArH), 6.62 (s, 2H, 
ArH), 6.35 (dd, J = 7.7, 1.3 Hz, 1H, ArH), 5.70 (s, 2H, CH2), 5.08 (d, J = 12.4 Hz, 1H, COCH), 
4.03–3.98 (m, 1H), 3.77 (dd, J = 12.4, 9.9 Hz, 1H), 3.71 (s, 6H, OCH3), 3.56 (s, 3H, OCH3), 
3.16 (d, J = 4.4 Hz, 1H, aliphatic-H), 2.08–2.03 (m, 1H, aliphatic-H), 1.96 (s, 3H, CH3), 1.87–
1.83 (m, 1H, aliphatic-H), 1.57 (dd, J = 11.7, 7.2 Hz, 1H, aliphatic-H), 1.48–1.39 (m, 2H, 
aliphatic-H), 1.30 (dd, J = 13.0, 10.1 Hz, 2H, aliphatic-H), 1.01 (dd, J = 12.0, 3.7 Hz, 1H, 
aliphatic-H), 0.97–0.89 (m, 1H, aliphatic-H), 0.81–0.75 (m, 1H, aliphatic-H), and 0.68 (d, J = 
11.7 Hz, 1H, aliphatic-H); 13C-NMR (126 MHz, DMSO-d6) δ 191.7 (C-38), 180.2 (C-9), 153.4 
(C-44, C-42), 148.2 (C-12), 143.3 (C-36), 143.3 (C-11), 142.4 (C-23), 138.6 (C-24), 136.7 (C-27), 
135.8 (C-26), 134.8 (C-43), 129.3 (C-15), 128.5 (C-35), 124.4 (C-14), 123.2 (C-31, C-30), 122.1, 
120.7 (C-16), 119.4 (C-32, C-29), 112.1 (C-13), 109.6 (C-2), 105.0 (C-45, C-41), 71.5 (C-6), 71.0 
, 65.0 (C-4), 60.4 (C-51), 57.1 (C-1), 56.3 (C-53, C-52), 53.4 (C-40), 45.8 (C-7), 41.7 (C-20), 37.1 
(C-17), 28.2 (C-5), 27.9 (C-8), 24.9 (C-19), 21.6, 19.8 (C-18), and 8.6 (C-37); Anal. for 
C39H41N7O5; Calcd: C, 68.11; H, 6.01; N, 14.26 Found: C, 68.14; H, 5.96; N, 14.23; [M+] m/z: 
687; IR (KBr, cm−1): 1615 (C=N), 1684–1724 (C=O), 3429 (NH). 
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-
carbonyl)-1’-(3-nitrophenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-
pyrrolo[1,2-a]indol]-2-one 8k. 
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Yield: 73%; m.p.: >250 °C; a brown, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ 12.47 
(s, 1H, NH), 9.88 (s, 1H, NH), 7.53 (d, J = 8.0 Hz, 1H, ArH), 7.45 (d, J = 8.0 Hz, 1H, ArH), 
7.21–7.12 (m, 6H, ArH), 6.93 (d, J = 7.5 Hz, 1H, ArH), 6.85 (t, J = 7.5 Hz, 1H, ArH), 6.82 (t, J 

Yield: 68%; m.p.: 193–195 ◦C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ
12.46 (s, 1H, NH), 9.88 (s, 1H, NH), 7.52 (d, J = 7.8 Hz, 1H, ArH), 7.42 (d, J = 7.8 Hz, 1H,
ArH), 7.24 (dd, J = 7.5, 1.3 Hz, 1H, ArH), 7.17–7.13 (m, 1H, ArH), 7.10 (td, J = 7.6, 1.3 Hz,
1H, ArH), 6.93 (td, J = 7.6, 1.3 Hz, 1H, ArH), 6.83 (td, J = 7.5, 1.3 Hz, 1H, ArH), 6.62 (s,
2H, ArH), 6.35 (dd, J = 7.7, 1.3 Hz, 1H, ArH), 5.70 (s, 2H, CH2), 5.08 (d, J = 12.4 Hz, 1H,
COCH), 4.03–3.98 (m, 1H), 3.77 (dd, J = 12.4, 9.9 Hz, 1H), 3.71 (s, 6H, OCH3), 3.56 (s, 3H,
OCH3), 3.16 (d, J = 4.4 Hz, 1H, aliphatic-H), 2.08–2.03 (m, 1H, aliphatic-H), 1.96 (s, 3H,
CH3), 1.87–1.83 (m, 1H, aliphatic-H), 1.57 (dd, J = 11.7, 7.2 Hz, 1H, aliphatic-H), 1.48–1.39
(m, 2H, aliphatic-H), 1.30 (dd, J = 13.0, 10.1 Hz, 2H, aliphatic-H), 1.01 (dd, J = 12.0, 3.7 Hz,
1H, aliphatic-H), 0.97–0.89 (m, 1H, aliphatic-H), 0.81–0.75 (m, 1H, aliphatic-H), and 0.68 (d,
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J = 11.7 Hz, 1H, aliphatic-H); 13C-NMR (126 MHz, DMSO-d6) δ 191.7 (C-38), 180.2 (C-9),
153.4 (C-44, C-42), 148.2 (C-12), 143.3 (C-36), 143.3 (C-11), 142.4 (C-23), 138.6 (C-24), 136.7
(C-27), 135.8 (C-26), 134.8 (C-43), 129.3 (C-15), 128.5 (C-35), 124.4 (C-14), 123.2 (C-31, C-30),
122.1, 120.7 (C-16), 119.4 (C-32, C-29), 112.1 (C-13), 109.6 (C-2), 105.0 (C-45, C-41), 71.5 (C-6),
71.0, 65.0 (C-4), 60.4 (C-51), 57.1 (C-1), 56.3 (C-53, C-52), 53.4 (C-40), 45.8 (C-7), 41.7 (C-20),
37.1 (C-17), 28.2 (C-5), 27.9 (C-8), 24.9 (C-19), 21.6, 19.8 (C-18), and 8.6 (C-37); Anal. for
C39H41N7O5; Calcd: C, 68.11; H, 6.01; N, 14.26 Found: C, 68.14; H, 5.96; N, 14.23; [M+] m/z:
687; IR (KBr, cm−1): 1615 (C=N), 1684–1724 (C=O), 3429 (NH).
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-
1’-(3-nitrophenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-
2-one 8k.
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Yield: 68%; m.p.: 193–195 °C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ 
12.46 (s, 1H, NH), 9.88 (s, 1H, NH), 7.52 (d, J = 7.8 Hz, 1H, ArH), 7.42 (d, J = 7.8 Hz, 1H, 
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4.03–3.98 (m, 1H), 3.77 (dd, J = 12.4, 9.9 Hz, 1H), 3.71 (s, 6H, OCH3), 3.56 (s, 3H, OCH3), 
3.16 (d, J = 4.4 Hz, 1H, aliphatic-H), 2.08–2.03 (m, 1H, aliphatic-H), 1.96 (s, 3H, CH3), 1.87–
1.83 (m, 1H, aliphatic-H), 1.57 (dd, J = 11.7, 7.2 Hz, 1H, aliphatic-H), 1.48–1.39 (m, 2H, 
aliphatic-H), 1.30 (dd, J = 13.0, 10.1 Hz, 2H, aliphatic-H), 1.01 (dd, J = 12.0, 3.7 Hz, 1H, 
aliphatic-H), 0.97–0.89 (m, 1H, aliphatic-H), 0.81–0.75 (m, 1H, aliphatic-H), and 0.68 (d, J = 
11.7 Hz, 1H, aliphatic-H); 13C-NMR (126 MHz, DMSO-d6) δ 191.7 (C-38), 180.2 (C-9), 153.4 
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120.7 (C-16), 119.4 (C-32, C-29), 112.1 (C-13), 109.6 (C-2), 105.0 (C-45, C-41), 71.5 (C-6), 71.0 
, 65.0 (C-4), 60.4 (C-51), 57.1 (C-1), 56.3 (C-53, C-52), 53.4 (C-40), 45.8 (C-7), 41.7 (C-20), 37.1 
(C-17), 28.2 (C-5), 27.9 (C-8), 24.9 (C-19), 21.6, 19.8 (C-18), and 8.6 (C-37); Anal. for 
C39H41N7O5; Calcd: C, 68.11; H, 6.01; N, 14.26 Found: C, 68.14; H, 5.96; N, 14.23; [M+] m/z: 
687; IR (KBr, cm−1): 1615 (C=N), 1684–1724 (C=O), 3429 (NH). 
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-
carbonyl)-1’-(3-nitrophenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-
pyrrolo[1,2-a]indol]-2-one 8k. 
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Yield: 73%; m.p.: >250 °C; a brown, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ 12.47 
(s, 1H, NH), 9.88 (s, 1H, NH), 7.53 (d, J = 8.0 Hz, 1H, ArH), 7.45 (d, J = 8.0 Hz, 1H, ArH), 
7.21–7.12 (m, 6H, ArH), 6.93 (d, J = 7.5 Hz, 1H, ArH), 6.85 (t, J = 7.5 Hz, 1H, ArH), 6.82 (t, J 

Yield: 73%; m.p.: >250 ◦C; a brown, solid compound; 1H-NMR (500 MHz, DMSO-d6)
δ 12.47 (s, 1H, NH), 9.88 (s, 1H, NH), 7.53 (d, J = 8.0 Hz, 1H, ArH), 7.45 (d, J = 8.0 Hz,
1H, ArH), 7.21–7.12 (m, 6H, ArH), 6.93 (d, J = 7.5 Hz, 1H, ArH), 6.85 (t, J = 7.5 Hz, 1H,
ArH), 6.82 (t, J = 7.5 Hz, 1H, ArH), 6.38 (d, J = 8.0 Hz, 1H, ArH), 5.70 (s, 2H, CH2), 5.05 (d,
J = 12.2 Hz, 1H, COCH), 4.03 (m, 1H, CH), 3.76–3.72 (m, 1H, CH), 3.16 (d, J = 5.4 Hz, 1H,
aliphatic-H), 2.06–2.01 (m, 1H, aliphatic-H), 1.93 (s, 3H, CH3), 1.83–1.76 (m, 1H, aliphatic-H),
1.52 (dd, J = 11.9, 6.2 Hz, 1H, aliphatic-H), 1.48–1.38 (m, 2H, aliphatic-H), 1.34–1.26 (m,
2H, aliphatic-H), 1.02–0.98 (m, 1H, aliphatic-H), 0.96–0.87 (m, 1H, aliphatic-H), 0.75 (t,
J = 13.1 Hz, 1H, aliphatic-H), and 0.66 (d, J = 11.2 Hz, 1H, aliphatic-H); 13C-NMR (126 MHz,
DMSO-d6) δ 191.4 (C-38), 180.5 (C-9), 148.1 (C-12), 143.1 (C-36), 142.5 (C-23), 140.2 (C-11),
138.4(C-24), 138.2 (C-27), 130.2 (C-26), 129.3 (C-42), 129.0 (C-15), 128.6 (C-35), 128.2 (C-41),
127.9 (C-44), 125.3 (C-43), 124.4 (C-14), 122.9 (C-45), 121.9 (C-31,C-30), 120.7 (C-16), 119.3
(C-32, C-29), 113.2 (C-13), 109.5 (C-2), 71.3 (C-6), 66.0 (C-4), 57.1 (C-1), 52.9 (C-40), 45.7 (C-7),
41.7 (C-20), 37.3 (C-17), 28.3 (C-5), 28.0 (C-8), 25.0 (C-19), 19.8 (C-18), and 8.5 (C-37); Anal.
for C36H34N8O4; Calcd: C, 67.28; H, 5.33; N, 17.43 Found: C, 67.25; H, 5.37; N, 17.41; [M+]
m/z: 642; IR (KBr, cm−1): 1619 (C=N), 1685–1727 (C=O), 3428 (NH).
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-
1’-(4-(dimethylamino)phenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo
[1,2-a]indol]-2-one 8l.
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= 7.5 Hz, 1H, ArH), 6.38 (d, J = 8.0 Hz, 1H, ArH), 5.70 (s, 2H, CH2), 5.05 (d, J = 12.2 Hz, 1H, 
COCH), 4.03 (m, 1H, CH), 3.76–3.72 (m, 1H, CH), 3.16 (d, J = 5.4 Hz, 1H, aliphatic-H), 2.06–
2.01 (m, 1H, aliphatic-H), 1.93 (s, 3H, CH3), 1.83–1.76 (m, 1H, aliphatic-H), 1.52 (dd, J = 
11.9, 6.2 Hz, 1H, aliphatic-H), 1.48–1.38 (m, 2H, aliphatic-H), 1.34–1.26 (m, 2H, aliphatic-
H), 1.02–0.98 (m, 1H, aliphatic-H), 0.96–0.87 (m, 1H, aliphatic-H), 0.75 (t, J = 13.1 Hz, 1H, 
aliphatic-H), and 0.66 (d, J = 11.2 Hz, 1H, aliphatic-H); 13C-NMR (126 MHz, DMSO-d6) δ 
191.4 (C-38), 180.5 (C-9), 148.1 (C-12), 143.1 (C-36), 142.5 (C-23), 140.2 (C-11), 138.4(C-24), 
138.2 (C-27), 130.2 (C-26), 129.3 (C-42), 129.0 (C-15), 128.6 (C-35), 128.2 (C-41), 127.9 (C-44), 
125.3 (C-43), 124.4 (C-14), 122.9 (C-45), 121.9 (C-31,C-30), 120.7 (C-16), 119.3 (C-32, C-29), 
113.2 (C-13), 109.5 (C-2), 71.3 (C-6), 66.0 (C-4), 57.1 (C-1), 52.9 (C-40), 45.7 (C-7), 41.7 (C-
20), 37.3 (C-17), 28.3 (C-5), 28.0 (C-8), 25.0 (C-19), , 19.8 (C-18), and 8.5 (C-37); Anal. for 
C36H34N8O4; Calcd: C, 67.28; H, 5.33; N, 17.43 Found: C, 67.25; H, 5.37; N, 17.41; [M+] m/z: 
642; IR (KBr, cm−1): 1619 (C=N), 1685–1727 (C=O), 3428 (NH). 
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-
carbonyl)-1’-(4-(dimethylamino)phenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-
decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-one 8l. 

             28 

Yield: 84%; m.p.: 185–187 °C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ 
12.44 (s, 1H, NH), 9.84 (s, 1H, NH), 7.52 (d, J = 8.1 Hz, 1H, ArH), 7.42 (d, J = 7.1 Hz, 1H, 
ArH), 7.17–7.09 (m, 5H, ArH), 6.89 (td, J = 7.6, 1.3 Hz, 1H, ArH), 6.81 (td, J = 7.6, 1.3 Hz, 
1H, ArH), 6.62 (d, J = 8.8 Hz, 2H, ArH), 6.30 (dd, J = 7.8, 1.1 Hz, 1H, ArH), 5.69 (s, 2H, CH2), 
4.99 (d, J = 12.3 Hz, 1H, COCH), 4.01–3.95 (m, 1H), 3.68 (t, J = 10.3 Hz, 1H), 3.16 (d, J = 4.4 
Hz, 1H, aliphatic-H), 2.78 (s, 6H, NCH3), 2.06–2.00 (m, 1H, aliphatic-H), 1.94 (s, 3H, CH3), 
1.80–1.73 (m, 1H, aliphatic-H), 1.52 (dd, J = 11.1, 6.8 Hz, 1H, aliphatic-H), 1.46 (dd, J = 8.2, 
3.9 Hz, 1H, aliphatic-H), 1.40 (dd, J = 8.9, 4.8 Hz, 1H, aliphatic-H), 1.34–1.26 (m, 2H, 
aliphatic-H), 1.02–0.91 (m, 2H, aliphatic-H), 0.78–0.72 (m, 1H, aliphatic-H), 0.66 (d, J = 10.2 
Hz, 1H, aliphatic-H); 13C-NMR (126 MHz, DMSO-d6) δ 191.8 (C-38), 180.4 (C-9), 149.9 (C-
43), 148.1 (C-12), 143.3 (C-36), 142.5 (C-23), 138.4 (C-11), 134.8 (C-27), 129.2 (C-26), 128.5 
(C-15), 128.3 (C-35), 127.5 (C-45, C-41), 124.5 (C-24), 123.1 (C-14), 122.1 (C-31, C-30), 120.6 
(C-16), 119.5 (C-32, C-29), 113.3 (C-44, C-42), 112.1(C-13), 109.5 (C-2), 71.4 (C-6), 71.1, 65.9 
(C-4), 57.1 (C-1), 52.3 (C-40), 45.8 (C-7), 41.8 (C-20), 37.4 (C-17), 28.3 (C-5), 28.0 (C-8), 25.0 
(C-19), 19.8 (C-18), and 8.6 (C-37); Anal. for C38H40N8O2; Calcd: C, 71.23; H, 6.29; N, 17.49 
Found: C, 71.25; H, 6.32; N, 17.46; [M+] m/z: 640; IR (KBr, cm−1): 1617 (C=N), 1684–1723 
(C=O), 3427 (NH). 
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-
carbonyl)-1’-(3-bromophenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-
pyrrolo[1,2-a]indol]-2-one 8m. 

Yield: 84%; m.p.: 185–187 ◦C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ
12.44 (s, 1H, NH), 9.84 (s, 1H, NH), 7.52 (d, J = 8.1 Hz, 1H, ArH), 7.42 (d, J = 7.1 Hz, 1H,
ArH), 7.17–7.09 (m, 5H, ArH), 6.89 (td, J = 7.6, 1.3 Hz, 1H, ArH), 6.81 (td, J = 7.6, 1.3 Hz,
1H, ArH), 6.62 (d, J = 8.8 Hz, 2H, ArH), 6.30 (dd, J = 7.8, 1.1 Hz, 1H, ArH), 5.69 (s, 2H,
CH2), 4.99 (d, J = 12.3 Hz, 1H, COCH), 4.01–3.95 (m, 1H), 3.68 (t, J = 10.3 Hz, 1H), 3.16
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(d, J = 4.4 Hz, 1H, aliphatic-H), 2.78 (s, 6H, NCH3), 2.06–2.00 (m, 1H, aliphatic-H), 1.94 (s,
3H, CH3), 1.80–1.73 (m, 1H, aliphatic-H), 1.52 (dd, J = 11.1, 6.8 Hz, 1H, aliphatic-H), 1.46
(dd, J = 8.2, 3.9 Hz, 1H, aliphatic-H), 1.40 (dd, J = 8.9, 4.8 Hz, 1H, aliphatic-H), 1.34–1.26
(m, 2H, aliphatic-H), 1.02–0.91 (m, 2H, aliphatic-H), 0.78–0.72 (m, 1H, aliphatic-H), 0.66 (d,
J = 10.2 Hz, 1H, aliphatic-H); 13C-NMR (126 MHz, DMSO-d6) δ 191.8 (C-38), 180.4 (C-9),
149.9 (C-43), 148.1 (C-12), 143.3 (C-36), 142.5 (C-23), 138.4 (C-11), 134.8 (C-27), 129.2 (C-26),
128.5 (C-15), 128.3 (C-35), 127.5 (C-45, C-41), 124.5 (C-24), 123.1 (C-14), 122.1 (C-31, C-30),
120.6 (C-16), 119.5 (C-32, C-29), 113.3 (C-44, C-42), 112.1(C-13), 109.5 (C-2), 71.4 (C-6), 71.1,
65.9 (C-4), 57.1 (C-1), 52.3 (C-40), 45.8 (C-7), 41.8 (C-20), 37.4 (C-17), 28.3 (C-5), 28.0 (C-8),
25.0 (C-19), 19.8 (C-18), and 8.6 (C-37); Anal. for C38H40N8O2; Calcd: C, 71.23; H, 6.29;
N, 17.49 Found: C, 71.25; H, 6.32; N, 17.46; [M+] m/z: 640; IR (KBr, cm−1): 1617 (C=N),
1684–1723 (C=O), 3427 (NH).
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-1’-
(3-bromophenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-
one 8m.
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Yield: 87%; m.p.: 181–183 °C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ 
12.43 (s, 1H, NH), 9.89 (s, 1H, NH), 7.53 (t, J = 1.9 Hz, 2H, ArH), 7.45 (s, 1H, ArH), 7.36 (m, 
3H, ArH), 7.24 (t, J = 7.8 Hz, 2H, ArH), 7.19 (d, J = 6.2 Hz, 1H, ArH), 6.90–6.87 (m, 1H, ArH), 
6.80 (t, J = 7.5 Hz, 1H, ArH), 6.28 (d, J = 8.8 Hz, 1H, ArH), 5.69 (s, 2H, CH2), 4.97 (d, J = 12.2 
Hz, 1H, COCH), 4.02 (q, J = 8.2 Hz, 1H), 3.86–3.80 (m, 1H), 3.16 (d, J = 4.3 Hz, 1H, aliphatic-
H), 2.03 (d, J = 4.3 Hz, 1H, aliphatic-H), 1.92 (s, 3H, CH3), 1.88–1.86 (m, 1H, aliphatic-H), 
1.50–1.46 (m, 2H, aliphatic-H), 1.39–1.37 (m, 1H, aliphatic-H), 1.28–0.65 (m, 6H, aliphatic-
H); 13C-NMR (126 MHz, DMSO-d6) δ 191.4 (C-38), 180.2 (C-9), 148.1 (C-12), 143.2 (C-36), 
143.1(C-23), 142.5 (C-11), 138.6 (C-24), 131.4 (C-27), 131.1 (C-26), 130.2 (C-15), 129.4 (C-24), 
128.2 (C-35), 126.9 (C-44), 124.1 (C-43), 122.3 (C-45), 120.7 (C-14), 119.5 (C-31, C-30), 109.6 
(C-2), 71.2 (C-6), 66.1 (C-4), 57.2 (C-1), 52.7 (C-40), 52.4, 45.8 (C-7), 41.67 (C-20), 38.36, 36.82 
(C-17), 34.30, 30.91, 29.52, 28.64, 28.21 (C-5), 27.96 (C-8), 27.60, 24.93 (C-19), 19.8 (C-18), 
and 8.5 (C-37); Anal. for C36H34BrN7O2; Calcd: C, 63.91; H, 5.07; N, 14.49 Found: C, 63.89; 
H, 5.10; N, 14.45; [M+] m/z: 675; IR (KBr, cm−1): 1616 (C=N), 1681–1724 (C=O), 3428 (NH). 
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-
carbonyl)-1’-(3,4,5-trimethylphenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-
decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-one 8n. 

           30 

Yield: 86%; m.p.: 179–181 °C; a yellow, solid compound; 1H-NMR (400 MHz, DMSO-d6) δ 
12.46 (s, 1H, NH), 9.94 (s, 1H, NH), 7.57 (d, J = 7.3 Hz, 1H, ArH), 7.46 (d, J = 8.1 Hz, 1H, 
ArH), 7.32 (d, J = 4.4 Hz, 1H, ArH), 7.14 (t, J = 7.3 Hz, 2H, ArH), 6.92 (t, J = 7.3 Hz, 1H, ArH), 
6.87 (t, J = 7.3 Hz, 1H, ArH), 6.79 (s, 1H, ArH), 6.74 (s, 1H, ArH), 6.34 (d, J = 7.3 Hz, 1H, 
ArH), 5.72 (s, 2H, CH2), 4.47 (d, J = 4 Hz, 1H, COCH), 4.44 (q, J = 8.2 Hz, 1H), 4.31 (t, J = 
11.4 Hz, 1H), 3.21 (d, J = 4.3 Hz, 1H, aliphatic-H), 2.66 (s, 3H, CH3), 2.61 (s, 3H, CH3), 2.19 
(m, 1H, aliphatic-H), 2.13 (s, 3H, CH3), 2.09 (d, J = 5.1 Hz, 1H, aliphatic-H), 1.97 (s, 3H, 
CH3), 1.62–1.49 (m, 3H, aliphatic-H), 1.44 (m, 1H, aliphatic-H), 1.34 (m, 2H, aliphatic-H), 
1.21 (d, J = 7.3 Hz, 1H, aliphatic-H), and 0.81 (d, J = 11.7 Hz, 2H, aliphatic-H); 13C-NMR 
(101 MHz, DMSO-d6) δ 192.7 (C-38), 180.6 (C-9), 148.1 (C-12), 143.3 (C-36), 142.6 (C-23), 
138.5 (C-11), 136.4 (C-27), 135.6 (C-26), 134.9 (C-24), 132.2 (C-45, C-41), 131.6 (C-43), 129.7 
(C-15), 129.2 (C-35), 128.6 (C-44, C-42), 128.2 (C-14), 127.0 (C-31, C-30), 124.6 (C-16), 123.2 
(C-32, C-29), 119.5 (C-13), 109.6 (C-2), 72.0 (C-6), 67.9 (C-4), 63.5 (C-1), 57.3 (C-40), 52.8 (C-
7), 47.8, 45.8 (C-20), 41.8 (C-17), 28.5 (C-5), 27.8 (C-8), 24.8 (C-19), 23.0 (C-18), 22.2 (C-52), 
21.8 (C-51, C-53), and 8.7 (C-37); Anal. for C39H41N7O2; Calcd: C,73.21; H,6.46; N,15.32 

Yield: 87%; m.p.: 181–183 ◦C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6)
δ 12.43 (s, 1H, NH), 9.89 (s, 1H, NH), 7.53 (t, J = 1.9 Hz, 2H, ArH), 7.45 (s, 1H, ArH), 7.36
(m, 3H, ArH), 7.24 (t, J = 7.8 Hz, 2H, ArH), 7.19 (d, J = 6.2 Hz, 1H, ArH), 6.90–6.87 (m, 1H,
ArH), 6.80 (t, J = 7.5 Hz, 1H, ArH), 6.28 (d, J = 8.8 Hz, 1H, ArH), 5.69 (s, 2H, CH2), 4.97
(d, J = 12.2 Hz, 1H, COCH), 4.02 (q, J = 8.2 Hz, 1H), 3.86–3.80 (m, 1H), 3.16 (d, J = 4.3 Hz,
1H, aliphatic-H), 2.03 (d, J = 4.3 Hz, 1H, aliphatic-H), 1.92 (s, 3H, CH3), 1.88–1.86 (m, 1H,
aliphatic-H), 1.50–1.46 (m, 2H, aliphatic-H), 1.39–1.37 (m, 1H, aliphatic-H), 1.28–0.65 (m,
6H, aliphatic-H); 13C-NMR (126 MHz, DMSO-d6) δ 191.4 (C-38), 180.2 (C-9), 148.1 (C-12),
143.2 (C-36), 143.1(C-23), 142.5 (C-11), 138.6 (C-24), 131.4 (C-27), 131.1 (C-26), 130.2 (C-15),
129.4 (C-24), 128.2 (C-35), 126.9 (C-44), 124.1 (C-43), 122.3 (C-45), 120.7 (C-14), 119.5 (C-31,
C-30), 109.6 (C-2), 71.2 (C-6), 66.1 (C-4), 57.2 (C-1), 52.7 (C-40), 52.4, 45.8 (C-7), 41.67 (C-20),
38.36, 36.82 (C-17), 34.30, 30.91, 29.52, 28.64, 28.21 (C-5), 27.96 (C-8), 27.60, 24.93 (C-19), 19.8
(C-18), and 8.5 (C-37); Anal. for C36H34BrN7O2; Calcd: C, 63.91; H, 5.07; N, 14.49 Found:
C, 63.89; H, 5.10; N, 14.45; [M+] m/z: 675; IR (KBr, cm−1): 1616 (C=N), 1681–1724 (C=O),
3428 (NH).
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-
1’-(3,4,5-trimethylphenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-
a]indol]-2-one 8n.
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Yield: 87%; m.p.: 181–183 °C; a yellow, solid compound; 1H-NMR (500 MHz, DMSO-d6) δ 
12.43 (s, 1H, NH), 9.89 (s, 1H, NH), 7.53 (t, J = 1.9 Hz, 2H, ArH), 7.45 (s, 1H, ArH), 7.36 (m, 
3H, ArH), 7.24 (t, J = 7.8 Hz, 2H, ArH), 7.19 (d, J = 6.2 Hz, 1H, ArH), 6.90–6.87 (m, 1H, ArH), 
6.80 (t, J = 7.5 Hz, 1H, ArH), 6.28 (d, J = 8.8 Hz, 1H, ArH), 5.69 (s, 2H, CH2), 4.97 (d, J = 12.2 
Hz, 1H, COCH), 4.02 (q, J = 8.2 Hz, 1H), 3.86–3.80 (m, 1H), 3.16 (d, J = 4.3 Hz, 1H, aliphatic-
H), 2.03 (d, J = 4.3 Hz, 1H, aliphatic-H), 1.92 (s, 3H, CH3), 1.88–1.86 (m, 1H, aliphatic-H), 
1.50–1.46 (m, 2H, aliphatic-H), 1.39–1.37 (m, 1H, aliphatic-H), 1.28–0.65 (m, 6H, aliphatic-
H); 13C-NMR (126 MHz, DMSO-d6) δ 191.4 (C-38), 180.2 (C-9), 148.1 (C-12), 143.2 (C-36), 
143.1(C-23), 142.5 (C-11), 138.6 (C-24), 131.4 (C-27), 131.1 (C-26), 130.2 (C-15), 129.4 (C-24), 
128.2 (C-35), 126.9 (C-44), 124.1 (C-43), 122.3 (C-45), 120.7 (C-14), 119.5 (C-31, C-30), 109.6 
(C-2), 71.2 (C-6), 66.1 (C-4), 57.2 (C-1), 52.7 (C-40), 52.4, 45.8 (C-7), 41.67 (C-20), 38.36, 36.82 
(C-17), 34.30, 30.91, 29.52, 28.64, 28.21 (C-5), 27.96 (C-8), 27.60, 24.93 (C-19), 19.8 (C-18), 
and 8.5 (C-37); Anal. for C36H34BrN7O2; Calcd: C, 63.91; H, 5.07; N, 14.49 Found: C, 63.89; 
H, 5.10; N, 14.45; [M+] m/z: 675; IR (KBr, cm−1): 1616 (C=N), 1681–1724 (C=O), 3428 (NH). 
(1’S,2’R,3S)-2’-(1-((1H-Benzo[d]imidazol-2-yl)methyl)-5-methyl-1H-1,2,3-triazole-4-
carbonyl)-1’-(3,4,5-trimethylphenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,9a’-
decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-one 8n. 

           30 

Yield: 86%; m.p.: 179–181 °C; a yellow, solid compound; 1H-NMR (400 MHz, DMSO-d6) δ 
12.46 (s, 1H, NH), 9.94 (s, 1H, NH), 7.57 (d, J = 7.3 Hz, 1H, ArH), 7.46 (d, J = 8.1 Hz, 1H, 
ArH), 7.32 (d, J = 4.4 Hz, 1H, ArH), 7.14 (t, J = 7.3 Hz, 2H, ArH), 6.92 (t, J = 7.3 Hz, 1H, ArH), 
6.87 (t, J = 7.3 Hz, 1H, ArH), 6.79 (s, 1H, ArH), 6.74 (s, 1H, ArH), 6.34 (d, J = 7.3 Hz, 1H, 
ArH), 5.72 (s, 2H, CH2), 4.47 (d, J = 4 Hz, 1H, COCH), 4.44 (q, J = 8.2 Hz, 1H), 4.31 (t, J = 
11.4 Hz, 1H), 3.21 (d, J = 4.3 Hz, 1H, aliphatic-H), 2.66 (s, 3H, CH3), 2.61 (s, 3H, CH3), 2.19 
(m, 1H, aliphatic-H), 2.13 (s, 3H, CH3), 2.09 (d, J = 5.1 Hz, 1H, aliphatic-H), 1.97 (s, 3H, 
CH3), 1.62–1.49 (m, 3H, aliphatic-H), 1.44 (m, 1H, aliphatic-H), 1.34 (m, 2H, aliphatic-H), 
1.21 (d, J = 7.3 Hz, 1H, aliphatic-H), and 0.81 (d, J = 11.7 Hz, 2H, aliphatic-H); 13C-NMR 
(101 MHz, DMSO-d6) δ 192.7 (C-38), 180.6 (C-9), 148.1 (C-12), 143.3 (C-36), 142.6 (C-23), 
138.5 (C-11), 136.4 (C-27), 135.6 (C-26), 134.9 (C-24), 132.2 (C-45, C-41), 131.6 (C-43), 129.7 
(C-15), 129.2 (C-35), 128.6 (C-44, C-42), 128.2 (C-14), 127.0 (C-31, C-30), 124.6 (C-16), 123.2 
(C-32, C-29), 119.5 (C-13), 109.6 (C-2), 72.0 (C-6), 67.9 (C-4), 63.5 (C-1), 57.3 (C-40), 52.8 (C-
7), 47.8, 45.8 (C-20), 41.8 (C-17), 28.5 (C-5), 27.8 (C-8), 24.8 (C-19), 23.0 (C-18), 22.2 (C-52), 
21.8 (C-51, C-53), and 8.7 (C-37); Anal. for C39H41N7O2; Calcd: C,73.21; H,6.46; N,15.32 
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Yield: 86%; m.p.: 179–181 ◦C; a yellow, solid compound; 1H-NMR (400 MHz, DMSO-d6) δ
12.46 (s, 1H, NH), 9.94 (s, 1H, NH), 7.57 (d, J = 7.3 Hz, 1H, ArH), 7.46 (d, J = 8.1 Hz, 1H,
ArH), 7.32 (d, J = 4.4 Hz, 1H, ArH), 7.14 (t, J = 7.3 Hz, 2H, ArH), 6.92 (t, J = 7.3 Hz, 1H,
ArH), 6.87 (t, J = 7.3 Hz, 1H, ArH), 6.79 (s, 1H, ArH), 6.74 (s, 1H, ArH), 6.34 (d, J = 7.3 Hz,
1H, ArH), 5.72 (s, 2H, CH2), 4.47 (d, J = 4 Hz, 1H, COCH), 4.44 (q, J = 8.2 Hz, 1H), 4.31 (t,
J = 11.4 Hz, 1H), 3.21 (d, J = 4.3 Hz, 1H, aliphatic-H), 2.66 (s, 3H, CH3), 2.61 (s, 3H, CH3),
2.19 (m, 1H, aliphatic-H), 2.13 (s, 3H, CH3), 2.09 (d, J = 5.1 Hz, 1H, aliphatic-H), 1.97 (s, 3H,
CH3), 1.62–1.49 (m, 3H, aliphatic-H), 1.44 (m, 1H, aliphatic-H), 1.34 (m, 2H, aliphatic-H),
1.21 (d, J = 7.3 Hz, 1H, aliphatic-H), and 0.81 (d, J = 11.7 Hz, 2H, aliphatic-H); 13C-NMR
(101 MHz, DMSO-d6) δ 192.7 (C-38), 180.6 (C-9), 148.1 (C-12), 143.3 (C-36), 142.6 (C-23),
138.5 (C-11), 136.4 (C-27), 135.6 (C-26), 134.9 (C-24), 132.2 (C-45, C-41), 131.6 (C-43), 129.7
(C-15), 129.2 (C-35), 128.6 (C-44, C-42), 128.2 (C-14), 127.0 (C-31, C-30), 124.6 (C-16), 123.2
(C-32, C-29), 119.5 (C-13), 109.6 (C-2), 72.0 (C-6), 67.9 (C-4), 63.5 (C-1), 57.3 (C-40), 52.8 (C-7),
47.8, 45.8 (C-20), 41.8 (C-17), 28.5 (C-5), 27.8 (C-8), 24.8 (C-19), 23.0 (C-18), 22.2 (C-52), 21.8
(C-51, C-53), and 8.7 (C-37); Anal. for C39H41N7O2; Calcd: C,73.21; H,6.46; N,15.32 Found:
C, 73.32; H, 6.41; N, 15.29; [M+] m/z: 639; IR (KBr, cm−1): 1617 (C=N), 1682–1723 (C=O),
3428 (NH).

3.2. Computational Protocol

Computational protocol has been provided in the Supplementary Materials.

4. Conclusions

A new set of spirooxindoles with different pharmacophores like benzimidazole, tria-
zoles, and isatin moieties were achieved via the 32CA reaction between the in situ gener-
ated AY and the synthesized chalcones containing a wide range of substituents. The final
spirooxindoles were obtained with total selectivity and at an up to 90% yield, yielding only
one of the possible isomeric products. The X-ray crystal structure of triazole-benzimdiazole
4 was identified. Several spirooxindoles molecules were created, whose final chemical
architectures with different electronic effects constitute material for future studies.

The mechanism of the 32CA reactions between AY 9 and the simplest chalcone 5a was
theoretically studied by means of MEDT at the ωB97X-D/6-311g(d,p) DFT level. Out of the
16 possible isomeric reaction paths, the reported ortho/endo path leading to 8a via TS-on is
the most favorable one, with a very low activation Gibbs free energy of 11.1 kcal·mol−1

and a strong exergonic character of 24.0 kcal·mol−1. The formation of spirooxindole 8a
is completely selective because the other competitive isomeric reaction paths are at least
2.3 kcal·mol−1 higher in energy.

This low activation energy is a consequence of the supernucleophilicity of AY 9 and
the strong electrophilicity of 5a, which favor a highly polar 32CA reaction of FEDF, as
characterized by the high GEDT computed at the most-favorable TS-on.

Finally, the geometrical analysis of TS-on and the corresponding vibrational modes
observed indicate that the polar 32CA reaction follows a two-stage, one-step mechanism in
which the formation of the C3–C4 single bond involving the β-conjugated C4 carbon of the
chalcone derivative is more advanced. The present combined experimental and theoretical
MEDT study reports the synthesis of new spirooxindoles with promising biological activity
and sheds light on the mechanistic aspects of the key 32CA reaction step, with the aim of
achieving a wider set of this relevant type of compound and a better understanding of the
processes for potential future designs.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules28196976/s1. General remarks about solvents, chemical
reagents, and instrumentations; Computational protocol [21,22,25,31,33–49]; Figures S1–S31: NMR
and IR spectrum; Figure S32: reaction mechanism roadmap of the competitive isomeric reaction paths
in the 32CA reaction of AY 9 with chalcone 5a; Figure S33: ωB97X-D/6-311G(d,p) IRC path associated
with the most-favorable ortho/endo reaction path via TS-on in methanol.; Table S1: ωB97X-D/6-
311G(d,p) enthalpies, entropies, and Gibbs free energies, as well as the relative versions of these
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measures with respect to the separated reagents, computed at 60 ◦C and 1 atm in methanol, for the
stationary points involved in the 32CA reaction of AY 9 with chalcone 5a; Cartesian coordinates and
electronic energies of the stationary points involved in the 32CA reaction between AY 9 and chalcone
5a in methanol. Imaginary frequencies for TSs at 60 ◦C are included.
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