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Abstract: Soil is one of the Earth’s most important natural resources. The presence of metals can
decrease environmental quality if present in excessive amounts. Analyzing soil metal contents can be
costly and time consuming, but near-infrared (NIR) spectroscopy coupled with chemometric tools can
offer an alternative. The most important multivariate calibration method to predict concentrations
or physical, chemical or physicochemical properties as a chemometric tool is partial least-squares
(PLS) regression. However, a large number of irrelevant variables may cause problems of accuracy
in the predictive chemometric models. Thus, stochastic variable-selection techniques, such as the
Firefly algorithm by intervals in PLS (FFiPLS), can provide better solutions for specific problems.
This study aimed to evaluate the performance of FFiPLS against deterministic PLS algorithms for the
prediction of metals in river basin soils. The samples had their spectra collected from the region of
1000–2500 nm. Predictive models were then built from the spectral data, including PLS, interval-PLS
(iPLS), successive projections algorithm for interval selection in PLS (iSPA-PLS), and FFiPLS. The
chemometric models were built with raw data and preprocessed data by using different methods
such as multiplicative scatter correction (MSC), standard normal variate (SNV), mean centering,
adjustment of baseline and smoothing by the Savitzky–Golay method. The elliptical joint confidence
region (EJCR) used in each chemometric model presented adequate fit. FFiPLS models of iron and
titanium obtained a relative prediction deviation (RPD) of more than 2. The chemometric models
for determination of aluminum obtained an RPD of more than 2 in the preprocessed data with SNV,
MSC and baseline (offset + linear) and with raw data. The metals Be, Gd and Y failed to obtain
adequate models in terms of residual prediction deviation (RPD). These results are associated with
the low values of metals in the samples. Considering the complexity of the samples, the relative error
of prediction (REP) obtained between 10 and 25% of the values adequate for this type of sample.
Root mean square error of calibration and prediction (RMSEC and RMSEP, respectively) presented
the same profile as the other quality parameters. The FFiPLS algorithm outperformed deterministic
algorithms in the construction of models estimating the content of Al, Be, Gd and Y. This study
produced chemometric models with variable selection able to determine metals in the Ipojuca River
watershed soils using reflectance-mode NIR spectrometry.

Keywords: metal content; vibrational spectroscopy; chemometrics; FFiPLS; multivariate calibration

1. Introduction

Soil is unique due to the many different living systems of chemical species it incorpo-
rates. An environmental diagnosis has listed some of the following problems that affect
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soil, the remaining vegetation cover, and the surface and groundwater in a river basin:
deforestation, advancement of agricultural activity, exposed soils on slopes used for clay,
gravel and sand extraction on river banks, disorderly occupation, discharge of domestic
and industrial effluents, and disposal of solid waste. In this sense, soil conditions determine
the nature of plant ecosystems and the ability of the land to support life, and indicate the
presence of contaminants, whether they originate from natural or human-made sources
due to population growth, urbanization and poor management [1].

The toxicity caused by inorganic contaminants in soil is considered higher than that
caused by combined organic and radioactive sources [2]. Beryllium, for example, present
in alloys is used in aerospace, electronics and mechanical industries, but its compounds are
carcinogenic, immune system suppressers, cell division reducers and genotoxic to animals
and humans [3]. Yttrium and gadolinium, in turn, are rare-earth elements employed in
high-tech production and clean energy products and economic exploitation, and they have
gained worldwide interest [4,5]. These elements, however, affect the human health in the
digestive, respiratory, reproductive, neurological, hematological and immune systems [6,7].
Titanium is a heavy metal applied in metal alloys with few risks to human health but
with possible harmful effects still being studied [8]. Aluminum may cause nausea, mouth
and skin ulcers and arthritic pain, and increases the risk of Alzheimer’s disease, among
other problems [9]. On the other hand, iron is an essential component in the cells of all
living organisms and its utility is well known. The last two cited metals, Al and Fe, are
used in many transformation industries with direct implications for economic, social and
technological development.

The most common methods used for the determination of the aforementioned analytes
in soil consist of the application of inductively coupled plasma optical emission spectrome-
try (ICP-OES), atomic absorption spectrometry (AAS) and X-ray diffraction (XRD) [10–13].
These methods are expensive due to the quantity of steps during the extraction process
and the high consumption of reagents and instrumentation. As a viable alternative, some
studies using reflectance spectroscopy in the near-infrared region for prediction of some
soil properties have been developed [14–19].

Krzebietke et al. [14] used NIR spectroscopy to determine metals in cultivated Haplic
Luvisol soils in Balcyny near Ostroda, Poland. The proposed method was applied to
determine very low concentrations of Cd, Cu, Ni and Cr and high concentrations of Zn,
Mn and Fe. The authors point out that the results were adequate to determine all studied
metals using the coefficients of determination as the quality parameter for the model.

Fonseca et al. [15] developed a protocol to guarantee the representativity of this
measurement in the determination of organic carbon in Clay Ferrasol Soil in São Sebastião
da Vargem Grande, Mina Gerais State, Brazil. Four measurement models were studied; the
best result, using almost all wavelengths of the NIR spectrum, provided information for
SOC determination and presented high stability during the calibration process in the NIR
spectrophotometer.

Haghi et al. [16] predicted various soil properties comparing NIR with Fourier-
transform infrared (FTIR) spectroscopies. The spectroscopic dataset used in this work
was extracted from the National Soil Inventory of Scotland. The properties evaluated were
total carbon, total nitrogen, bulk density, clay, sand, silt, pH (in H2O), exchangeable Mg
and exchangeable K. The authors concluded that the overall performance to determine the
parameters of FTIR under study, except for pH, was better than the NIR spectroscopy.

Jia et al. [17] developed a method to determine soil nitrogen and organic carbon.
The samples were obtained in nine towns in Wencheng county, Zhejiang province, China.
The authors concluded that the residual prediction deviations were adequate for both
parameters using NIR spectroscopy.

Oliveira et al. [18] proposed a method to determine sand, silt and clay in high con-
centrations and Th and total rare-earth elements in low quantities. The soil profiles were
located in Borborema Province, Pernambuco State, northeastern Brazil. The authors con-
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cluded that the models constructed were adequate to determine the studied parameters
using NIR spectroscopy.

Maia et al. [19] used NIR spectroscopy to determine metals in soil and sediment
samples obtained in the Ipojuca river basin in the state of Pernambuco, northeastern Brazil.
The authors concluded that for the prediction of Co, Cr, Mo, Ni and Sn, this method
presented a poor performance. Satisfactory results were achieved for Al, Ti, Sc and V, and
reasonable results were achieved for Fe, La, Mn, Pr, Sm, Sr and Th.

The articles cited above used NIR spectroscopy to determine properties or concen-
tration of metals in soils, treating the data using chemometric tools. This treatment was
associated with the NIR spectra’s broad and overlapping overtones and combination bands,
i.e., a great deal of information in a short spectral region with low signal. In this context, the
use of chemometric tools is necessary to describe the relationship between spectra signal
and quantity of interest.

Multivariate calibration is a process that associates the concentration of a given ana-
lyte/property with a measured response that can come from such things as near-infrared
spectra and chromatographic profiles [20–22]. The partial least-squares regression (PLSR)
algorithm is among the deterministic methods that have stood out in the last thirty years for
their versatility [23]. This method is regarded as an excellent regression algorithm because
it is efficient even in the presence of non-explicative variables.

Conceptually, PLSR reduces the influence of uninformative or noisy variables by
applying low weights to these variables in the models constructed. Despite this, variable-
selection strategies can still be used to reduce dimensionality in a large dataset, minimizing
redundancy and excluding uninformative or noisy variables. Variable-selection techniques
are widely applied to improve the performance of chemometric PLSR models in terms of
the figures of merit, such as accuracy and precision, mainly when using a small number of
samples [17,24,25].

Two types of procedures can be employed: deterministic and stochastic algorithms [26–29].
In the case of specific optimization problems with high dimensionality, stochastic algorithms
are widely employed because they seek better solutions involving randomness, such as
bio-inspired algorithms [18,30].

Among the bio-inspired algorithms, our research group developed the Firefly algo-
rithm by intervals in PLS (FFiPLS) [18]. This algorithm is based on the bioluminescence
behavior of fireflies when searching for food. In this procedure, one or more variable
intervals may be chosen to improve the quality of a PLS model.

In view of the above, this study aims to evaluate the performance of FFiPLS against
deterministic algorithms such as iPLS, iSPA-PLS and full PLSR from raw and preprocessed
soil using NIR spectra to build models for the prediction of aluminum, beryllium, iron,
titanium, gadolinium and yttrium content in soil. These metals were chosen based on their
presence in the samples and important uses in industries and technological products. Iron,
aluminum and titanium were used due to their high quantity in the soil samples. In all
cases, NIR was able to resolve some problems with the reference analytical techniques.

2. Results

Table 1 presents basic statistics regarding the determination of selected metals (Al, Be,
Fe, Ti, Gd and Y) in soil samples. Among these analytes, there were higher concentrations
of aluminum (Al), iron (Fe) and titanium (Ti). This can be attributed to their greater
abundance in the Earth’s crust. Al is the most abundant metal in the crust, constituting
around 8% of its composition, closely followed by Fe, which comprises approximately
5% [31]. Additionally, Ti, though less abundant than Al and Fe, still occurs in significant
amounts. On the other hand, beryllium (Be), gadolinium (Gd) and yttrium (Y) are much
less abundant in the Earth’s crust. Be is commonly described as a trace metal [32], while
Gd and Y are both rare-earth elements [33], present in average to low concentrations in soil.
The RSD presented in Table 1 indicates a large range of metal concentrations able to build
the chemometric models. The concentrations of Ti, Fe and Al were high, being the major
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components. The concentrations of Be, Gd and Y were lower. In terms of metals with low
concentrations, the chemometric models were less reliable for the higher concentrations.

Table 1. Basic statistics concerning to selected metals determination in mg kg−1.

Elements Minimum Value Maximum Value Mean Value SD RSD

Ti 1.60 × 103 10.4 × 103 4.66 × 103 2.01 × 103 43.08

Fe 9.3 × 103 69.0 × 103 30.6 × 103 13.0 × 103 42.41

Al 47.1 × 103 157.8 × 103 91.2 × 103 27.7 × 103 30.42

Be 0.35 3.55 2.02 0.62 30.69

Gd 2.44 15.24 5.60 1.62 28.97

Y 6.82 35.80 14.77 4.03 27.29
SD—Standard Deviation; RSD—Relative Standard Deviation.

The spectra were used for building the chemometric predictive models, and the data
are presented in Figure 1. In terms of spectral profile, four samples had lower signal
intensities than the others in some spectral regions. But this difference did not affect the
results since the spectral profile was the same, differing only in the intensity of the bands.
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Figure 1. NIR spectra of soil samples.

Two small reflectance peaks were observed at 1450 and 1950 nm regions associated
with vibrational frequencies of -OH groups arising from the adsorbed water. Furthermore,
clay minerals were absorbed in the NIR due to combinations of metals with O-H and
C-O stretching. Reflectance close to 2204 nm can be given due to combinations of Al-OH
vibrations and 2280 nm by Fe-OH [34,35].

Depending on the wavelength, various soil properties can be detected directly. For
the determination of metals, however, the relationship between the reflected energy in the
near-infrared region (1000–2500 nm) is associated with the part of the organic coordination
compound that produced an interaction pattern related to the vibrations caused by the
elongation and bending of molecular bonds of clay, oxides and others.
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The results of the chemometric models were available initially by the elliptical joint
confidence region (EJCR) of calibration and prediction. These graphs must include the
theoretical ideal point; for this, the models did not present significant bias. After the EJCR
was obtained, the following other figures of merit were evaluated: latent variables, root
mean square error of cross validation (RMSECV), root mean square error of prediction
(RMSEP), bias of prediction (biaspred), standard deviation of validation (SDV), ratio of
performance to deviation (RPD) and relative error of prediction (REP) were available.

The choice of latent variables was given in the function of the smallest RMSECV. The
models were built from the suggested latent variables by the algorithms. These results,
however, were not promising compared to those determined by evaluating the smallest
residual error.

2.1. Determination of Titanium

The EJCR of chemometric models (Table 2) proved to be adequate with lower latent
variables for the preprocessed data when used with the FFiPLS algorithm from different
preprocessing techniques (MSC, SNV and baseline fit). Models that showed overfitting
were excluded, based on the high number of latent variables that added irrelevant infor-
mation to the built models. The best model for Ti used 750 spectral variables with MSC as
preprocessing in the FFiPLS algorithm with R2

cal equal to 0.8381, 0.92 × 103 mg kg−1 of
RMSEC, lower REP (15.60%) and RPD (2.16), and higher SDV (0.79 × 103 mg kg−1) when
employing 10 latent variables.

Table 2. Figures of merit of chemometric models for titanium content determination.

Preprocessing MSC SNV BaseLine
(Linear)

BaseLine
(OffSet)

BaseLine
(Off + Linear)

Model iSPA-PLS FFiPLS FFiPLS FFiPLS PLS FFiPLS
LV 21 10 11 6 17 12
NV 2550 750 1500 1350 3001 1350

RMSEC (mg kg−1) 0.36 × 103 0.92 × 103 0.83 × 103 1.02 × 103 0.61 × 103 0.80 × 103

R2
cal 0.9792 0.8381 0.8743 0.7876 0.9353 0.8802

RMSEP (mg kg−1) 0.73 × 103 0.62 × 103 0.87 × 103 0.77 × 103 0.79 × 103 0.80 × 103

R2
pred 0.7097 0.7862 0.5655 0.6725 0.6881 0.7055

Biaspred (mg kg−1) 0.28 × 103 0.27 × 103 0.34 × 103 0.19 × 103 0.05 × 103 0.16 × 103

REP (%) 18.19 15.6 21.25 19.76 19.99 19.96
RPDpred 1.85 2.16 1.52 1.75 1.79 1.84

SDV 0.89 × 103 0.79 × 103 1.07 × 103 0.85 × 103 0.81 × 103 0.86 × 103

LV—Number of Latent Variables; NV—Number of Variables; RMSEC—Root Mean Square Error of Calibration;
RMSEP—Root Mean Square Error of Prediction; REP—Relative Error of Prediction; RPD—Residual Prediction
Deviation; SDV—Standard Deviation of Validation.

It should be noted that the deterministic algorithms showed possible overfitting
when compared to the stochastic algorithm. Parameter calibration leads to the risk of
overfitting. This usually occurs due to the choice of the appropriate set of instances during
computational experimentation with a reasonable measure of difficulty and with a wide
range of size. It was possible to observe, for example, that the iSPA-PLS algorithm using
MSC preprocessing (Figure 2a) forced the result near to ideal using almost the full spectra
but with 21 latent variables. The FFiPLS model obtained a similar result using the same
preprocessing but with fewer latent variables.
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The statistical significance between the RMSEP values was evaluated using the F-test
to compare the reliability of the models, showing no statistically significant differences
between them.

Titanium oxides may be related to average clay grain size composition with predomi-
nance of kaolinitic mineralogy and oxides. The FFiPLS model preprocessed by MSC used
the spectral range 1375–1450 nm associated with vibrational frequencies of the hydroxyl rad-
ical (O-H) present in the water adsorbed by the vibrational combination of metal-hydroxyl
plus O-H stretch in a 1:1 mineral structure. The spectral region 1600–1675 nm may be
associated with vibrations of the oxygen bonds, confirming the adequate result of the cited
chemometric model.

Maia et al. [19] determined titanium and other metals in soil using NIR spectrometry.
The best chemometric model that was obtained used random forest as the calibration
method and SNV as the preprocessing algorithm. In comparison to Maia et al., the proposed
model in our article, using FFiPLS with MSC as the preprocessing data algorithm, obtained
better RMSEP (0.62 × 103 versus 0.93 × 103 mg/kg), RPD (2.16 versus 2.02) and R2 (0.78
versus 0.74) using only 750 versus 2500 variables [19].

Tepanosyan et al. [36] proposed a method to determine Ti using NIR spectroscopy with
PLS regression. The result was a better chemometric model with better RMSEP (0.33 × 103

versus 0.62 × 103 mg/kg) but worse R2 (0.71 versus 0.78) and higher latent variables (14
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versus 10). They used two spectral regions with 300 wavelengths [36] in comparison to the
proposed method in our study.

Naibo et al. [37] analyzed many metals, including Ti, with NIR spectroscopy with PLS
regression. The best result obtained was a RMSEP of 0.11 × 103 mg/kg using full spectra
with the Savitzky–Golay derivative as the preprocessing method in NIR data but with an
R2 equal to 0.99, which indicates an overfitting method. The authors indicated that this
method of Ti determination was not accurate.

2.2. Determination of Iron

For iron, the model employing the FFiPLS algorithm with moving average preprocess-
ing (Table 3) did not prove suitable due to the use of a larger number of latent variables
(LVs = 16). In addition, the model produced higher RMSEP (8.09 × 103 mg kg−1), bias
(1.70 × 103 mg kg−1) and SDV (8.79 × 103 mg kg−1), with a high variance and a lower
coefficient of determination for the prediction set.

Table 3. Figures of merit of chemometric models for determination of iron content.

Preprocessing SNV Moving
(Average) Baseline (Linear) Baseline

(Offset)
Baseline (Offset

+ Linear)

Model iPLS FFiPLS PLS iSPAPLS iPLS FFiPLS FFiPLS
LV 13 12 16 13 11 11 14
NV 150 1350 3001 150 150 750 150

RMSEC (mg kg−1) 2.16 × 103 6.23 × 103 4.68 × 103 1.63 × 103 3.41 × 103 6.38 × 103 1.00 × 103

R2
cal 0.9791 0.8237 0.9099 0.9882 0.9472 0.8152 0.9958

RMSEP (mg kg−1) 5.81 × 103 4.58 × 103 8.09 × 103 6.21 × 103 5.88 × 103 6.22 × 103 6.16 × 103

R2
pred 0.6701 0.7947 0.0135 0.4910 0.5439 0.4888 0.4464

Biaspred (mg kg−1) 0.46 × 103 0.46 × 103 1.70 × 103 0.37 × 103 0.60 × 103 0.52 × 103 1.53 × 103

REP (%) 21.61 17.04 31.78 24.42 23.12 24.47 23.26
RPDpred 1.74 2.21 1.01 1.4 1.48 1.4 1.34

SDV 5.91 × 103 4.65 × 103 8.79 × 103 6.37 × 103 6.09 × 103 6.33 × 103 6.09 × 103

LV—Number of Latent Variables; NV—Number of Variables; RMSEC—Root Mean Square Error of Calibration;
RMSEP—Root Mean Square Error of Prediction; REP—Relative Error of Prediction; RPD—Residual Prediction
Deviation; SDV—Standard Deviation of Validation.

The lowest biaspred obtained for Fe was through the FFiPLS algorithm preprocessed
by SNV (0.46 × 103 mg kg−1). The deterministic iPLS algorithm preprocessed by SNV
also proved to be interesting for the coefficients of determination and bias. FFiPLS used a
smaller number of LVs for building the models cited in this study. In the literature, high iron
content can be correlated with the low reflectance in the iron-oxide (Fe2O3) bands [38,39].

The results obtained showed high values of RMSECV, RMSEC, RMSEP, biaspred and
SDV but within the concentration range of the samples used (0.9–68.9 × 103 mg kg−1). The
FFiPLS model preprocessed by SNV showed higher RPDpred and better fit in terms of the
prediction set, making it important to evaluate not only the coefficients of determination
and RMSEs but also the whole set of figures of merit.

Both SNV preprocessed models, iPLS and FFiPLS (Figure 3), selected the spectral
range of 2200–2275 nm. Iron in soil can be associated with complexes, such as adsorbed
organic matter. Cations such as Fe3+ can be attracted to low-molecular-mass organic acids
at the edges of mineral structures, which chelate or bind them into stable organometallic
complexes. An absorption near to 2280 nm may be associated with the presence of iron
hydroxides with Fe replaced in the octahedral form. Iron oxides such as kaolinite can also
occur in the same region.
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Krzebietke et al. [14] proposed a method to determine iron and other metals in soils
using NIR spectroscopy with PLS regression with detrending as the preprocessing algo-
rithm. The RMSEP values were comparable in the iron range concentration. The con-
centration range of iron [14] was 0.70–4.00 × 103 mg/kg. In their article, the range was
9.3–69.0 × 103 mg/kg. In terms of number of latent variables, Krebietke et al. obtained 9
versus 12 and an R2 of 0.76 versus 0.79 compared to our results.

Maia et al. [19], determining iron in soil using NIR spectrometry, obtained the best
chemometric model using random forest as the regression algorithm and detrending as
the preprocessing method. In comparison to Maia et al., the proposed model in our article
obtained better RMSEP (4.58 × 103 versus 8.70 × 103 mg/kg), RPD (2.21 versus 1.36) and
R2 (0.79 versus 0.50) using 1350 versus 2500 variables [19].

Naibo et al. [37] analyzed Fe and obtained a better result for a RMSEP of 2.90 × 103 mg/kg
using full spectra with the Savitzky–Golay derivative as the preprocessing method in
NIR data; their R2 equal to 0.99 indicated, however, an overfitting method. The authors
indicated that their method of Ti determination was not accurate.

Mammadov et al. [40] determined Mehlich 3 extractable elements including iron using
visible and NIR spectral regions, PLS regression and Savitzky–Golay preprocessing using
first derivative with a gap segment size of 10 bands. The R2 of calibration and prediction
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(0.83 versus 0.82 and 0.76 versus 0.79, respectively) were comparable with our study and
the RPD obtained in their work was better (2.21 versus 1.72).

2.3. Determination of Aluminum, Beryllium, Gadolinium and Yttrium

For Al, Be, Gd and Y, only the FFiPLS algorithm (Table 4) presented the EJCR at
a specific point on the ellipse of confidence for the calibration and prediction models,
using a smaller number of latent variables. Values for RMSECV, RMSEP, biaspred and SDV
obtained for Be, Gd and Y were lower than for Al. This can be explained by the higher Al
concentration in the sample set (47.1–157.8 × 103 mg kg−1).

Table 4. Figures of merit of chemometric models for aluminum, beryllium, gadolinium and yttrium
content determinations.

Analyte Al Be Gd Y

Preprocessing Raw Data SNV MSC
Baseline
(Offset +
Linear)

MSC SNV SG
Smoothing

SG
Smoothing

LV 9 7 7 6 4 5 5 5
NV 1200 1800 1650 1350 1800 750 1650 1050

RMSEC (mg kg−1) 12.77 × 103 13.09 × 103 12.82 × 103 13.31 × 103 0.55 0.55 1.40 3.37
R2

cal 0.8203 0.8048 0.8165 0.8008 0.3812 0.4059 0.4276 0.4489
RMSEP (mg kg−1) 12.16 × 103 11.61 × 103 8.80 × 103 9.50 × 103 0.29 0.34 0.85 1.98

R2
pred 0.7729 0.8023 0.872 0.8533 0.3354 0.0488 0.2029 0.4437

Biaspred (mg kg−1) 3.89 × 103 0.25 × 103 0.79 × 103 0.72 × 103 0.02 0.02 0.25 0.65
REP (%) 14.06 13.01 10.2 10.65 14.81 17.19 14.55 13.09
RPDpred 2.1 2.25 2.79 2.61 1.23 1.02 1.12 1.34

SDV 14.19 × 103 11.85 × 103 9.09 × 103 9.67 × 103 0.3 0.35 0.98 2.32

LV—Number of Latent Variables; NV—Number of Variables; RMSEC—Root Mean Square Error of Calibration;
RMSEP—Root Mean Square Error of Prediction; REP—Relative Error of Prediction; RPD—Residual Prediction
Deviation; SDV—Standard Deviation of Validation.

For Al determination, the preprocessed model using MSC (Figure 4) showed lower
REP (10.20%), RMSEP (8.80 × 103 mg kg−1) and SDV (9.09 × 103 mg kg−1) values, as well
as higher linearity due to R2

pred. In some cases, it is important to evaluate the viability of
the model not only by the highest R2 value, since this parameter only indicates the variance
explained by the linear equation.

Maia et al. [19], determining aluminum in soil using NIR spectrometry, obtained the
best chemometric model using PLS as the regression algorithm and SNV as the preprocess-
ing method. Compared with this result, the proposed model in our article obtained better
RMSEP (8.80 × 103 versus 11.8 × 103 mg/kg), RPD (2.79 versus 2.12) and R2 (0.87 versus
0.76) [19].

Naibo et al. [37] analyzed aluminum and obtained a better result, with a RMSEP of
1.47 × 103 mg/kg using full spectra with the Savitzky–Golay derivative as the preprocess-
ing method with NIR data, but the R2 equal to 0.99 indicated an overfitting method.

Gholizadeh et al. [41] proposed a method to determine aluminum in forest soils using
visible-NIR spectroscopy and learning algorithms. The best model in the work obtained an
R2 equal to 0.86 and RMSEP of 1.50 × 103 mg/kg, comparable to our study, considering the
difference between concentration ranges (0.31–29.3 × 103 versus 47.1–157.8 × 103 mg/kg).

When the RMSEP is not low enough, it is interesting to know the bias to evaluate
the technique used. High values in the biaspred indicate low veracity in the measurement;
therefore, the model obtained for the raw data matrix is not ideal, despite the F-Test showing
that statistically there are no significant differences between them.
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Figure 4. FFiPLS chemometric model with MSC as preprocessing for determination of aluminum
content: (a) EJCR; (b) Selected spectral regions; (c) Predicted versus reference values for calibration
sample set; (d) Predicted versus reference values for prediction sample set.

The spectral range 1375–1450 nm can be assigned the vibrational frequencies of -
OH groups in the adsorbed water by the vibrational combinations of the metal with
hydroxyl (Al-OH) plus O-H stretching. The spectral region 2200–2275 nm may be associated
with the combination of Al-OH plus O-H stretching bend vibrations in poorly ordered
kaolinite (near to 2205 nm) and Al-OH from 2:1 clay minerals (2160 nm). In the literature,
reflectance spectral characteristics of clay minerals are reported, which indicates that the
spectrum of kaolinite is characterized by a strong hydroxyl absorption band with aluminum
coordination and aluminum oxides (Al2O3).

For Be (0.35 to 3.55 mg kg−1), as shown in Figure 5, the model employing the FFiPLS
algorithm preprocessed by MSC was shown to be superior as it presented lower values
of RMSEP (0.29 mg kg−1), REP (14.81%), SDV (0.30 mg kg−1) and LV (4) as well as higher
linearity (R2

pred = 0.3354). Naibo et al. [37] obtained a RMSEP of 0.13 mg/kg using full
spectra with Savitzky–Golay derivative as the preprocessing method in NIR data, but the
R2 equal to 0.99 indicated an overfitting method.
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Figure 5. FFiPLS chemometric model with MSC as preprocessing for determination of beryllium
content: (a) EJCR; (b) Predicted versus reference values for calibration sample set; (c) Selected spectral
regions; (d) Predicted versus reference values for prediction sample set.

According to the literature, metals at low concentrations are not spectrally active in the
NIR region because their signals may be overlapped by more intense signals where they are
embedded in clay mineral structures or associated with organic matter. This may explain
why some models proved unreliable by not showing the optimum within the ellipse point
in the EJCR test.

Gd and Y are indispensable for high-tech production (computers, wind towers, light-
emitting diodes and others). For both, only FFiPLS (Figure 6) provided the best results with
the Savitzky–Golay smoothing preprocessing, but the quality model was not accurate. For
Gd and Y, the EJCR showed a point within the confidence ellipse where the deviation of the
samples was low. Also, lower SDV, biaspred, RMSECV and RMSEP values were observed.
This was probably because the working ranges of Gd and Y are lower than those of Al and
therefore influence the determination coefficients.

Maia et al. [19] published an article that determined Be using PLS with continuum
removal as the preprocessing algorithm; their results were comparable with our study in
terms of R2 (0.20 versus 0.35), RMSE (0.85 versus 3.47 mg/kg), bias (0.25 versus 0.96 mg/kg)
and RPD (1.12 versus 1.23).
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Figure 6. FFiPLS chemometric model with SG smoothing as preprocessing for determination of
gadolinium and yttrium contents: (a) EJCR from Gd; (b) EJCR from Y; (c) Predicted versus reference
values for prediction set from Gd; (d) Predicted versus reference values for prediction set from Y.

3. Materials and Methods
3.1. Study Area

Soil samples were selected from the Ipojuca River watershed located in the state of
Pernambuco, between parallels 8◦ 09′ 50′′ and 8◦ 40′ 20′′ south latitude and meridians 34◦

57′ 52′′ and 37◦ 02′ 48′′ longitude west of Greenwich. The basin has a strategic position,
linking the Metropolitan Region of Recife and the backwoods regions of state. The river
area covers a surface of 3433.58 km2 corresponding to 3.49% of the total state and perimeter
of 749.6 km. Most of the area of the Ipojuca River basin is represented by crystalline rocks
from the Precambrian era. The dominant lithostratigraphic is the Migmatitic–Granitoid
Complex, where granites and granodiorites are predominant over migmatites. Small areas
also are associated with metagraywacke quartzites and crystalline limestones, besides
schists and undifferentiated gneisses.

3.2. Soil Analysis and Parameters of Interest

A total of 101 soil samples (0–5 cm depth) were collected along the river basin. The
soil samples were air dried in an oven at 50 ◦C for 48 h. They were disaggregated and sifted
through a 2 mm mesh and finally separated by sifting at ≤100 µm.

The concentrations of different metals from the 101 samples were measured by induc-
tively coupled plasma optical emission spectrometry (ICP-OES) using an Optima DV7000
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spectrophotometer, PerkinElmer. The metals determined were aluminum, beryllium, iron,
titanium, gadolinium and yttrium. The measurements were performed after extraction by
acid digestion on a heating plate (~180 ◦C) employing hydrofluoric (10 mL), nitric (5 mL)
and perchloric (3 mL) acids following the proposed methodology [42]. The extracts were
dissolved in hydrochloric acid and diluted in deionized water.

3.3. Spectral Analysis and Database

After drying in an oven at 50 ◦C for 48 h, the samples were measured in the FT-NIR
spectrometer, PerkinElmer, with a reflectance accessory. The NIR spectra were obtained
between 1000 and 2500 nm with 2 nm resolution and 32 independent scans for sample
at wavelength steps of 0.5 nm. The dataset included 101 observations (samples) with
3001 wavelengths (variables).

3.4. Chemometric Methods

The chemometric models were built with raw data and the following preprocessing of
the data (spectra): multiplicative scatter correction (MSC); standard normal variate (SNV);
mean centering; adjustment of baseline; smoothing and derivation by the Savitzky–Golay
method (using 1st derivate, 2nd-degree polynomial and 17-point window); mean reduction;
and smoothing by the moving average method. This preprocessing is a crucial step to
build calibration models using NIR as the analytical technique [43] to remove unwanted or
harmful signals. The main problems in NIR spectroscopy are baseline shift, vertical offsets,
spurious scattering of radiation and spectral noises.

The samples were divided into calibration (76) and prediction (25) sets for each prepro-
cessed dataset using the SPXy algorithm from the Data Hand Gui interface [44], in Matlab®

version R2016a. The samples of calibration sets were used to build the chemometric models
and prediction sets to evaluate the built models.

The algorithms used to build the chemometric models were PLSR, iPLS [45] and iSPA-
PLS using iSPA Gui interface [46] and FFiPLS. The number of latent variables for each PLS
model was selected using the root mean square error of the cross-validation (RMSECV). The
iPLS, iSPA-PLS and FFiPLS models were built by dividing the spectra into 20 intervals. The
parameters used in the FFiPLS algorithm were 50 Fireflies (ffpop), 50 cycles (generations)
and the values attributed to w0, gamma (γ) and alpha (α), respectively, 0.97, 1.0 and 0.2.
All algorithms were carried out using Matlab® version R2016a.

The results were evaluated and chemometric models compared using the predictive
ability in terms of RMSEC, R2

cal, R2
pred, biaspred, RPD, SDV and REP [47].

4. Conclusions

Through this study, it was possible to build models for prediction of different metals
(aluminum, beryllium, iron, titanium, gadolinium and yttrium) using a set of soil sam-
ples from deterministic (PLS, iPLS, iSPA-PLS) and stochastic (FFiPLS) variable-selection
techniques. The FFiPLS algorithm provided more appropriate results for some analytes,
employing fewer latent variables and achieving lower values of RMSEP, RMSECV, REP,
SDV and biaspred.

FFiPLS outperformed the deterministic iPLS, iSPA-PLS and full PLSR algorithms
for the determination of Al, Fe and Ti based on their high presence in the soil samples.
Although the deterministic algorithms expressed solutions with good performance, as the
number of variables increased, they started to fail. This could be seen in the case of Be, Gd
and Y; due to the very low concentration of metals, however, the results were not satisfactory
for metals. The raw matrix data did not provide significant results, probably due to a
number of properties that influenced the soil, such as moisture, organic matter and particle
size. Thus, different preprocessing techniques were employed on the reflectance database
obtained by NIR spectroscopy. This procedure was crucial for building the calibration
models using NIR as the analytical technique. Thus, the preprocessing techniques used in
this article were Savitzky–Golay, derivations, MSC and SNV.
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The determination of metals in soil is important in order to determine the type and
agronomic conditions of soils and for other exploratory activities of soils such as extraction
of metals. But the analytical process to determine these analytes uses expensive reagents
and instruments, and qualified labor, and it demands significant time. Thus, methods that
use NIR spectroscopy with chemometric tools associated with variable selection, such as
FFiPLS, are an interesting alternative for determining metals in soils in an economic, rapid
and precise manner.
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