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Abstract: Following the work already carried out in our laboratory on eucalyptol, a new green solvent
derived from biomass, we are now looking at sabinene as another new green solvent. Sabinene is also
derived from biomass, has no known toxicity and can be recycled by distillation. We have shown
that it can be used as it is or distilled to synthesize thiazolo[5,4-b]pyridine heterocycles by thermal
activation or microwave irradiation. This new solvent was compared with various conventional and
green solvents. The conditions were optimised to enable us to carry out the syntheses in satisfactory
yields, and we were able to show that sabinene, a natural bicyclic monoterpene, could be used
effectively as a solvent.
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1. Introduction

Organic chemistry mainly uses petroleum-based products or solvents, which have
a major impact on the environment. Today, it is important to preserve our non-renewable
resources by using new types of solvents derived from biomass and to think about the econ-
omy of the atom. In 2019, we were able to highlight a new solvent derived from biomass,
eucalyptol [1]. This has been compared with known conventional and green solvents and
has shown an undeniable interest in the organic synthesis of numerous nitrogenous and
sulphurous oxygenated heterocyclic compounds via, in particular, nucleophilic substitu-
tions, cyclisations, various metal-catalysed couplings and multicomponent reactions [1–5].
Although we are still applying this new solvent in various synthetic processes, within the
team we are continuing our efforts to limit our environmental impact and are therefore look-
ing at other biomass-derived solvents. Sabinene 1 (Figure 1) is a compound in the family of
unsaturated monoterpene hydrocarbons with the molecular formula C10H16. Sabinene is its
trivial name, while its IUPAC name is 4-methylidene-1-(propan-2-yl)bicyclo[3.1.0]hexane.
It is classified as a food additive and as a flavouring agent in the perfume industry. It is
known for its anti-inflammatory, antioxidant, antifungal, [6,7], antiseptic, antimicrobial [8]
and bactericidal properties [9].

Sabinene is either extracted from various plants or biosynthesised by enzymatic reac-
tion [10]. It is naturally present in juniper (Juniperus Sabina) [11], marjoram (Origanum majo-
rana) [12], holm oak (Quercus ilex) [13], Norway spruce (Picea abies), Douglas fir (Pseudotsuga
menziesii) [14], spearmint (Mentha spicata)[15], angelica (Angelica archangelica, Apiaceae) [16],
carrots (Daucus Carota) [17], black pepper (Piperaceae) [18], Clausena anisata (Wildd.) Hook.f.
ex Benth. (Rutacea) [19] or the citrus family [7] and many others. Sabinene, present in certain
citrus fruits, could therefore be obtained from waste products from the fruit juice industry.
It was therefore interesting to test it for the organic synthesis of compounds for biological
purposes, as its use as a solvent would contribute to the recycling of industrial waste.
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be around 70%, hence the importance of mastering synthesis protocols and carrying them 

out under the safest possible conditions, for the development and production of new en-

vironmentally friendly drugs or agrochemical compounds [25,29–31]. On the other hand, 

thiazolo[5,4-b]pyridine analogues are known for their promising properties and are there-

fore the subject of various developments [32–36], particularly in oncology, as some ana-

logues show very good inhibition (in the nanomolar range) of phosphoinositide 3-kinase 
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Figure 1. Sabinene structure.

Sabinene has also been reported as a starting material for advanced biofuels [20,21].
Here, it is used as a green solvent for the synthesis of various thiazolo[5,4-b]pyridines
compared to eucalyptol or cyclopentyl methyl ether (CPME), limonene and citral.

On the one hand, heterocycles are widely present in many agrochemical and phar-
maceutical products [22–28]. To date, the number of pharmaceutical products containing
a heterocyclic part in their skeleton, and in particular bicyclic heterocycles, is estimated
to be around 70%, hence the importance of mastering synthesis protocols and carrying
them out under the safest possible conditions, for the development and production of
new environmentally friendly drugs or agrochemical compounds [25,29–31]. On the other
hand, thiazolo[5,4-b]pyridine analogues are known for their promising properties and are
therefore the subject of various developments [32–36], particularly in oncology, as some ana-
logues show very good inhibition (in the nanomolar range) of phosphoinositide 3-kinase
(PI3K) [37]. This is an important target for survival, proliferation and differentiation, and
therefore for targeted tumour therapy [38]. These compounds can be synthesised in several
ways, depending on the functionalities envisaged, in particular on the 6-membered ring.
They can also be synthesised in a single step from a chloronitropyridine and a suitably
substituted thioamide or thiourea [39]. We chose to use the one-step method starting
from a 3-amino-2-chloropyridine derivative and an isothiocyanate, a synthetic method
already used when we investigated laser irradiation as a new activation method in organic
synthesis [40]. This reaction was chosen because of the interest of this type of heterocycle,
but also because while the reagents are soluble, the product precipitates out of the medium,
making it easy to visualise its production.

2. Results and Discussion
2.1. Thiazolo-Pyridine Synthesis in Various Standard and Green Solvents
2.1.1. Optimisation in Various Solvents

On the basis of the results obtained in a previous study [40] involving coupling be-
tween 3-amino-2-chloropyridine 2a and phenyl isothiocyanate 3a to obtain N-phenylthiazo-
lo[5,4-b]pyridin-2-amine 4a, the synthesis was first carried out in various conventional
solvents before being performed in green solvents. To investigate the ranges and limits,
the temperature was maintained at a set point of 110 ◦C for an internal temperature of
100 ◦C in a sealed tube for each experiment by conventional heating using a stirring plate.
It was found that 4 h were required at this temperature in conventional solvents, and
that increasing the reaction time did not provide any significant improvement. It should
be noted that the product obtained is the HCl salt product already described by Atland
and Molander [41], which exhibits a characteristic NMR spectrum. We tried to carry out
the reaction in the presence of a base equivalent such as K2CO3, but the reaction proved
inefficient under these conditions. The solution was to proceed in two stages, forming
the product in salt form and then neutralising it in the presence of a base. We therefore
continued our study without a base and formed the products in salt form.

As the yields obtained were moderate in both conventional and green solvents, we
concentrated on the latter to optimise reaction time, using one equivalent of each reagent.
While citral only led to a disappointing yield of 21% in 16 h, increasing the reaction time
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was beneficial for the other green solvents, allowing us to achieve satisfactory yields of 58
to 75% (Table 1, entries 7,9 and 11). Beyond 16 h, we did not observe any improvement
in performance. We used sabinene as a new solvent and obtained encouraging results
(Table 1, entries 10 and 11), although not as good as with eucalyptol or CPME (entries 6 to
9). Citral is a compound that does not behave very well at this temperature: the medium
blackens as soon as the reaction temperature reaches 95 ◦C, whereas its boiling point is
229 ◦C (Table 1, entry 14). Given this degradation of the medium, we have not studied this
solvent in depth, concentrating instead on sabinene and its comparison with eucalyptol,
CPME and limonene.

Table 1. Optimisation time of reaction in various solvents.

Molecules 2023, 28, x FOR PEER REVIEW 3 of 18 
 

 

product in salt form and then neutralising it in the presence of a base. We therefore con-

tinued our study without a base and formed the products in salt form. 

As the yields obtained were moderate in both conventional and green solvents, we 

concentrated on the latter to optimise reaction time, using one equivalent of each reagent. 

While citral only led to a disappointing yield of 21% in 16 h, increasing the reaction time 

was beneficial for the other green solvents, allowing us to achieve satisfactory yields of 58 

to 75% (Table 1, entries 7,9 and 11). Beyond 16 h, we did not observe any improvement in 

performance. We used sabinene as a new solvent and obtained encouraging results (Table 

1, entries 10 and 11), although not as good as with eucalyptol or CPME (entries 6 to 9). 

Citral is a compound that does not behave very well at this temperature: the medium 

blackens as soon as the reaction temperature reaches 95 °C, whereas its boiling point is 

229 °C (Table 1, entry 14). Given this degradation of the medium, we have not studied this 

solvent in depth, concentrating instead on sabinene and its comparison with eucalyptol, 

CPME and limonene. 

Table 1. Optimisation time of reaction in various solvents. 

 
Entry Solvent T (°C) Time (h) Yield (%) 

1 Acetone 100 4 60 

2 DCM 100 4 43 

3 Toluene 100 4 44 

4 Dioxane 100 4 44 

5 THF 100 4 43 

6 Eucalyptol 100 4 59 

7 Eucalyptol 100 16 75 

8 CPME 100 4 63 

9 CPME 100 16 71 

10 Sabinene 100 4 36 

11 Sabinene 100 16 58 

12 Limonene 100 4 65 

13 Limonene 100 16 70 

14 Citral 100 16 21 

2.1.2. Optimisation in Green Solvents 

We therefore continued our optimisation in the previously mentioned green solvents 

before applying this new solvent (sabinene) to the synthesis of various compounds. The 

starting 3-amino-2-chloropyridine 2a (1.5 mmol) was heated in 1 mL of solvent in the pres-

ence of phenyl isothiocyanate 3a (Table 2). The yield was improved by increasing the 

amount of pyridine reagent (Table 2, entries 5, 9 and 12). 

  

Entry Solvent T (◦C) Time (h) Yield (%)

1 Acetone 100 4 60

2 DCM 100 4 43

3 Toluene 100 4 44

4 Dioxane 100 4 44

5 THF 100 4 43

6 Eucalyptol 100 4 59

7 Eucalyptol 100 16 75

8 CPME 100 4 63

9 CPME 100 16 71

10 Sabinene 100 4 36

11 Sabinene 100 16 58

12 Limonene 100 4 65

13 Limonene 100 16 70

14 Citral 100 16 21

2.1.2. Optimisation in Green Solvents

We therefore continued our optimisation in the previously mentioned green solvents
before applying this new solvent (sabinene) to the synthesis of various compounds. The
starting 3-amino-2-chloropyridine 2a (1.5 mmol) was heated in 1 mL of solvent in the
presence of phenyl isothiocyanate 3a (Table 2). The yield was improved by increasing the
amount of pyridine reagent (Table 2, entries 5, 9 and 12).

Since sabinene is commercially available at 75% purity (Merck, natural sabinene), we
distilled it under reduced pressure with a membrane pump at 12 mbar, at 40 ◦C. However,
we found that the reactions carried out in distilled or undistilled sabinene were unaffected
and that the yields were equivalent, so we continued our study with commercially available
undistilled sabinene.

To visualise the evolution of the reaction, the different phases, using 3-amino-2-
chloropyridine 2a heated in 1 mL of sabinene in the presence of 4-bromophenyl isoth-
iocyanate, were photographed at different reaction times, starting with the control after
mixing the compounds, then during the heating period at 60 ◦C, after 5 min at 100 ◦C, after
30 min at 100 ◦C, then after 4 h at 100 ◦C, and finally after 24 h of reaction at 100 ◦C, where
complete precipitation of the product could be seen (Figure 2).
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Table 2. Optimising reaction time and reagent equivalence in green solvents.
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Reaction
Time (h) TP (◦C) Solvent Yields

1 1 1 4 100 Eucalyptol 59%

2 1 1 16 100 Eucalyptol 75%

3 1 1 4 100 CPME 63%

4 1 1 16 100 CPME 71%

5 1.1 1 16 100 CPME 79%

6 1 1 4 100 Limonene 65%

7 1 1 16 100 Limonene 70%

8 1 1 4 100 Sabinene 36%

9 1.1 1 4 100 Sabinene 38%

10 1 1.1 4 100 Sabinene 33%

11 1 1 16 100 Sabinene 68%

12 1.1 1 16 100 Sabinene 76%

13 1.1 1 16 100 Distilled
Sabinene 62%

14 1 1 16 100 Distilled
Sabinene 58%
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Figure 2. Visual evolution of a manipulation from time T = 0 at r.t. to time T = 24 h at 100 ◦C. 1: T = 0,
reaction medium. 2: T = 60 ◦C during heating period. 3: after 5 min at 100 ◦C. 4: after 30 min at
100 ◦C. 5: after 4 h at 100 ◦C. 6: after 24 h at 100 ◦C.

2.2. Optimisation of Thiazolo-Pyridine Synthesis in Sabinene
Under Microwave Irradiation and Thermal Conditions

Based on these initial results, the reaction was carried out under the conditions de-
scribed in Table 2, entry 12, in order to obtain the optimum yield. We then tried to reduce
the reaction time by using microwave activation. The temperature was also adapted. After
completion, the product was filtered and washed with ethyl acetate and diethyl ether, and
no further purification was required (Table 3).
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Table 3. Optimisation of the reaction conditions under microwaves.

Entry Reaction Time Temperature (◦C) Yield (%) Solvant

1 1 h 160 67

Sabinene
2 2 h 150 59

3 2 h 130 55

4 4 h 130 62

5 2 h 130 44 75:25 Sabinene/Ethanol

6 2 h 130 64 75:25 Sabinene/ACN

Under microwave irradiation, the best results were obtained in 1 h at 160 ◦C, close
to the boiling point of sabinene. However, as this temperature is not compatible with all
isothiocyanates, we tried to reduce the reaction temperature and found that at 130 ◦C,
the time required was 2 h. As sabinene is not a polar solvent and therefore not the most
interesting for microwave reactions, we used 25% of a co-solvent that increases this polarity
and chose ethanol or acetonitrile, which has proved very interesting as a co-solvent in
previous work under microwave irradiation [42]. It turns out that while ethanol offers no
improvement, acetonitrile halves the reaction time at 130 ◦C, while increasing the yield
very slightly (Table 3, entries 4 and 6).

We applied these optimised conditions to a number of isothiocyanates 3 starting
with 3-amino-2-chloropyridine 2a under thermal or microwave activation. The results are
summarised in Scheme 1.
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Six new structures were synthesised and obtained in high yields and purity by thermal
and microwave activation, the other four having already been obtained in a previous
study [40]. Secondly, we investigated the use of other pyridines substituted with an alkyl-
type electron donor group.

Using 3-amino-2-chloro-5-methylpyridine 2b and phenyl isothiocyanate 3a in a sealed
tube with 1 mL of sabinene required heating to 160 ◦C under thermal conditions and took
16 h to achieve a satisfactory result. After the reaction, the mixture was filtered with ethyl
acetate and the desired compound was synthesised in a 66% yield (Table 4, entry 5).

Table 4. Optimisation from 3-amino-2-chloro-5-methylpyridine 2b under thermal conditions.
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In this case, too, we obtained the product in salt form and the reaction temperature
was increased due to the donor effect of the para at the chlorine atom, which could explain
the lower reactivity of the latter given the mechanism of formation of 2-aminothiazolo[5,4-
b]pyridine (Scheme 2).
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Scheme 2. Mechanism of 2-amino thiazolo[5,4-b]pyridine formation.

This mechanism was validated by Atland and Molander [41] with the formation of
thiourea, in which the tautomeric thione or thiol displaced the chlorine atom.

Under microwave irradiation, the best results were obtained using 1.1 equiv. 3-amino-
2-chloro-5-methylpyridine 2b and 1 equiv. isothiocyanate 3, in a sealed tube with 1 mL
sabinene. The reaction was carried out at 130 ◦C for 2 h to give a yield of 64% (Table 5, entry
7). Again, at the end of the reaction, the mixture was filtered and rinsed with ethyl acetate.
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Scheme 3. 6-methyl-thiazolo-pyridine synthesis in sabinene under thermal or microwave activation.

The use of 3-amino-2-chloro-5-methylpyridine 2b gives good yields when activated by
conventional heating. The results remain lower under microwave irradiation, but enable the
desired products to be generated more quickly. We were able to overcome the deactivating
effect of methyl in this reaction by adjusting the conditions.

In parallel, we tested these conditions using phenyl isocyanate 6 to obtain the corre-
sponding oxazolopyridines 8. However, as reported by Sun and co-workers [43], in this
case and under our conditions, we also stopped at urea 7 (Scheme 4).
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Scheme 4. Synthesis of corresponding urea instead of desired oxazolopyridine.

3. Materials and Methods
3.1. General Information

All reagents were purchased from commercial suppliers and used without further
purification. Natural sabinene was purchased from Merck (KGaA, Darmstadt, Germany)
with 75% of purity. Unless otherwise specified, sabinene was used in its commercial form.
1H and 13C NMR spectra were recorded on a Bruker DPX 250 (13C, 62.9 MHz) (Bruker,
Wissembourg, France), Bruker Avance II 250.13 (13C, 63 MHz), Bruker Avance 400.13 (13C,
101 MHz) (Bruker, Wissembourg, France), or on a Bruker Avance III HD nanobay 400.13
(13C, 101 MHz) (Bruker, Wissembourg, France). Chemical shifts are expressed in parts
per million (ppm) and were calibrated on deuterated or residual non-deuterated solvent
peaks for 1H and 13C spectra. The following abbreviations are used for proton spectra
multiplicities: b: broad, s: singlet, d: doublet, t: triplet, q: quartet, p: pentuplet, m: mul-
tiplet. Microwave-assisted reactions were carried out in a Biotage Initiator microwave
synthesis instrument and temperatures were measured using an IR sensor (Biotage, Upp-
sala, Sweden). Melting points (p.m. (◦C)) were taken on samples placed in open capillary
tubes on a Thermo Fisher Melting Point Instrument Digital 9000 Series IA9200X6 and
were not corrected. High-resolution mass spectra (HRMS) were performed on a Bruker 4G
Maxis UHR-q-TOF mass spectrometer (Bruker, Wissembourg, France), with an electrospray
ionization (ESI) mode. The numbering of the atoms on the molecules has been chosen
arbitrarily and is indicated on the drawings of the molecules for a better understanding of
the NMR spectra.

3.2. General Procedure (1)

The substituted 3-amino-2-chloropyridine 2 (1.65 mmol; 1.1 equiv.) and substituted
isothiocyanate 3 (1.5 mmol; 1 equiv.) were dissolved in 1.0 mL of sabinene and stirred at
100 ◦C for 16 h. The mixture was allowed to cool to room temperature. The mixture was
then filtered and washed with ethyl acetate followed by diethyl ether. The product was
isolated without further purification.

3.3. General Procedure (2)

In a sealed tube, the substituted 3-amino-2-chloropyridine 2 (1.65 mmol ; 1.1 equiv.)
and substituted isothiocyanate 3 (1.5 mmol ; 1 equiv.) were dissolved in 1.0 mL of sabinene.
The mixture was placed under microwave irradiation for 2 h at 130 ◦C. The mixture was
allowed to cool to room temperature. Then, the reaction was filtered and washed with ethyl
acetate followed by diethyl ether. The product was isolated without further purification.

3.4. General Procedure (3)

In a sealed tube, the substituted 3-amino-2-chloropyridine 2 (1.65 mmol; 1.1 equiv.) and
substituted isothiocyanate 3 (1.5 mmol; 1 equiv.) were dissolved in the solvent consisting
of 0.75 mL sabinene and 0.25 mL acetonitrile. The mixture was placed under microwave
irradiation for 2 h at 130 ◦C. After cooling to room temperature, the reaction mixture was
filtered and washed with ethyl acetate followed by diethyl ether. The product was isolated
without further purification.



Molecules 2023, 28, 6924 9 of 16

N-phenylthiazolo[5,4-b]pyridin-2-amine hydrochloride (4a).
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Using general procedure (1) applied to phenyl isothiocyanate 3a and 3-amino-2-
chloropyridine 2a. Yield: 65%. Beige solid, m.p. 273 ◦C. (Lit. 284–285 ◦C) [41]. 1H NMR
(400 MHz, DMSO-d6) δ 7.07 (tt, J = 7.3, 1.2 Hz, 1H, 10HAr), 7.32–7.41 (m, 2H, 9HAr and
9′HAr), 7.42 (dd, J = 8.1, 5.0 Hz, 1H, 2HAr), 7.81 (dd, J = 7.5, 1.3 Hz, 2H, 8HAr and 8′HAr),
7.97 (dd, J = 8.2, 1.5 Hz, 1H, 3HAr), 8.29 (dd, J = 5.0, 1.5 Hz, 1H, 1HAr), 10.94 (bs, 1H, N-H).
13C NMR (101 MHz, DMSO-d6) δ 118.4 (8CHAr and 8′CHAr), 121.7 (2CHAr), 122.8 (10CHAr),
126.2 (3CHAr), 129.0 (9CHAr and 9′CHAr), 140.0 (7CIV), 141.8 (1CHAr), 146.5 (4CIV), 153.2
(5CIV) and 161.1 (6CIV). HRMS (m/z) (ESI+): calcd. for m/z C12H10N3S [M + H+] = 228.0590;
found = 228.0588.

N-(4-chlorophenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4b).
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Using general procedure (1) applied to 4-chlorophenyl isothiocyanate and 3-amino-2-
chloropyridine 2a. Yield: 59%. Beige solid, m.p. 258 ◦C. 1H NMR (DMSO-d6, 400 MHz):
δH = 7.39–7.46 (m, 3H, 2HAr + 8HAr + 8′HAr), 7.86 (d, J = 8.0 Hz, 2H, 9HAr and 9′HAr), 7.98
(d, J = 8.2 Hz, 1H, 3HAr), 8.31 (d, J = 5.2 Hz, 1H, 1HAr), 11.23 (bs, 1H, N-H). 13C NMR
(DMSO-d6, 101 MHz): δ 119.8 (9CHAr and 9′CHAr), 121.8 (2CHAr), 126.2 (10CIV), 126.3
(3CHAr), 128.9 (8CHAr and 8′CHAr), 139.0 (7CIV), 142.2 (1CHAr), 146.3 (4CIV), 153.4 (5CIV)
and 160.8 (6CIV). HRMS (m/z) (ESI+): calcd. for m/z C12H9ClN3S [M + H+] = 262.0200;
found = 262.0198.

N-(3,5-bis(trifluoromethyl)phenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4c).
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Using general procedure (3) applied to 3,5-Bis(trifluoromethyl)phenyl isothiocyanate
and 3-amino-2-chloropyridine 2a. Yield: 54%. Colourless solid, m.p. 231 ◦C. 1H NMR
(DMSO-d6, 400 MHz): δ 7.43 (dd, J = 8.2, 4.9 Hz, 1H, 2HAr), 7.69 (s, 1H, 10HAr), 8.03 (d,
J = 8.1 Hz, 1H, 3HAr), 8.34 (d, J = 4.9 Hz, 1H, 1HAr), 8.51 (s, 2H, 8HAr and 8′HAr), 11.89 (bs,
1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 114.8 (10CHAr), 117.6 (8CHAr and 8′CHAr),
121.8 (2CHAr), 123.3 (q, 1J = 274 Hz, 11CF3 and 11′CF3), 126.7 (3CHAr), 130.9 (q, 2J = 32 Hz,
9CIV and 9′CIV), 141.8 (7CIV), 143.6 (1CHAr), 145.3 (4CIV), 153.8 (5CIV) and 160.4 (6CIV). 19F
NMR (DMSO-d6, 376 MHz): δ 61.66. HRMS (m/z) (ESI+): calcd. for m/z C14H8F6N3S
[M + H+] = 364.0338; found = 364.0341.

N-(4-methoxyphenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4d).
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(DMSO-d6, 400 MHz): δ 7.43 (dd, J = 8.2, 4.9 Hz, 1H, 2HAr), 7.69 (s, 1H, 10HAr), 8.03 (d, J = 

8.1 Hz, 1H, 3HAr), 8.34 (d, J = 4.9 Hz, 1H, 1HAr), 8.51 (s, 2H, 8HAr and 8′HAr), 11.89 (bs, 1H, N-

H). 13C NMR (DMSO-d6, 101 MHz): δ 114.8 (10CHAr), 117.6 (8CHAr and 8′CHAr), 121.8 

(2CHAr), 123.3 (q, 1J = 274 Hz, 11CF3 and 11′CF3), 126.7 (3CHAr), 130.9 (q, 2J = 32 Hz, 9CIV and 
9′CIV), 141.8 (7CIV), 143.6 (1CHAr), 145.3 (4CIV), 153.8 (5CIV) and 160.4 (6CIV). 19F NMR (DMSO-

d6, 376 MHz):δ 61.66. HRMS (m/z) (ESI+): calcd. for m/z C14H8F6N3S [M + H+] = 364.0338; 

found = 364.0341. 

N-(4-methoxyphenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4d). 

 

Using general procedure (1) applied to 4-methoxyphenyl isothiocyanate and 3-

amino-2-chloropyridine 2a. Yield: 54%. Yellow solid, m.p. 241 °C. 1H NMR (DMSO-d6, 400 

MHz): δ 3.74 (s, 3H, 11CH3-O), 6.96 (d, J = 7.0 Hz, 2H, 8CHAr and 8′CHAr), 7.41 (dd, J = 8.1, 

5.0 Hz, 1H, 2CHAr), 7.69 (d, J = 7.0 Hz, 2H, 9CHAr and 9′CHAr), 7.93 (d, J = 8.1 Hz, 1H, 3CHAr), 

8.27 (d, J = 5.1 Hz, 1H, 1CHAr), 10.93 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 55.3 

(11CH3-O), 114.3 (8CHAr and 8′CHAr), 120.5 (9CHAr and 9′CHAr), 121.8 (2CHAr), 125.8 (3CHAr), 

Using general procedure (1) applied to 4-methoxyphenyl isothiocyanate and 3-amino-
2-chloropyridine 2a. Yield: 54%. Yellow solid, m.p. 241 ◦C. 1H NMR (DMSO-d6, 400 MHz):
δ 3.74 (s, 3H, 11CH3-O), 6.96 (d, J = 7.0 Hz, 2H, 8CHAr and 8′CHAr), 7.41 (dd, J = 8.1, 5.0 Hz,
1H, 2CHAr), 7.69 (d, J = 7.0 Hz, 2H, 9CHAr and 9′CHAr), 7.93 (d, J = 8.1 Hz, 1H, 3CHAr),
8.27 (d, J = 5.1 Hz, 1H, 1CHAr), 10.93 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ
55.3 (11CH3-O), 114.3 (8CHAr and 8′CHAr), 120.5 (9CHAr and 9′CHAr), 121.8 (2CHAr), 125.8
(3CHAr), 133.1 (7CIV), 141.1 (1CHAr), 146.7 (4CIV), 152.8 (5CIV), 155.3 (10CIV) and 161.6 (6CIV).
HRMS (m/z) (ESI+): calcd. for m/z C13H12N3OS [M + H+] = 258.0695; found = 258.0693.

N-(4-bromophenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4e).
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133.1 (7CIV), 141.1 (1CHAr), 146.7 (4CIV), 152.8 (5CIV), 155.3 (10CIV) and 161.6 (6CIV). HRMS 

(m/z) (ESI+): calcd. for m/z C13H12N3OS [M + H+] = 258.0695; found = 258.0693. 

N-(4-bromophenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4e). 

 

Using general procedure (1) applied to 4-bromophenyl isothiocyanate and 3-amino-

2-chloropyridine 2a. Yield: 66%. Beige solid, m.p. 264 °C (decomposition). 1H NMR 

(DMSO-d6, 400 MHz): δ 7.41 (dd, J = 8.1, 4.9 Hz, 1H, 2HAr), 7.55 (d, J = 8.8 Hz, 2H, 8HAr and 
8′HAr), 7.80 (d, J = 8.9 Hz, 2H, 9HAr and 9′HAr), 7.97 (dd, J = 8.2, 1.6 Hz, 1H, 3HAr), 8.30 (dd, J 

= 4.9, 1.6 Hz, 1H, 1HAr), 11.16 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 114.1 (10CIV), 

120.2 (9CHAr and 9′CHAr), 121.7 (2CHAr), 126.1 (3CHAr), 131.8 (8CHAr and 8′CHAr), 139.4 (7CIV), 

142.5 (1CHAr), 146.1 (4CIV), 153.6 (5CIV) and 160.6 (6CIV). HRMS (m/z) (ESI+): calcd. for m/z 

C12H9BrN3S [M + H+] = 305.9695; found = 305.9698. 

N-(3-bromophenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4f). 

 

Using general procedure (1) applied to 3-bromophenyl isothiocyanate and 3-amino-

2-chloropyridine 2a. Yield: 58%. Yellowish solid, m.p. 231 °C. 1H NMR (DMSO-d6, 400 

MHz): δ 7.23 (d, J = 8.1 Hz, 1H, 12HAr), 7.33 (t, J = 8.1 Hz, 1H, 11HAr), 7.41 (dd, J = 8.4, 5.2 Hz, 

1H, 2HAr), 7.71 (d, J = 8.2 Hz, 1H, 10HAr), 7.99 (d, J = 8.1 Hz, 1H, 3HAr), 8.18 (s, 1H, 8HAr), 8.29 

(d, J = 5.3 Hz, 1H, 1HAr), 11.12 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 117.2 

(10CHAr), 120.5 (8CHAr), 121.8 (2CHAr), 121.9 (9CIV), 125.2 (12CHAr), 127.0 (3CHAr), 130.9 

(11CHAr), 141.5 (1CHAr), 141.6 (7CIV), 146.5 (4CIV), 152.7 (5CIV) and 160.8 (6CIV). HRMS (m/z) 

(ESI+): calcd. for m/z C12H9BrN3S [M + H+] = 305.9695; found = 305.9689. 

N-(3-chlorophenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4g). 

 

Using general procedure (1) applied to 3-chlorophenyl isothiocyanate and 3-amino-

2-chloropyridine 2a. Yield: 63%. Beige solid, m.p. 205 °C. 1H NMR (DMSO-d6, 400 MHz): 

δ 7.10 (dd, J = 7.8, 2.4 Hz, 1H, 12HAr), 7.39 (t, J = 8.2 Hz, 1H, 11HAr), 7.44 (dd, J = 8.0, 4.9 Hz, 

1H, 2HAr), 7.67 (dd, J = 8.2, 2.6 Hz, 1H, 10HAr), 8.03 (dd, J = 8.2, 1.6 Hz, 1H, 3HAr), 8.07 (m, 

1H, 8HAr), 8.32 (dd, J = 4.9, 1.6 Hz, 1H, 1HAr), 11.32 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 

MHz): δ 116.7 (10CHAr), 117.6 (8CHAr), 121.8 (2CHAr), 122.3 (12CHAr), 126.5 (3CHAr), 130.6 

(11CHAr), 133.3 (9CIV), 141.4 (7CIV), 142.4 (1CHAr), 146.1 (4CIV), 153.4 (5CIV) and 160.7 (6CIV). 

HRMS (m/z) (ESI+): calcd. for m/z C12H9ClN3S [M + H+] = 262.0200; found = 262.0202. 

Using general procedure (1) applied to 4-bromophenyl isothiocyanate and 3-amino-
2-chloropyridine 2a. Yield: 66%. Beige solid, m.p. 264 ◦C (decomposition). 1H NMR
(DMSO-d6, 400 MHz): δ 7.41 (dd, J = 8.1, 4.9 Hz, 1H, 2HAr), 7.55 (d, J = 8.8 Hz, 2H, 8HAr
and 8′HAr), 7.80 (d, J = 8.9 Hz, 2H, 9HAr and 9′HAr), 7.97 (dd, J = 8.2, 1.6 Hz, 1H, 3HAr), 8.30
(dd, J = 4.9, 1.6 Hz, 1H, 1HAr), 11.16 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 114.1
(10CIV), 120.2 (9CHAr and 9′CHAr), 121.7 (2CHAr), 126.1 (3CHAr), 131.8 (8CHAr and 8′CHAr),
139.4 (7CIV), 142.5 (1CHAr), 146.1 (4CIV), 153.6 (5CIV) and 160.6 (6CIV). HRMS (m/z) (ESI+):
calcd. for m/z C12H9BrN3S [M + H+] = 305.9695; found = 305.9698.

N-(3-bromophenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4f).
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133.1 (7CIV), 141.1 (1CHAr), 146.7 (4CIV), 152.8 (5CIV), 155.3 (10CIV) and 161.6 (6CIV). HRMS 

(m/z) (ESI+): calcd. for m/z C13H12N3OS [M + H+] = 258.0695; found = 258.0693. 

N-(4-bromophenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4e). 

 

Using general procedure (1) applied to 4-bromophenyl isothiocyanate and 3-amino-

2-chloropyridine 2a. Yield: 66%. Beige solid, m.p. 264 °C (decomposition). 1H NMR 

(DMSO-d6, 400 MHz): δ 7.41 (dd, J = 8.1, 4.9 Hz, 1H, 2HAr), 7.55 (d, J = 8.8 Hz, 2H, 8HAr and 
8′HAr), 7.80 (d, J = 8.9 Hz, 2H, 9HAr and 9′HAr), 7.97 (dd, J = 8.2, 1.6 Hz, 1H, 3HAr), 8.30 (dd, J 

= 4.9, 1.6 Hz, 1H, 1HAr), 11.16 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 114.1 (10CIV), 

120.2 (9CHAr and 9′CHAr), 121.7 (2CHAr), 126.1 (3CHAr), 131.8 (8CHAr and 8′CHAr), 139.4 (7CIV), 

142.5 (1CHAr), 146.1 (4CIV), 153.6 (5CIV) and 160.6 (6CIV). HRMS (m/z) (ESI+): calcd. for m/z 

C12H9BrN3S [M + H+] = 305.9695; found = 305.9698. 

N-(3-bromophenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4f). 

 

Using general procedure (1) applied to 3-bromophenyl isothiocyanate and 3-amino-

2-chloropyridine 2a. Yield: 58%. Yellowish solid, m.p. 231 °C. 1H NMR (DMSO-d6, 400 

MHz): δ 7.23 (d, J = 8.1 Hz, 1H, 12HAr), 7.33 (t, J = 8.1 Hz, 1H, 11HAr), 7.41 (dd, J = 8.4, 5.2 Hz, 

1H, 2HAr), 7.71 (d, J = 8.2 Hz, 1H, 10HAr), 7.99 (d, J = 8.1 Hz, 1H, 3HAr), 8.18 (s, 1H, 8HAr), 8.29 

(d, J = 5.3 Hz, 1H, 1HAr), 11.12 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 117.2 

(10CHAr), 120.5 (8CHAr), 121.8 (2CHAr), 121.9 (9CIV), 125.2 (12CHAr), 127.0 (3CHAr), 130.9 

(11CHAr), 141.5 (1CHAr), 141.6 (7CIV), 146.5 (4CIV), 152.7 (5CIV) and 160.8 (6CIV). HRMS (m/z) 

(ESI+): calcd. for m/z C12H9BrN3S [M + H+] = 305.9695; found = 305.9689. 

N-(3-chlorophenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4g). 

 

Using general procedure (1) applied to 3-chlorophenyl isothiocyanate and 3-amino-

2-chloropyridine 2a. Yield: 63%. Beige solid, m.p. 205 °C. 1H NMR (DMSO-d6, 400 MHz): 

δ 7.10 (dd, J = 7.8, 2.4 Hz, 1H, 12HAr), 7.39 (t, J = 8.2 Hz, 1H, 11HAr), 7.44 (dd, J = 8.0, 4.9 Hz, 

1H, 2HAr), 7.67 (dd, J = 8.2, 2.6 Hz, 1H, 10HAr), 8.03 (dd, J = 8.2, 1.6 Hz, 1H, 3HAr), 8.07 (m, 

1H, 8HAr), 8.32 (dd, J = 4.9, 1.6 Hz, 1H, 1HAr), 11.32 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 

MHz): δ 116.7 (10CHAr), 117.6 (8CHAr), 121.8 (2CHAr), 122.3 (12CHAr), 126.5 (3CHAr), 130.6 

(11CHAr), 133.3 (9CIV), 141.4 (7CIV), 142.4 (1CHAr), 146.1 (4CIV), 153.4 (5CIV) and 160.7 (6CIV). 

HRMS (m/z) (ESI+): calcd. for m/z C12H9ClN3S [M + H+] = 262.0200; found = 262.0202. 

Using general procedure (1) applied to 3-bromophenyl isothiocyanate and 3-amino-2-
chloropyridine 2a. Yield: 58%. Yellowish solid, m.p. 231 ◦C. 1H NMR (DMSO-d6, 400 MHz):
δ 7.23 (d, J = 8.1 Hz, 1H, 12HAr), 7.33 (t, J = 8.1 Hz, 1H, 11HAr), 7.41 (dd, J = 8.4, 5.2 Hz,
1H, 2HAr), 7.71 (d, J = 8.2 Hz, 1H, 10HAr), 7.99 (d, J = 8.1 Hz, 1H, 3HAr), 8.18 (s, 1H, 8HAr),
8.29 (d, J = 5.3 Hz, 1H, 1HAr), 11.12 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 117.2
(10CHAr), 120.5 (8CHAr), 121.8 (2CHAr), 121.9 (9CIV), 125.2 (12CHAr), 127.0 (3CHAr), 130.9
(11CHAr), 141.5 (1CHAr), 141.6 (7CIV), 146.5 (4CIV), 152.7 (5CIV) and 160.8 (6CIV). HRMS
(m/z) (ESI+): calcd. for m/z C12H9BrN3S [M + H+] = 305.9695; found = 305.9689.

N-(3-chlorophenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4g).
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133.1 (7CIV), 141.1 (1CHAr), 146.7 (4CIV), 152.8 (5CIV), 155.3 (10CIV) and 161.6 (6CIV). HRMS 

(m/z) (ESI+): calcd. for m/z C13H12N3OS [M + H+] = 258.0695; found = 258.0693. 

N-(4-bromophenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4e). 

 

Using general procedure (1) applied to 4-bromophenyl isothiocyanate and 3-amino-

2-chloropyridine 2a. Yield: 66%. Beige solid, m.p. 264 °C (decomposition). 1H NMR 

(DMSO-d6, 400 MHz): δ 7.41 (dd, J = 8.1, 4.9 Hz, 1H, 2HAr), 7.55 (d, J = 8.8 Hz, 2H, 8HAr and 
8′HAr), 7.80 (d, J = 8.9 Hz, 2H, 9HAr and 9′HAr), 7.97 (dd, J = 8.2, 1.6 Hz, 1H, 3HAr), 8.30 (dd, J 

= 4.9, 1.6 Hz, 1H, 1HAr), 11.16 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 114.1 (10CIV), 

120.2 (9CHAr and 9′CHAr), 121.7 (2CHAr), 126.1 (3CHAr), 131.8 (8CHAr and 8′CHAr), 139.4 (7CIV), 

142.5 (1CHAr), 146.1 (4CIV), 153.6 (5CIV) and 160.6 (6CIV). HRMS (m/z) (ESI+): calcd. for m/z 

C12H9BrN3S [M + H+] = 305.9695; found = 305.9698. 

N-(3-bromophenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4f). 

 

Using general procedure (1) applied to 3-bromophenyl isothiocyanate and 3-amino-

2-chloropyridine 2a. Yield: 58%. Yellowish solid, m.p. 231 °C. 1H NMR (DMSO-d6, 400 

MHz): δ 7.23 (d, J = 8.1 Hz, 1H, 12HAr), 7.33 (t, J = 8.1 Hz, 1H, 11HAr), 7.41 (dd, J = 8.4, 5.2 Hz, 

1H, 2HAr), 7.71 (d, J = 8.2 Hz, 1H, 10HAr), 7.99 (d, J = 8.1 Hz, 1H, 3HAr), 8.18 (s, 1H, 8HAr), 8.29 

(d, J = 5.3 Hz, 1H, 1HAr), 11.12 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 117.2 

(10CHAr), 120.5 (8CHAr), 121.8 (2CHAr), 121.9 (9CIV), 125.2 (12CHAr), 127.0 (3CHAr), 130.9 

(11CHAr), 141.5 (1CHAr), 141.6 (7CIV), 146.5 (4CIV), 152.7 (5CIV) and 160.8 (6CIV). HRMS (m/z) 

(ESI+): calcd. for m/z C12H9BrN3S [M + H+] = 305.9695; found = 305.9689. 

N-(3-chlorophenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4g). 

 

Using general procedure (1) applied to 3-chlorophenyl isothiocyanate and 3-amino-

2-chloropyridine 2a. Yield: 63%. Beige solid, m.p. 205 °C. 1H NMR (DMSO-d6, 400 MHz): 

δ 7.10 (dd, J = 7.8, 2.4 Hz, 1H, 12HAr), 7.39 (t, J = 8.2 Hz, 1H, 11HAr), 7.44 (dd, J = 8.0, 4.9 Hz, 

1H, 2HAr), 7.67 (dd, J = 8.2, 2.6 Hz, 1H, 10HAr), 8.03 (dd, J = 8.2, 1.6 Hz, 1H, 3HAr), 8.07 (m, 

1H, 8HAr), 8.32 (dd, J = 4.9, 1.6 Hz, 1H, 1HAr), 11.32 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 

MHz): δ 116.7 (10CHAr), 117.6 (8CHAr), 121.8 (2CHAr), 122.3 (12CHAr), 126.5 (3CHAr), 130.6 

(11CHAr), 133.3 (9CIV), 141.4 (7CIV), 142.4 (1CHAr), 146.1 (4CIV), 153.4 (5CIV) and 160.7 (6CIV). 

HRMS (m/z) (ESI+): calcd. for m/z C12H9ClN3S [M + H+] = 262.0200; found = 262.0202. 

Using general procedure (1) applied to 3-chlorophenyl isothiocyanate and 3-amino-2-
chloropyridine 2a. Yield: 63%. Beige solid, m.p. 205 ◦C. 1H NMR (DMSO-d6, 400 MHz):
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δ 7.10 (dd, J = 7.8, 2.4 Hz, 1H, 12HAr), 7.39 (t, J = 8.2 Hz, 1H, 11HAr), 7.44 (dd, J = 8.0,
4.9 Hz, 1H, 2HAr), 7.67 (dd, J = 8.2, 2.6 Hz, 1H, 10HAr), 8.03 (dd, J = 8.2, 1.6 Hz, 1H, 3HAr),
8.07 (m, 1H, 8HAr), 8.32 (dd, J = 4.9, 1.6 Hz, 1H, 1HAr), 11.32 (bs, 1H, N-H). 13C NMR
(DMSO-d6, 101 MHz): δ 116.7 (10CHAr), 117.6 (8CHAr), 121.8 (2CHAr), 122.3 (12CHAr), 126.5
(3CHAr), 130.6 (11CHAr), 133.3 (9CIV), 141.4 (7CIV), 142.4 (1CHAr), 146.1 (4CIV), 153.4 (5CIV)
and 160.7 (6CIV). HRMS (m/z) (ESI+): calcd. for m/z C12H9ClN3S [M + H+] = 262.0200;
found = 262.0202.

N-(3,5-dichlorophenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4h).
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N-(3,5-dichlorophenyl)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4h). 

 

Using general procedure (3) applied to 3,5-dichlorophenyl isothiocyanate and 3-

amino-2-chloropyridine 2a. Yield: 66%. Beige solid, m.p. 265 °C (decomposition). 1H NMR 

(DMSO-d6, 400 MHz): δ 7.22 (t, J = 1.8 Hz, 1H, 10HAr), 7.43 (dd, J = 8.2, 4.9 Hz, 1H, 2HAr), 

7.91 (d, J = 1.8 Hz, 2H, 8HAr and 8′HAr), 8.05 (dd, J = 8.2, 1.6 Hz, 1H, 3HAr), 8.33 (dd, J = 4.9, 

1.6 Hz, 1H, 1HAr), 11.54 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 116.2 (8CHAr and 
8′CHAr), 121.5 (10CHAr), 121.8 (2CHAr), 126.6 (3CHAr), 134.3 (9CIV and 9′CIV), 142.2 (7CIV), 143.2 

(1CHAr), 145.6 (4CIV), 153.7 (5CIV) and 160.3 (6CIV). HRMS (m/z) (ESI+): calcd. for m/z 

C12H8Cl2N3S [M + H+] = 295.9811; found = 295.9810. 

N-(ethyl 4-aminobenzoate)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4i). 

 

Using general procedure (3) applied to ethyl 4-isothiocyanatobenzoate and 3-amino-

2-chloropyridine 2a. Yield: 55%. Beige solid, m.p. 230 °C. 1H NMR (DMSO-d6, 400 MHz): 

δ 1.31 (t, J = 7.1 Hz, 3H, 13CH3), 4.28 (q, J = 7.1 Hz, 2H, 12CH2), 7.45 (dd, J = 8.1, 4.9 Hz, 1H, 
2HAr), 7.96 (s, 4H, HAr), 8.04 (d, J = 8.3 Hz, 1H, 3HAr), 8.34 (d, J = 4.9 Hz, 1H, 1HAr), 11.48 (bs, 

1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 14.3 (13CH3), 60.4 (12CH2), 117.6 (2xCHAr), 121.8 

(2CH), 123.5 (10CIV), 126.8 (3CH), 130.5 (2xCHAr), 142.6 (1CH), 144.2 (7CIV), 146.1 (4CIV), 153.5 

(5CIV), 160.5 (6CIV) and 165.3 (11CIV=O). HRMS (m/z) (ESI+): calcd. for m/z C15H14N3O2S [M + 

H+] = 300.0801; found = 300.0801. 

N-methylthiazolo[5,4-b]pyridin-2-amine hydrochloride (4j). 

 

Using general procedure (1) applied to methyl isothiocyanate and 3-amino-2-chloro-

pyridine 2a. Yield: 50%. Beige solid, m.p. 239 °C (lit. 264–265) [41]. 1H NMR (DMSO-d6, 

400 MHz): δ 3.06 (s, 3H, 7CH3), 7.43 (dd, J = 8.1, 5.0 Hz, 1H, 2HAr), 7.88 (d, J = 8.1 Hz, 3HAr), 

8.27 (d, J = 5.0 Hz, 1H, 1HAr), 9.69 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 30.9 

(7CH3), 122.0 (2CHAr), 123.7 (3CHAr), 141.6 (1CHAr), 142.4 (4CIV), 150.6 (5CIV) and 165.9 (6CIV). 

HRMS (m/z) (ESI+): calcd. for m/z C7H8N3S [M + H+] = 166.0433; found = 166.0438. 

N-benzamidethiazolo[5,4-b]pyridin-2-amine hydrochloride (4k). 

Using general procedure (3) applied to 3,5-dichlorophenyl isothiocyanate and 3-amino-
2-chloropyridine 2a. Yield: 66%. Beige solid, m.p. 265 ◦C (decomposition). 1H NMR
(DMSO-d6, 400 MHz): δ 7.22 (t, J = 1.8 Hz, 1H, 10HAr), 7.43 (dd, J = 8.2, 4.9 Hz, 1H, 2HAr),
7.91 (d, J = 1.8 Hz, 2H, 8HAr and 8′HAr), 8.05 (dd, J = 8.2, 1.6 Hz, 1H, 3HAr), 8.33 (dd, J = 4.9,
1.6 Hz, 1H, 1HAr), 11.54 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 116.2 (8CHAr and
8′CHAr), 121.5 (10CHAr), 121.8 (2CHAr), 126.6 (3CHAr), 134.3 (9CIV and 9′CIV), 142.2 (7CIV),
143.2 (1CHAr), 145.6 (4CIV), 153.7 (5CIV) and 160.3 (6CIV). HRMS (m/z) (ESI+): calcd. for
m/z C12H8Cl2N3S [M + H+] = 295.9811; found = 295.9810.

N-(ethyl 4-aminobenzoate)thiazolo[5,4-b]pyridin-2-amine hydrochloride (4i).
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δ 1.31 (t, J = 7.1 Hz, 3H, 13CH3), 4.28 (q, J = 7.1 Hz, 2H, 12CH2), 7.45 (dd, J = 8.1, 4.9 Hz, 1H, 
2HAr), 7.96 (s, 4H, HAr), 8.04 (d, J = 8.3 Hz, 1H, 3HAr), 8.34 (d, J = 4.9 Hz, 1H, 1HAr), 11.48 (bs, 
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(5CIV), 160.5 (6CIV) and 165.3 (11CIV=O). HRMS (m/z) (ESI+): calcd. for m/z C15H14N3O2S [M + 

H+] = 300.0801; found = 300.0801. 

N-methylthiazolo[5,4-b]pyridin-2-amine hydrochloride (4j). 

 

Using general procedure (1) applied to methyl isothiocyanate and 3-amino-2-chloro-

pyridine 2a. Yield: 50%. Beige solid, m.p. 239 °C (lit. 264–265) [41]. 1H NMR (DMSO-d6, 

400 MHz): δ 3.06 (s, 3H, 7CH3), 7.43 (dd, J = 8.1, 5.0 Hz, 1H, 2HAr), 7.88 (d, J = 8.1 Hz, 3HAr), 

8.27 (d, J = 5.0 Hz, 1H, 1HAr), 9.69 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 30.9 

(7CH3), 122.0 (2CHAr), 123.7 (3CHAr), 141.6 (1CHAr), 142.4 (4CIV), 150.6 (5CIV) and 165.9 (6CIV). 

HRMS (m/z) (ESI+): calcd. for m/z C7H8N3S [M + H+] = 166.0433; found = 166.0438. 

N-benzamidethiazolo[5,4-b]pyridin-2-amine hydrochloride (4k). 

Using general procedure (3) applied to ethyl 4-isothiocyanatobenzoate and 3-amino-2-
chloropyridine 2a. Yield: 55%. Beige solid, m.p. 230 ◦C. 1H NMR (DMSO-d6, 400 MHz):
δ 1.31 (t, J = 7.1 Hz, 3H, 13CH3), 4.28 (q, J = 7.1 Hz, 2H, 12CH2), 7.45 (dd, J = 8.1, 4.9 Hz,
1H, 2HAr), 7.96 (s, 4H, HAr), 8.04 (d, J = 8.3 Hz, 1H, 3HAr), 8.34 (d, J = 4.9 Hz, 1H, 1HAr),
11.48 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 14.3 (13CH3), 60.4 (12CH2), 117.6
(2xCHAr), 121.8 (2CH), 123.5 (10CIV), 126.8 (3CH), 130.5 (2xCHAr), 142.6 (1CH), 144.2 (7CIV),
146.1 (4CIV), 153.5 (5CIV), 160.5 (6CIV) and 165.3 (11CIV=O). HRMS (m/z) (ESI+): calcd. for
m/z C15H14N3O2S [M + H+] = 300.0801; found = 300.0801.

N-methylthiazolo[5,4-b]pyridin-2-amine hydrochloride (4j).
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Using general procedure (1) applied to benzoyl isothiocyanate and 3-amino-2-chlo-

ropyridine 2a. Yield: 46%. Beige solid, m.p. 183 °C. 1H NMR (DMSO-d6, 400 MHz): δ 7.54 

(dd, J = 8.2, 4.6 Hz, 1H, 2HAr), 7.58 (t, J = 7.6 Hz, 2H, 10HAr and 10′HAr), 7.67–7.71 (m, 1H, HAr), 

8.11–8.20 (m, 3H, 9HAr + 9′HAr + 3HAr), 8.52 (dd, J = 4.8, 1.4 Hz, 1.0H, 1HAr), 12.95 (bs, 1H, N-

H). 13C NMR (DMSO-d6, 101 MHz): δ 121.8 (2CHAr), 127.6 (3CHAr), 128.4 (9CHAr and 9′CHAr), 

128.7 (10CHAr and 10′CHAr), 131.6 (8CIV), 133.1 (11CHAr), 141.8 (4CIV), 145.4 (1CHAr), 154.7 (5CIV), 

158.4 (6CIV) and 166.3 (7CIV=O). HRMS (m/z) (ESI+): calcd. for m/z C13H10N3OS [M + H+] = 

256.0539; found = 256.0541. 

N-phenylthiazolo[5,4-b]-6-methylpyridin-2-amine hydrochloride (5a). 

 

Using general procedure (2) applied to phenyl isothiocyanate 3a and 3-amino-2-

chloro-5-methylpyridine 2b. Yield: 64%. Beige solid, m.p. 228 °C (decomposition). 1H 

NMR (DMSO-d6, 400 MHz): δ 2.38 (s, 3H, 2′CH3), 7.06 (t, J = 7.4 Hz, 1H, 10HAr), 7.38 (t, J = 

7.6 Hz, 2H, 9HAr and 9′HAr), 7.80 (d, J = 8.3 Hz, 2H, 8HAr and 8′HAr), 7.88 (s, 1H, 3HAr), 8.20 (s, 

1H, 1HAr), 10.93 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 17.8 (2′CH3), 118.5 (8CHAr 

and 8′CHAr), 122.9 (10CHAr), 127.4 (3CHAr), 129.1 (9CHAr and 9′CHAr), 131.7 (2CIV), 140.0 (7CIV), 

141.2 (1CHAr), 146.9 (4CIV), 149.4 (5CIV) and 161.5 (6CIV). HRMS (m/z) (ESI+): calcd. for m/z 

C13H12N3S [M + H+] = 242.0746; found = 242.0749. 

N-(3-bromophenyl)thiazolo[5,4-b]-6-methylpyridin-2-amine hydrochloride (5b). 

 

Using general procedure (1) applied to 3-bromophenyl isothiocyanate and 3-amino-

2-chloro-5-methylpyridine 2b. Yield: 62%. Beige solid, m.p. 247–248 °C. 1H NMR (DMSO-

d6, 400 MHz): δ 2.38 (s, 3H, 2′CH3), 7.23 (d, J = 7.8 Hz, 1H, 12HAr), 7.32 (t, J = 7.9 Hz, 1H, 
11HAr), 7.69 (d, J = 8.1 Hz, 1H, 10HAr), 7.91 (s, 1H, 3HAr), 8.20 (s, 2H, 1HAr and 8HAr), 11.26 (bs, 

1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 17.8 (2′CH3), 117.0 (10CHAr), 120.4 (8CHAr), 121.8 

(9CIV), 125.1 (12CHAr), 127.3 (3CHAr), 130.9 (11CHAr), 131.6 (2CIV), 141.5 (7CIV), 142.5 (1CHAr), 

146.2 (4CIV), 150.1 (5CIV) and 160.9 (6CIV). HRMS (m/z) (ESI+): calcd. for m/z C13H11BrN3S [M 

+ H+] = 319.9852; found = 319.9847. 

N-(3,5-bis(trifluoromethyl)phenyl)thiazolo[5,4-b]-6-methylpyridin-2-amine hydro-

chloride (5c). 

Using general procedure (1) applied to benzoyl isothiocyanate and 3-amino-2-chlorop-
yridine 2a. Yield: 46%. Beige solid, m.p. 183 ◦C. 1H NMR (DMSO-d6, 400 MHz): δ 7.54 (dd,
J = 8.2, 4.6 Hz, 1H, 2HAr), 7.58 (t, J = 7.6 Hz, 2H, 10HAr and 10′HAr), 7.67–7.71 (m, 1H, HAr),
8.11–8.20 (m, 3H, 9HAr + 9′HAr + 3HAr), 8.52 (dd, J = 4.8, 1.4 Hz, 1.0H, 1HAr), 12.95 (bs,
1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 121.8 (2CHAr), 127.6 (3CHAr), 128.4 (9CHAr
and 9′CHAr), 128.7 (10CHAr and 10′CHAr), 131.6 (8CIV), 133.1 (11CHAr), 141.8 (4CIV), 145.4
(1CHAr), 154.7 (5CIV), 158.4 (6CIV) and 166.3 (7CIV=O). HRMS (m/z) (ESI+): calcd. for m/z
C13H10N3OS [M + H+] = 256.0539; found = 256.0541.

N-phenylthiazolo[5,4-b]-6-methylpyridin-2-amine hydrochloride (5a).
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chloride (5c). 

Using general procedure (2) applied to phenyl isothiocyanate 3a and 3-amino-2-chloro-
5-methylpyridine 2b. Yield: 64%. Beige solid, m.p. 228 ◦C (decomposition). 1H NMR
(DMSO-d6, 400 MHz): δ 2.38 (s, 3H, 2′CH3), 7.06 (t, J = 7.4 Hz, 1H, 10HAr), 7.38 (t, J = 7.6 Hz,
2H, 9HAr and 9′HAr), 7.80 (d, J = 8.3 Hz, 2H, 8HAr and 8′HAr), 7.88 (s, 1H, 3HAr), 8.20 (s, 1H,
1HAr), 10.93 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 17.8 (2′CH3), 118.5 (8CHAr
and 8′CHAr), 122.9 (10CHAr), 127.4 (3CHAr), 129.1 (9CHAr and 9′CHAr), 131.7 (2CIV), 140.0
(7CIV), 141.2 (1CHAr), 146.9 (4CIV), 149.4 (5CIV) and 161.5 (6CIV). HRMS (m/z) (ESI+): calcd.
for m/z C13H12N3S [M + H+] = 242.0746; found = 242.0749.

N-(3-bromophenyl)thiazolo[5,4-b]-6-methylpyridin-2-amine hydrochloride (5b).
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d6, 400 MHz): δ 2.38 (s, 3H, 2′CH3), 7.23 (d, J = 7.8 Hz, 1H, 12HAr), 7.32 (t, J = 7.9 Hz, 1H, 
11HAr), 7.69 (d, J = 8.1 Hz, 1H, 10HAr), 7.91 (s, 1H, 3HAr), 8.20 (s, 2H, 1HAr and 8HAr), 11.26 (bs, 

1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 17.8 (2′CH3), 117.0 (10CHAr), 120.4 (8CHAr), 121.8 
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+ H+] = 319.9852; found = 319.9847. 

N-(3,5-bis(trifluoromethyl)phenyl)thiazolo[5,4-b]-6-methylpyridin-2-amine hydro-

chloride (5c). 

Using general procedure (1) applied to 3-bromophenyl isothiocyanate and 3-amino-2-
chloro-5-methylpyridine 2b. Yield: 62%. Beige solid, m.p. 247–248 ◦C. 1H NMR (DMSO-d6,
400 MHz): δ 2.38 (s, 3H, 2′CH3), 7.23 (d, J = 7.8 Hz, 1H, 12HAr), 7.32 (t, J = 7.9 Hz, 1H, 11HAr),
7.69 (d, J = 8.1 Hz, 1H, 10HAr), 7.91 (s, 1H, 3HAr), 8.20 (s, 2H, 1HAr and 8HAr), 11.26 (bs,
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N-(3,5-bis(trifluoromethyl)phenyl)thiazolo[5,4-b]-6-methylpyridin-2-amine hydrochlo-
ride (5c).
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= 9.0 Hz, 2H, 8HAr and 8′HAr), 7.67 (d, J = 9.0 Hz, 2H, 9HAr and 9′HAr), 7.84 (s, 1H, 3HAr), 8.17 

(s, 1H, 1HAr), 10.80 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 17.8 (2′CH3), 55.3 

(11CH3-O), 114.3 (8CHAr and 8′CHAr), 120.6 (9CHAr and 9′CHAr), 127.0 (3CHAr), 131.8 (2CIV), 

133.1 (7CIV), 140.5 (1CHAr), 147.0 (4CIV), 149.1 (5CIV), 155.4 (10CIV) and 162.1 (6CIV). HRMS 

(m/z) (ESI+): calcd. for m/z C14H14N3OS [M + H+] = 272.0852; found = 272.0856. 

N-(3,5-dichlorophenyl)thiazolo[5,4-b]-6-methylpyridin-2-amine hydrochloride (5e). 

 

Using general procedure (2) applied to 3,5-dichlorophenyl isothiocyanate and 3-

amino-2-chloro-5-methylpyridine 2b. Yield: 59%. Pinkish solid, m.p. 251 °C. 1H NMR 

(DMSO-d6, 250 MHz): δ 2.37 (s, 3H, 2′CH3), 7.21 (t, J = 1.9 Hz, 1H, 10HAr), 7.89 (d, J = 1.9 Hz, 

2H, 8HAr and 8′HAr), 7.93 (d, J = 1.0 Hz, 1H, 3HAr), 8.20 (d, J = 1.2 Hz, 1H, 1HAr), 11.51 (bs, 1H, 
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N-(3-chlorophenyl)thiazolo[5,4-b]-6-methylpyridin-2-amine hydrochloride (5f). 
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Using general procedure (2) applied to 3,5-Bis(trifluoromethyl)phenyl isothiocyanate
and 3-amino-2-chloro-5-methylpyridine 2b. Yield: 48%. Beige solid, m.p. 242 ◦C (decom-
position). 1H NMR (DMSO-d6, 400 MHz): δ 2.37 (s, 3H, 2′CH3), 7.67 (s, 1H, 11HAr), 7.89
(s, 1H, 3HAr), 8.19 (s, 1H, 1HAr), 8.49 (s, 2H, 8CHAr and 8′CHAr), 11.83 (bs, 1H, N-H). 13C
NMR (DMSO-d6, 101 MHz): δ 17.7 (2′CH3), 114.8 (11CHAr), 117.6 (8CHAr and 8′CHAr),
123.3 (q, 1J = 274 Hz, 10CF3 and 10′CF3), 127.3 (3CHAr), 130.9 (q, 2J = 33 Hz, 9CIV and 9′CIV),
131.6 (2CIV), 141.8 (7CIV), 143.9 (1CHAr), 145.3 (4CIV), 150.6 (5CIV) and 160.6 (6CIV). 19F
NMR (DMSO-d6, 376 MHz):δ -61.68. HRMS (m/z) (ESI+): calcd. for m/z C15H10F6N3S
[M + H+] = 378.0494; found = 378.0491.

N-(4-methoxyphenyl)thiazolo[5,4-b]-6-methylpyridin-2-amine hydrochloride (5d).
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Using general procedure (2) applied to 3,5-dichlorophenyl isothiocyanate and 3-

amino-2-chloro-5-methylpyridine 2b. Yield: 59%. Pinkish solid, m.p. 251 °C. 1H NMR 

(DMSO-d6, 250 MHz): δ 2.37 (s, 3H, 2′CH3), 7.21 (t, J = 1.9 Hz, 1H, 10HAr), 7.89 (d, J = 1.9 Hz, 

2H, 8HAr and 8′HAr), 7.93 (d, J = 1.0 Hz, 1H, 3HAr), 8.20 (d, J = 1.2 Hz, 1H, 1HAr), 11.51 (bs, 1H, 

N-H). 13C NMR (DMSO-d6, 101 MHz): δ 17.7 (2′CH3), 116.1 (8CHAr and 8′CHAr), 121.4 

(10CHAr), 127.4 (3CHAr), 131.6 (2CIV), 134.2 (9CIV and 9′CIV), 142.2 (7CIV), 143.2 (1CHAr), 145.7 
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= 309.9967; found = 309.9973. 

N-(3-chlorophenyl)thiazolo[5,4-b]-6-methylpyridin-2-amine hydrochloride (5f). 

Using general procedure (2) applied to 4-methoxyphenyl isothiocyanate and 3-amino-
2-chloro-5-methylpyridine 2b. Yield: 42%. Yellow solid, m.p. 212 ◦C (decomposition). 1H
NMR (DMSO-d6, 400 MHz): δ 2.37 (s, 3H, 2′CH3), 3.75 (s, 3H, 11CH3-O), 6.96 (d, J = 9.0 Hz,
2H, 8HAr and 8′HAr), 7.67 (d, J = 9.0 Hz, 2H, 9HAr and 9′HAr), 7.84 (s, 1H, 3HAr), 8.17 (s, 1H,
1HAr), 10.80 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 17.8 (2′CH3), 55.3 (11CH3-O),
114.3 (8CHAr and 8′CHAr), 120.6 (9CHAr and 9′CHAr), 127.0 (3CHAr), 131.8 (2CIV), 133.1
(7CIV), 140.5 (1CHAr), 147.0 (4CIV), 149.1 (5CIV), 155.4 (10CIV) and 162.1 (6CIV). HRMS (m/z)
(ESI+): calcd. for m/z C14H14N3OS [M + H+] = 272.0852; found = 272.0856.

N-(3,5-dichlorophenyl)thiazolo[5,4-b]-6-methylpyridin-2-amine hydrochloride (5e).
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250 MHz): δ 2.37 (s, 3H, 2′CH3), 7.21 (t, J = 1.9 Hz, 1H, 10HAr), 7.89 (d, J = 1.9 Hz, 2H,
8HAr and 8′HAr), 7.93 (d, J = 1.0 Hz, 1H, 3HAr), 8.20 (d, J = 1.2 Hz, 1H, 1HAr), 11.51 (bs,
1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 17.7 (2′CH3), 116.1 (8CHAr and 8′CHAr),
121.4 (10CHAr), 127.4 (3CHAr), 131.6 (2CIV), 134.2 (9CIV and 9′CIV), 142.2 (7CIV), 143.2
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C13H10Cl2N3S [M + H+] = 309.9967; found = 309.9973.

N-(3-chlorophenyl)thiazolo[5,4-b]-6-methylpyridin-2-amine hydrochloride (5f).

Molecules 2023, 28, x FOR PEER REVIEW 15 of 18 
 

 

 

Using general procedure (1) applied to 3-chlorophenyl isothiocyanate and 3-amino-

2-chloro-5-methylpyridine 2b. Yield: 67%. Colourless solid, m.p. 214 °C. 1H NMR (DMSO-
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(12CHAr), 117.6 (8CHAr), 122.2 (10CHAr), 127.6 (3CHAr), 130.6 (11CHAr), 131.7 (2CIV), 133.3 (9CIV), 

141.4 (7CIV), 141.9 (1CHAr), 146.4 (4CIV), 149.7 (5CIV) and 161.0 (6CIV). HRMS (m/z) (ESI+): 

calcd. for m/z C13H11ClN3S [M + H+] = 276.0357; found = 267.0360. 

N-benzamidethiazolo[5,4-b]-6-methyl-2-amine hydrochloride (5g). 

 

Using general procedure (1) applied to benzoyl isothiocyanate and 3-amino-2-chloro-

5-methylpyridine 2b. Yield: 46%. Colourless solid, m.p. 222 °C. 1H NMR (DMSO-d6, 400 

MHz): δ 2.43 (s, 3H, 2′CH3), 7.57 (t, J = 7.7 Hz, 2H, 10HAr and 10′HAr), 7.67 (t, J = 7.3 Hz, 1H, 
11HAr), 7.97 (s, 1H, 3HAr), 8.13 (d, J = 7.8 Hz, 2H, 9HAr and 9′HAr), 8.35 (s, 1H, 1HAr), 12.91 (bs, 

1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 17.9 (2′CH3), 127.7 (3CHAr), 128.4 (9CHAr and 
9′CHAr), 128.7 (10CHAr and 10′CHAr), 131.5 (2CIV), 131.7 (8CIV), 133.1 (11CHAr), 141.7 (4CIV), 146.2 

(1CHAr), 151.8 (5CIV), 158.6 (6CIV) and 166.2 (7CIV=O). HRMS (m/z) (ESI+): calcd. for m/z 

C14H12N3OS [M + H+] = 270.0696; found = 270.0698. 

N-(ethyl 4-aminobenzoate)thiazolo[5,4-b]-6-methylpyridin-2-amine hydrochloride 

(5h). 

 

Using general procedure (1) applied to ethyl 4-isothiocyanatobenzoate and 3-amino-

2-chloro-5-methylpyridine 2b. Yield: 64%. Beige solid, m.p. 210 °C (decomposition). 1H 

NMR (DMSO-d6, 400 MHz): δ 1.31 (t, J = 7.0 Hz, 3H, 13CH3), 2.38 (s, 3H, 2′CH3), 4.28 (q, J = 

7.0 Hz, 2H, 12CH2), 7.89 (s, 1H, 3HAr), 7.89–7.98 (m, 4H, HAr), 8.20 (s, 1H, 1HAr), 11.41 (bs, 

1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 14.2 (13CH3), 17.8 (2′CH3), 60.4 (12CH2), 117.5 

(2 x CHAr), 123.4 (10CIV), 127.4 (3CHAr), 130.5 (2 x CHAr), 131.6 (2CIV), 142.7 (1CH), 144.2 (7CIV), 

146.1 (4CIV), 150.2 (5CIV), 160.8 (6CIV) and 165.3 (11CIV). HRMS (m/z) (ESI+): calcd. for m/z 

C16H16N3O2S [M + H+] = 314.0958; found = 314.0956. 

N-methylthiazolo[5,4-b]-6-methylpyridin-2-amine hydrochloride (5i). 

Using general procedure (1) applied to 3-chlorophenyl isothiocyanate and 3-amino-2-
chloro-5-methylpyridine 2b. Yield: 67%. Colourless solid, m.p. 214 ◦C. 1H NMR (DMSO-d6,
400 MHz): δ 2.38 (s, 3H, 2′CH3), 7.09 (dd, J = 8.0, 2.3 Hz, 1H, 10HAr), 7.38 (t, J = 8.0 Hz,
1H, 11HAr), 7.64 (dd, J = 8.2, 2.3 Hz, 1H, 12HAr), 7.93 (s, 1H, 3HAr), 8.08 (s, 1H, 8HAr), 8.21
(s, 1H, 1HAr), 11.34 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 17.8 (2′CH3), 116.7
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(12CHAr), 117.6 (8CHAr), 122.2 (10CHAr), 127.6 (3CHAr), 130.6 (11CHAr), 131.7 (2CIV), 133.3
(9CIV), 141.4 (7CIV), 141.9 (1CHAr), 146.4 (4CIV), 149.7 (5CIV) and 161.0 (6CIV). HRMS (m/z)
(ESI+): calcd. for m/z C13H11ClN3S [M + H+] = 276.0357; found = 267.0360.

N-benzamidethiazolo[5,4-b]-6-methyl-2-amine hydrochloride (5g).
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400 MHz): δ 2.43 (s, 3H, 2′CH3), 7.57 (t, J = 7.7 Hz, 2H, 10HAr and 10′HAr), 7.67 (t, J = 7.3 Hz,
1H, 11HAr), 7.97 (s, 1H, 3HAr), 8.13 (d, J = 7.8 Hz, 2H, 9HAr and 9′HAr), 8.35 (s, 1H, 1HAr),
12.91 (bs, 1H, N-H). 13C NMR (DMSO-d6, 101 MHz): δ 17.9 (2′CH3), 127.7 (3CHAr), 128.4
(9CHAr and 9′CHAr), 128.7 (10CHAr and 10′CHAr), 131.5 (2CIV), 131.7 (8CIV), 133.1 (11CHAr),
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2-chloro-5-methylpyridine 2b. Yield: 64%. Beige solid, m.p. 210 ◦C (decomposition). 1H
NMR (DMSO-d6, 400 MHz): δ 1.31 (t, J = 7.0 Hz, 3H, 13CH3), 2.38 (s, 3H, 2′CH3), 4.28 (q,
J = 7.0 Hz, 2H, 12CH2), 7.89 (s, 1H, 3HAr), 7.89–7.98 (m, 4H, HAr), 8.20 (s, 1H, 1HAr), 11.41
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144.2 (7CIV), 146.1 (4CIV), 150.2 (5CIV), 160.8 (6CIV) and 165.3 (11CIV). HRMS (m/z) (ESI+):
calcd. for m/z C16H16N3O2S [M + H+] = 314.0958; found = 314.0956.
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