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Abstract: Skeletons play an important role in the human body, and can form gaps of varying sizes
once damaged. Bone defect healing involves a series of complex physiological processes and requires
ideal bone defect implants to accelerate bone defect healing. Traditional grafts are often accompanied
by issues such as insufficient donors and disease transmission, while some bone defect implants are
made of natural and synthetic polymers, which have characteristics such as good porosity, mechanical
properties, high drug loading efficiency, biocompatibility and biodegradability. However, their an-
tibacterial, antioxidant, anti-inflammatory and bone repair promoting abilities are limited. Flavonoids
are natural compounds with various biological activities, such as antitumor, anti-inflammatory and
analgesic. Their good anti-inflammatory, antibacterial and antioxidant activities make them beneficial
for the treatment of bone defects. Several researchers have designed different types of flavonoid-
loaded polymer implants for bone defects. These implants have good biocompatibility, and they
can effectively promote the expression of angiogenesis factors such as VEGF and CD31, promote
angiogenesis, regulate signaling pathways such as Wnt, p38, AKT, Erk and increase the levels of
osteogenesis-related factors such as Runx-2, OCN, OPN significantly to accelerate the process of bone
defect healing. This article reviews the effectiveness and mechanism of biomaterials loaded with
flavonoids in the treatment of bone defects. Flavonoid-loaded biomaterials can effectively promote
bone defect repair, but we still need to improve the overall performance of flavonoid-loaded bone
repair biomaterials to improve the bioavailability of flavonoids and provide more possibilities for
bone defect repair.

Keywords: bone defect; biomaterials; flavonoids

1. Introduction

Bone is a complex connective tissue with various physiological functions [1–3]. Trauma
and tumor-related surgery can lead to bone loss and form bone defects [4]. Small bone
defects have the possibility of self-repair, but once they exceed the critical defect area,
additional intervention is needed to guide and accelerate the healing process [5]. Bone
defect healing is a dynamic and complex biological process, and an ideal bone defect
implant should conform to the following standards: (1) good biocompatibility; (2) excellent
biodegradability; (3) characteristics of bone induction and bone conduction; (4) suitable
porosity; and (5) excellent mechanical performance [6–8].

Bone transplantation (such as autologous and allogeneic grafts) is the most commonly
used and useful method for clinical treatment of bone defects, but it has certain drawbacks,
such as insufficient supply of donor tissue and the need for secondary surgery, which
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increases the risks of infection and surgical costs [9,10]. Therefore, many researchers have
designed various biomaterials for bone defect regeneration to overcome these problems,
such as metals, ceramics, natural and synthetic polymers, in recent years [11–14]. Com-
pared to natural polymers, synthetic polymers have poor biocompatibility, which may
lead to aseptic inflammatory reactions in bone defect sites [15]. Natural polymers have
good biological adhesion, biocompatibility and biodegradability [13], but their mechan-
ical properties are limited and they need to be used together with synthetic polymers to
achieve appropriate mechanical strength. Some natural polymers used to prepare bone
defect implants include hyaluronic acid, sodium alginate, cellulose, and chitosan. Some
synthetic polymers used to prepare bone defect implants include polycaprolactone (PCL)
and poly(lactide-co-glycolide) (PLGA) [16–19].

The excellent properties of bone defect implants designed with the aforementioned
polymers can be further enhanced by adding natural bioactive agents. Flavonoids are a
class of natural polyphenolic multifunctional plant derivatives [20]. Several studies have
reported that flavonoids exhibit a range of biological activities, such as antioxidant, anti-
inflammatory, antibacterial, anticancer, antiviral and antiapoptotic abilities [21–26]. Many
flavonoids can promote bone formation and have antiosteoporosis effects by stimulating
osteogenic differentiation of mesenchymal stem cells (MSCs) [27–29]. In addition, European
nutrition studies have shown that daily intake of flavonoids contributes to good bone
health [30]. Due to their biocompatibility, they have attracted widespread attention from
many biomedical researchers and have been used to improve bone health. This article
reviews the role and mechanism of flavonoid-loaded biomaterials in bone defect repair.

2. Bone Defects and Healing Process

Bone is the main supporting tissue and plays different roles in the human body, in-
cluding protecting organs and the nervous system [31]. When suffering from high-energy
trauma, bone cancer, osteoporosis, osteomalacia, osteomyelitis, ischemic necrosis and pri-
mary tumor resection caused by bone diseases such as atrophic bone non-union, the loss
of bone tissue, bone defects will appear in the human body [32]. The repair rate of bone
defects depends on different factors (e.g., age, nutrition, infection, the size of the bone de-
fect) [33]. Generally speaking, small bone defects can self-repair and regenerate [34]. On the
contrary, when the defect exceeds the critical level, due to issues such as insufficient blood
supply and local infection, bone regeneration does not spontaneously occur easily, which
can seriously affect the patient’s quality of life. Therefore, additional clinical treatment is
needed to promote bone defect healing [6,35].

Bone regeneration relies on an ideal microenvironment. The microenvironment of
bone regeneration is very complex. On the one hand, it is the cross action of various
cells, including mesenchymal stem cells, immune cells, endothelial cells, osteoblasts and
osteoclast, as well as a variety of bioactive factors, which are involved in osteogenesis,
angiogenesis and inflammatory regulation [36]. On the other hand, it spans various stages
of bone healing (Figure 1), including hematoma, inflammation, fibrous callus formation,
intramembrane ossification, endochondral ossification and bone remodeling accompanied
by an orderly cascade of anabolism and catabolism [37].
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Specifically, at first, blood clots and immune cell migration in the damaged area mi-
grate to remove necrotic components [38]. Next, endothelial cells and fibroblasts gradually
infiltrate to form new capillaries, fibrous matrix and granulation tissue [39]. Subsequently,
fibroblasts and mesenchymal stem cells proliferate and differentiate into fibrous tissue,
which forms soft callus on granulation tissue [40]. Then, bone forms, including intramem-
brane ossification (IMO) and endochondral ossification (EO). IMO means that mesenchymal
stem cells migrate and proliferate to form coagulation, differentiate into osteoblasts and
secrete collagen, and blood vessels grow inward to form cortical bone and cancellous
bone [41,42], and EO means that mesenchymal stem cells differentiate into chondrocytes
and secrete protein matrix, then blood vessels grow inward and osteoblasts invade and
replace chondrocytes to form bone tissue [43]. In the final stage, new bone tissue is con-
tinuously absorbed and reshaped, forms an orderly bone structure and restores normal
function, characterized by replacing mineralized bone and high levels of osteoblast activity,
while cartilage tissue develops [44].

3. Classification of Bone Defect Repair Matrices

Bone transplantation is currently the most commonly used method for treating bone de-
fects [45,46]. However, its shortcomings cannot be ignored, for example, the limited amount
of donor bone in autologous bone transplantation, and it can easily lead to hematoma, deep
infection, inflammation, and uncontrolled absorption rate at the donor site [47,48]. Allo-
geneic bone grafts have limitations such as immune rejection, disease or virus transmission
and require methods such as freeze-drying, radiation and acid washing to avoid immune
rejection and eliminate any infections [49,50]. Allogeneic bone transplantation, due to
different types of antigens, requires manual handling to avoid possible immune rejection
reactions after transplantation [51], and carries the risk of disease, virus transmission and
infection [52].

In order to solve the above problems, biomaterials have emerged. According to
differences in composition, biomaterials are usually divided into metals, ceramics, natural
and synthetic polymers [53]. Compared to natural polymers, synthetic polymers have
poor biocompatibility, which may lead to aseptic inflammatory reactions in bone defect
sites [15]. Therefore, natural polymers stand out because of their good biocompatibility
and biodegradability such as chitosan [54], cellulose [55], hyaluronic acid [56], alginate [56],
gelatin [57], etc., which are usually prepared into hydrogels, films and nanomaterials [58,59].
However, their mechanical properties are limited, and they need to be used together with
synthetic polymers to achieve appropriate mechanical strength, while their biological
activities are still limited.

Bioactive scaffolds are used to transport bioactive molecules such as antibiotics, growth
factors and drugs [60,61]. They can continuously supply the required drug concentration at
the bone defect site to achieve better treatment effects without obvious secondary adverse
reactions. In addition, using biomaterials as drug carriers can protect bioactive molecules
from degradation and extend drug circulation and retention time [62–64]. Examples of
bioactive scaffolds include sponges [65], hydrogels [66], films [67], nanofibers [68], and
nanoparticles [69]. These scaffolds are usually designed from natural or synthetic polymers
such as cellulose, collagen, sodium alginate, hyaluronic acid and so on [70–73].

4. The Biological Activity of Flavonoids

Flavonoids are the largest component of phenolic compounds and are abundant in
fruit, vegetables, flowers, stems, roots, leaves, bark, grains and certain beverages [74–76].
They are divided into different subclasses based on the substitution mode of ring C, the
oxidation state of heterocycles and the position of ring B, mainly flavones, flavonols,
isoflavones, flavanones, flavanes, anthocyanin, chalcones and isoflavanes [20,77,78]. Their
basic chemical structures and representative compounds are shown in Table 1. Flavonoids
have various biological activities, such as antioxidant, antitumor, antithrombotic, anti-
inflammatory, antiallergic, antiviral, antimicrobial and immune regulation [79–85]. In
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addition, flavonoids are famous for their roles in bone synthesis and metabolism and
have the ability to effectively regulate bone cell function [86]. According to reports [87],
flavonoids can stimulate the expression of osteogenic transcription factors and markers
through various signaling pathways, such as Wnt and MAPK pathways, to promote the
differentiation of MC3T3-E1 osteoblasts and MSCs into osteoblasts.

Table 1. Structure and representative compounds of flavonoid subclasses.

Class Core Chemical Structure Typical Compounds

Flavones
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The expected bone healing effect of flavonoids may be due to their anti-inflammatory,
antioxidant and antibacterial activities [88]. First, it is reported that flavonoids are signif-
icant inhibitors of inflammatory mediators (COX or LOX), which can inhibit neutrophil
degranulation and prevent bone absorption through their anti-inflammatory properties on
osteoclast precursor somatic cell cells [89]. Secondly, flavonoids can participate in the acti-
vation of enzymes through various signaling pathways and gene expression to eliminate
reactive oxygen species (ROS) or free radicals [74]. ROS have negative effects on osteoblasts
in a variety of ways, such as osteoblast apoptosis and activation of osteoclast differentia-
tion by upregulating receptor activator of nuclear factor-κB ligand (RANKL) [90,91]. The
antioxidant activity of flavonoids is roughly related to their hydrogen supply capacity [92].
In addition, antibacterial performance is another key role of flavonoids, which is crucial for
their application in bone defect healing [93].
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5. Application of Flavonoid-Loaded Biomaterials in Bone Defect Repair

Bone defect healing usually requires a longer repair time. The biomaterial loaded with
flavonoids not only has the synergistic effect of biomaterials and flavonoids but also can
slowly release flavonoids at the bone defect site to prolong drug efficacy. However, there
have been few reports on improving the bioavailability of flavonoids through nanoscale
composites. The application of polymer biomaterials loaded with flavonoids in bone defect
healing is detailed in Table 2.

Table 2. Application of polymer biomaterials loaded with flavonoids in bone defect healing.

Biomaterials Biomaterial
Composition

Flavonoid Types
and Sources

Incorporation/Solubilization
Methods Animal Model Molecular Mechanism Reference

Hydrogel
Methacrylated

chondroitin sulfate;
gelatin

Baicalin (flavones),
Scutellaria

baicalensis Georgi

Mixing (Solutol HS15
nanocomplex)

Skull defects in
rats

Increase the expression of
osteoprotegerin (OPG),

osteocalcin (OCN), α-smooth
muscle actin (α-SMA), and

platelet endothelial cell
adhesion molecule 1 (CD31);

inhibit the levels of sclerosing
protein and RANKL

[94]

Fibrous
membrane

Polycaprolactone
(PCL)

(+)-Catechin
(flavanes), Tea

leaves, Coffee beans,
cocoa

Mixing (hydrate) Skull defects in
mouse Alleviate oxidative damage [95]

Fibrous
membrane

Silk fibroin (SF);
poly(DL-lactide-ε-

caprolactone)
(PLCL)

Icariin (flavones),
Epimedium
brevicornum

Maxim

Mixing Skull defects in
rats

Increase the expression of
alkaline phosphatase (ALP) [96]

Fibrous
membrane

Collagen;
polycaprolactone;

hydroxyapatite

Icariin (flavones),
Epimedium
brevicornum

Maxim

Mixing (chitosan
microspheres)

Tibial defects in
rabbits

Increase the expression of ALP,
type I collagen (COL-1),

osteocalcin (OC) and
osteopontin (OPN)

[97]

Sponge Small intestine
submucosa (SIS)

Icariin (flavones),
Epimedium
pubescens

Absorption Skull defects in
mouse

Upregulate the expression of
ALP, bone sialoprotein (BSP)

and OCN; increase the level of
CD31

[98]

Sponge Gelatin
Hesperetin

(flavanones), citrus
fruits

Mixing Tibial fractures in
rabbits

Increase the expression of ALP,
OCN, runt-related transcription

factor 2 (Runx-2) and COL-1;
activate the ERK1/2 and

Smad1/5/8 signaling pathways

[99]

Sponge Collagen,
hydroxyapatite

Quercetin
(flavonols),

synthetic (organic)
Mixing Skull defects in

rats
Increase the expression of
COL-l, OCN and Runx-2 [100]

Sponge Collagen

Naringin
(flavanones),

grapefruit;
quercetin

(flavonols),
synthetic (organic);

puerarin
(isoflavones),

Pueraria lobata

Mixing
Full-thickness
parietal bone

defects in rabbits

Promote angiogenesis; increase
the activity of ALP [101–103]

Microspheres
Poly(lactide-co-

glycolide)
(PLGA)

Icariin (flavones),
Herba epimedii

Mixing (MgO/MgCO3
particles)

Skull defects in
rats

Increase the levels of ALP,
Col-1, Runx-2, OPN and OCN [104]

Microspheres

Poly(e-
caprolactone) (PCL);

poly(ethylene
glycol)-block-

poly(e-caprolactone)
(PEG-b-PCL)

Naringin
(flavanones),

grapefruit
Mixing Skull defects in

rats
Increase the expression levels of

Runx-2 and OCN [105]

Microspheres

α-Tricalcium
phosphate (α-Ca

3(PO4)2,
α-TCP)

Quercetin
(flavonols),

synthetic (organic)
Mixing Femoral defects

in rats

Increase the activity of ALP;
increase the expression of
Runx-2, COL-1, BSP, bone
morphogenetic protein 2

(BMP-2), OPN, OCN and OPG;
activate the ERK, p38 and AKT
signaling pathways; upregulate

the expression of vascular
endothelial growth factor

(VEGF), angiopoietin 1
(ANG-1), transforming growth

factor-β (TGF-β) and basic
fibroblast growth factor (bFGF);
downregulate the expression of

RANKL

[106]
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Table 2. Cont.

Biomaterials Biomaterial
Composition

Flavonoid Types
and Sources

Incorporation/Solubilization
Methods Animal Model Molecular Mechanism Reference

Nanoparticles

α-Tricalcium
phosphate (α-Ca

3(PO4)2,
α-TCP)

Icariin (flavones),
Epimedium
brevicornum

Maxim

Absorption Femoral defects
in rats

Promote the expression of
Runx-2, ALP, Col-1, OCN,

VEGF and ANG-1; regulate the
AKT signaling pathway

[107]

Bone cement Biopex-R Icariin (flavones),
extrasynthese Mixing Skull defects in

mouse

Increase the levels of ALP,
Runx-2, OC and BSP; promote

angiogenesis
[108]

Bone cement Calcium phosphate
cement (CPC)

Icariin (flavones),
Herba epimedii Mixing

Skull defects in
ovariectomized

rats

improve the level of ALP;
upregulate OPG expression;
inhibit RANKL expression;
promote the expression of

VEGF and ANG-1

[109]

Bone cement Calcium phosphate
cement (CPC)

Icariin (flavones),
Herba epimedii Mixing

Radius defect
contaminated by

S. aureus in
rabbits

Anti-inflammation [110]

Bioglass 45S5 Bioglass
Icariin (flavones),

Herba
epimedii

Mixing Skull defects in
rats

Increase the expression of
COL-1, OPN, CD31 and VEGF [111]

Scaffold Chitosan;
hydroxyapatite

Icariin (flavones),
Herba

epimedii
Mixing Radial defects in

rabbits Improve the level of ALP [112]

Scaffold Hydroxyapatite;
alginate

Icariin (flavones),
Herba

epimedii
Mixing Radius defects in

rabbits

Upregulate the expression of
Runx-2, ALP and OCN; activate

the Wnt signaling pathway
[113]

Scaffold
Titanium (Ti); glass;

hyaluronic acid;
chitosan

Icariin (flavones),
Herba

epimedii
Mixing Femoral defects

in rats Increase the activity of ALP [114]

Scaffold
Tricalcium
phosphate

(TCP)

Icariin (flavones),
Herba

epimedii
Absorption Femoral defects

in rabbits
Enhance the expression of

VEGF [115]

Scaffold

Siliceous
mesostructured

cellular
foams-poly(3-

hydroxybutyrate-co-
3-

hydroxyhexanoate)
(SMC-

PHBHHx)

Icariin (flavones),
Herba

epimedii
Absorption Skull defects in

rats

Increase the expression of
Runx-2, ALP and OCN;
promote angiogenesis

[116]

Scaffold

Poly(lactic-co-
glycolic acid)

(PLGA); β-calcium
phosphate
(β-TCP)

Icariin (flavones),
Herba

epimedii
Mixing

Distal femoral
bone defects in

rabbits

Increase the expression levels of
BSP, OC, OPN and ALP [117]

Scaffold
Gelatin;

β-tricalcium
phosphate

Naringin
(flavanones), Citrus

fruits
Mixing Skull defects in

rabbits

Enhance the activity of ALP
and tartrate-resistant acid

phosphatase (TRAP)
[118]

Scaffold Poly-L-lactide
(PLLA)

Naringin
(flavanones), Citrus

fruits

Mixing (chitosan
microspheres)

Periodontal
defects in rats

Reduce the expression of
interleukin 6 (IL-6) [119]

Scaffold
Nanohydroxyapatite

(nHA); collagen
(COL)

Naringin
(flavanones), Citrus

fruits
Mixing Skull defects in

rats

Increase the expression of
BMP-2, OPN, OCN, Runx-2 and

ALP
[120]

Scaffold a-Tricalcium
phosphate (a-TCP)

Epigallocate-
chin-3-gallate

(EGCG) (flavanes),
Green tea

Mixing Skull defects in
rats

Anti-inflammation;
antioxidation [121]

Scaffold Silk fibroin (SF);
hydroxyapatite

Naringin
(flavanones), Citrus

fruits
Mixing Distal femoral

defect in rabbits

Increase the expression of
Runx-2, COL-1 and osterix

(OSX); activate the PI3K/AKT,
VEGF, and hypoxia-inducible

factor 1 (HIF-1) signaling
pathways

[122]

Scaffold TiO2

Kaempferol
(flavonols),

vegetables and fruit
Absorption Femoral defects

in rats

Increase the expression of
Runx-2, OCN, OPN, COL-1 and

ALP
[123]

Scaffold

SiO2−
CaO bioactive

glass−poly(caprolac
tone) (BG−PCL)

Fisetin (flavones),
Vegetables and fruit Mixing Skull defects in

mice
Increase the expression of ALP,

Runx-2 and COL-1 [124]

Scaffold Silk fibroin;
hydroxyapatite

Quercetin
(flavonols),

synthetic (organic)
Mixing Skull defects in

rats
Increase the expression of Col-1,

OCN and Runx-2 [125]
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5.1. Hydrogel

Hydrogel is a hydrophilic three-dimensional polymer that can simulate extracellular
matrix (ECM) and has good biocompatibility and biodegradability [126]. However, it also
has some drawbacks, such as poor mechanical properties in the swelling state, limited
biological activity, etc. Its poor mechanical properties are usually overcome by the combi-
nation of synthetic polymers and natural polymers. Chenrui Li et al. prepared a composite
material for repairing rat skull defects by combining methacrylic acid chondroitin sulfate
and gelatin and incorporated baicalin nanocomposites to enhance the biological activity of
the composite system. The experimental results showed that the synthesized composite
hydrogel had appropriate mechanical properties. Baicalin nanocomposites can significantly
regulate the level of sclerotin and enhance osteogenic and angiogenic activities to play a
role in bone repair. These effects are achieved by significantly increasing the expression
of OPG, OCN, a-SMA and CD31 and inhibiting the levels of sclerotin and RANKL [94].
Therefore, it is necessary to expand the study of flavonoid-loaded hydrogels to provide a
study basis for the development of available medical materials.

5.2. Fibrous Membrane

Electrospinning is a simple method for preparing nano- or submicron fiber mem-
branes, and has been widely used in drug delivery [127]. The fiber membrane has a high
specific surface area that can promote cell adhesion and continuously and controllably
deliver drugs at local points [128]. However, some polymers have encountered some
obstacles in electrospinning, such as low mechanical strength, low biocompatibility and
low biological activity. Some researchers have reported on polymer fiber membranes
loaded with flavonoids. Jung Seung Lee et al. used catechin surface modification of PCL
nanofiber membranes to enhance their biological function and prepared a multifunctional
matrix for repairing severe skull defects in mice. The research results showed that the
deposition of catechin hydrates greatly improved the hydrophilicity and biocompatibility
of the matrix. At the same time, the presence of catechin coatings enhanced the antioxidant
and calcium binding abilities of the membrane to promote stem cell adhesion, proliferation
and osteogenic differentiation, and significantly promoted bone formation in critical size
skull defects in vivo [95]. Lihua Yin et al. incorporated icariin as a bone-inducing factor
into SF/PLCL nanofiber membranes through electrospinning to enhance the biological
activity of the membrane. The study showed that icariin was continuously and controllably
released in the nanofiber membrane to effectively increase the expression of ALP and
promote bone regeneration in rat skull defects [96]. In addition, Hongbin Zhao et al. pre-
pared a novel core-shell fiber membrane loaded with icariin chitosan microspheres using
collagen, polycaprolactone and hydroxyapatite as raw materials for the repair of rabbit
tibial defects by electrospinning. The research results showed that the prepared membrane
had good mechanical properties and biocompatibility as well as good bone induction and
conductivity, and it effectively promoted a large quantity of new bone formation in vivo.
These positive effects are achieved by regulating the expression of ALP, COL-1, OC, and
OPN [97]. Therefore, these studies indicate that flavonoid-loaded fiber membranes can be
successfully used as an effective treatment choice for bone defect repair.

5.3. Sponges

Sponge is a three-dimensional structural network that allows cell attachment, migration
and proliferation with excellent biocompatibility, porous structure and biodegradability.
Its clinical application has good feasibility [129]. However, most biological materials from
multiple sources have microenvironments different from bone tissue, which limits their
application in bone regeneration. Some researchers have reported on polymer sponges
loaded with flavonoids. Mei Li et al. improved bone induction in the submucosa of the
small intestine by incorporating icariin into sponge. Studies showed that icariin can be
continuously released in sponges for 30 days. Due to the presence of icariin, the sponge
significantly promoted the regulation of osteogenic differentiation markers (ALP, BSP, OCN),
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improved angiogenic factor (CD31) levels, and resulted in a higher rate of new bone for-
mation in a mouse skull defect model [98]. DetingXue et al. found that hesperidin can
promote osteogenic differentiation of human mesenchymal stem cells by regulating the
ERK1/2 and Smad1/5/8 signaling pathways. Therefore, it was combined with gelatin
sponge to accelerate the healing of tibial fractures in rats [99]. Research has shown that hes-
peridin can significantly increase the levels of osteogenic factors (ALP, OCN, Runx-2, COL-1)
and promote bone regeneration in vivo. In addition, Jeong Eun Song et al. incorporated
quercetin into collagen/hydroxyapatite sponge to enhance bone metabolism and osteogenic
differentiation of the scaffold. The results showed that the prepared sponge had good
compressive strength and high porosity and could significantly increase the expression of
COL-1, OCN, and Runx-2, promoting the repair of rat skull defects [100]. R.W.K. Wong et al.
used collagen sponge loaded with naringin, quercetin, or puerarin to treat full-thickness
parietal bone defects in rabbits. These scaffolds can promote angiogenesis and increase ALP
activity to achieve early bone reconstruction and bone formation [101–103]. It can be seen
that flavonoid-loaded sponges have good application prospects in bone defect repair.

5.4. Microspheres/Nanoparticles

Due to their excellent specific surface area, microspheres/nanoparticles can improve
cell adhesion and proliferation [130] and can be used as carriers for drug delivery sys-
tems [131]. However, this method often comes with issues such as low encapsulation
efficiency. Zuoying Yuan et al. loaded icariin onto MgO/MgCO3 particles and encapsu-
lated them in PLGA microspheres, where Mg2+ and icariin were continuously released.
Due to the addition of icariin, microspheres significantly regulated the levels of ALP, Col-1,
RunX-2, OPN and OCN and promoted the repair of rat skull defects [104]. Xue Yang
et al. used PCL/PEG-b-PCL microspheres to reduce the sudden release of naringin and
promote the repair of rat skull defects. Studies showed that the prepared microspheres
can increase the expression levels of Runx-2 and OCN to promote the formation of new
bones in vivo [105]. In addition, Yuning Zhou et al. prepared hydroxyapatite bioceramic
microspheres loaded with quercetin, which proved its ability to induce osteogenesis and
angiogenesis in vivo in a severe-size femoral defect model of rats. The results showed
that the prepared microspheres could continuously and effectively release quercetin to
significantly improve ALP activity and the levels of osteogenic genes (Runx-2, COL-1, BSP,
BMP-2, OPN, OCN, and OPG), activate ERK, p38 and AKT signaling pathways, upregulate
the expression of VEGF, ANG-1, TGF-β and bFGF, and downregulate the expression of an
osteoclast gene (RANKL) to promote the repair of rat femoral defect [106]. Yuqiong Wu et al.
prepared new micro/nano hybrid HAp particles, constructed a sustained-release system
for icariin and verified its role in promoting bone defect repair in a rat femoral defect model.
The results suggested that icariin can obviously increase the expression of osteogenic genes
(Runx-2, ALP, Col-1 and OCN) and angiogenic genes (VEGF and ANG-1) and regulate
the AKT signaling pathway to enhance angiogenesis and bone formation in vivo [107]. It
can be seen that the addition of flavonoids can effectively enhance the bone repair activity
of the microsphere/nanoparticle system, and the nanoparticle/microsphere system also
improves the bioavailability of flavonoids to provide a new idea for the application of bone
defect repair (Figure 2).



Molecules 2023, 28, 6888 9 of 16

Molecules 2023, 28, x FOR PEER REVIEW 10 of 17 
 

 

ously increase the expression of osteogenic genes (Runx-2, ALP, Col-1 and OCN) and 
angiogenic genes (VEGF and ANG-1) and regulate the AKT signaling pathway to en-
hance angiogenesis and bone formation in vivo [107]. It can be seen that the addition of 
flavonoids can effectively enhance the bone repair activity of the micro-
sphere/nanoparticle system, and the nanoparticle/microsphere system also improves the 
bioavailability of flavonoids to provide a new idea for the application of bone defect re-
pair (Figure 2). 

 
Figure 2. Repair effect of icariin-loaded microsphere on bone defects [105]. (These figures were re-
printed with permission.) 

5.5. Bone Cement/Bioglass 
Bone cement is an injectable biomaterial with good bone conductivity [132]. Bioglass 

has excellent specific surface area and its application in bone tissue engineering is rapidly 
expanding [133]. Bone cement/bioactive glass composed of calcium salts can stimulate 
new bone formation. However, their biological activities, such as promoting angiogenesis 
and anti-inflammation, are limited. Some researchers reported on bone cement/bioglass 
loaded with flavonoids. Jiyuan Zhao et al. promoted the repair of mouse skull defects by 
loading icariin with calcium phosphate bone cement. This stent can effectively increase 
the levels of ALP, Runx-2, OC, BSP and promote angiogenesis [108]. Yuqiong Wu et al. 
constructed icariin-loaded calcium phosphate cement for repairing skull defects in ovar-
iectomized rats. On the one hand, the scaffold improved the level of ALP and promoted 
osteoblast differentiation; on the other hand, the scaffold upregulated OPG expression 
and inhibited RANKL expression and the formation of osteoclasts. In addition, the 
scaffold promoted the expression of angiogenic factors such as VEGF and ANG-1 to 
promote angiogenesis [109]. In addition, Jianguo Huang et al. prepared a dual drug re-
lease system consisting of icariin, vancomycin and injectable calcium phosphate cement 
for repairing radius defects contaminated by Staphylococcus aureus. The research results 
showed that the prepared system can release icariin and vancomycin for a long time to 
endow the system with excellent anti-inflammatory and osteogenic activities and has 
great potential in the treatment of contaminated bone injury or infectious bone diseases 
[110]. The icariin-doped bioglass prepared by Xingzhi Jing et al. can significantly increase 
the expression of osteogenesis-related proteins (COL-1, OPN) and angiogenic factors 
(CD31, VEGF) and significantly induce new bone formation and new angiogenesis in a 
rat skull cap bone defect model [111]. These studies indicate that flavonoid-loaded bone 
cement/bioglass exhibits enormous potential in bone defect repair. 

  

Figure 2. Repair effect of icariin-loaded microsphere on bone defects [105]. (These figures were
reprinted with permission.)

5.5. Bone Cement/Bioglass

Bone cement is an injectable biomaterial with good bone conductivity [132]. Bioglass
has excellent specific surface area and its application in bone tissue engineering is rapidly
expanding [133]. Bone cement/bioactive glass composed of calcium salts can stimulate new
bone formation. However, their biological activities, such as promoting angiogenesis and
anti-inflammation, are limited. Some researchers reported on bone cement/bioglass loaded
with flavonoids. Jiyuan Zhao et al. promoted the repair of mouse skull defects by loading
icariin with calcium phosphate bone cement. This stent can effectively increase the levels
of ALP, Runx-2, OC, BSP and promote angiogenesis [108]. Yuqiong Wu et al. constructed
icariin-loaded calcium phosphate cement for repairing skull defects in ovariectomized
rats. On the one hand, the scaffold improved the level of ALP and promoted osteoblast
differentiation; on the other hand, the scaffold upregulated OPG expression and inhibited
RANKL expression and the formation of osteoclasts. In addition, the scaffold promoted the
expression of angiogenic factors such as VEGF and ANG-1 to promote angiogenesis [109].
In addition, Jianguo Huang et al. prepared a dual drug release system consisting of icariin,
vancomycin and injectable calcium phosphate cement for repairing radius defects contami-
nated by Staphylococcus aureus. The research results showed that the prepared system
can release icariin and vancomycin for a long time to endow the system with excellent
anti-inflammatory and osteogenic activities and has great potential in the treatment of
contaminated bone injury or infectious bone diseases [110]. The icariin-doped bioglass pre-
pared by Xingzhi Jing et al. can significantly increase the expression of osteogenesis-related
proteins (COL-1, OPN) and angiogenic factors (CD31, VEGF) and significantly induce new
bone formation and new angiogenesis in a rat skull cap bone defect model [111]. These
studies indicate that flavonoid-loaded bone cement/bioglass exhibits enormous potential
in bone defect repair.

5.6. Scaffolds

In addition to the abovementioned types of scaffolds, some researchers have also
reported on many composite scaffolds loaded with flavonoids that have good bone con-
ductivity and biocompatibility.

Tao Wu, Yunlong Xie, and Yunjia Song et al. combined icariin into hydroxyapatite
composite scaffolds for bone defect repair. These prepared scaffolds have good biocompati-
bility and can slowly release icariin for a long time. They have good bone conduction and
osteoinduction effects on bone defect models and can fill the bone defect site early to stimu-
late new bone formation. These positive effects may be attributed to the ability of icariin to
upregulate the levels of osteogenic markers Runx-2, ALP and OCN and activate the Wnt
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signaling pathway [112–114]. Xiaowei Xie, Tianlin Lliu and Yuxiao Lai et al. combined
icariin into various composite scaffolds and conducted therapeutic studies on bone defect
models. These prepared scaffolds can promote bone repair through active angiogenesis,
which can be attributed to the regulatory effect of icariin on VEGF. At the same time, these
scaffolds can significantly increase the expression of osteogenesis-related proteins such as
Bsp, Runx-2, ALP, OCN, OPN, etc. to promote the bone healing process and ultimately
stimulate bone defect repair [115–117].

Kuoyu Chen, Zhenzhao Guo and Yanping Zuo et al. combined naringin with com-
posite materials to evaluate and compare their potential for repairing bone defects in vivo.
Their research results all showed that the addition of naringin enhanced the osteogenic
ability of composite scaffolds, with the potential mechanism being to reduce the levels
of inflammatory factors such as IL-6 and enhance the expression of osteogenesis-related
factors BMP-2, OPN, OCN, Runx-2 and ALP to promote the proliferation of osteoblasts
and accelerate bone tissue reconstruction and repair in bone defect models [118–120].

The epigallocatechin-3 gallate-loaded β-tricalcium phosphate (β-TCP) scaffold pre-
pared by Reena Rodriguez et al. has excellent anti-inflammatory and antioxidant activities
and can effectively promote the repair of critical skull defects in rats [121]. Zhihu Zhao
et al. prepared a silk fibroin–hydroxyapatite composite scaffold loaded with naringenin,
which can significantly increase the expression of Runx-2, COL-1 and OSX by activating
PI3K/AKT, VEGF, and HIF-1 signaling pathways to enhance the osteogenesis and angio-
genesis and repair distal femoral defects in rabbits [122]. Shuhei Tsuchiya et al. prepared
titanium dioxide implants loaded with kaempferol, which can increase the expression
of Runx-2, OCN, ON, OPN, COL-1 and ALP to promote the repair of femoral defects
in rats [123]. Henri Granel et al. developed a bioactive glass polycaprolactone mixed
scaffold loaded with fisterone, which achieved slow release of fisterone and significantly
increased the expression of ALP, Runx-2, and COL-1 to promote the repair of critical skull
defects in mice [124]. Jeong Eun Song et al. designed a silk fibroin–hydroxyapatite scaffold
loaded with quercetin that exhibited good mechanical strength. The addition of quercetin
significantly increased the expression of col1, OCN and Runx-2 to promote the repair of rat
skull defects. However, this effect occurred only in low-quercetin-content scaffolds rather
than high-quercetin-content scaffolds [125]. It can be seen that flavonoids have various
biological activities, such as anti-inflammatory, antioxidant and promoting angiogenesis,
that are beneficial for bone defect repair. More types of flavonoids are worth developing
more widely to promote the application process of polymer materials in bone repair.

The above studies have shown that polymer biomaterials loaded with flavonoids
have a good promoting effect on bone defect healing. This effect is mainly achieved by
regulating various signaling pathways, such as Wnt, p38, AKT and Erk signaling pathways,
which can effectively promote the expression of angiogenic factors such as VEGF and CD31
and significantly increase the levels of osteogenesis-related factors such as Runx-2, OCN
and OPN. Therefore, polymer biomaterials loaded with flavonoids can be widely used to
promote bone defect healing.

6. Conclusions

This article reviews the progress of research on flavonoid polymer biomaterials and
their mechanisms for promoting bone defect repair. When using flavonoid-loaded scaf-
folds, the rate of bone repair can be accelerated, and their role involves multiple impact
mechanisms.

Although flavonoid-loaded biomaterials can promote bone defect repair, there are
still some issues that need to be addressed. Firstly, most of the studies described are in the
preclinical stage and their results are very promising. However, these biomaterials require
clinical trials. In addition, the bioavailability and solubility of flavonoids are limiting factors
in utilizing their characteristics. They can be increased in solubility through microspheres,
nanoparticles, self-emulsifying drug delivery systems, liposome vesicles, solid dispersions,
inclusion complexes and micelles to improve bioavailability. In fact, only a small number
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of nanoparticles and microspheres are used to load flavonoids for bone defect repair.
At the same time, there are various types of flavonoid-loaded bone repair biomaterials,
but the mutual binding of each biomaterial is still rare. For example, microspheres and
nanoparticles are widely used to improve the low solubility of flavonoids, and hydrogels
and nanofibers are widely used to continuously transport flavonoids. However, there are
few reports on combining them as composite carriers to load flavonoids to promote bone
repair. Nanogel has the excellent characteristics of both nanoparticles and hydrogels, and
it has been widely studied in the field of bone repair, but no report of nanogel combined
with flavonoids for bone defect repair has yet appeared. Finally, there are a wide variety
of flavonoids. At present, the development and application of flavonoids loaded in bone
repair biomaterials are limited to a few types, including flavones, flavonols, isoflavones,
and flavanes. However, anthocyanin, chalcones and isoflavanes have not yet been applied.
Therefore, the application of flavonoids in bone repair scaffolds needs to be expanded.

Based on the current study, we should improve the overall performance of flavonoid
bone repair biomaterials. A flavonoid bone repair biomaterial that meets clinical require-
ments needs to be prepared by combining multiple research fields such as molecular
biology and pharmacology. At the same time, innovation in biomaterials not only needs to
improve their promoting effects on bone repair but also needs to enhance the penetration
of flavonoids into biofilms and enhance cell phagocytosis of flavonoids.
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