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Abstract: This study systematically investigates the molecular structure and electronic properties
of 2-methoxy-4,6-diphenylnicotinonitrile, employing X-ray diffraction (XRD) and sophisticated
computational methodologies. XRD findings validate the compound’s orthorhombic crystallization
in the P21212 space group, composed of a pyridine core flanked by two phenyl rings. Utilizing
the three-dimensional Hirshfeld surface, the research decodes the molecule’s spatial attributes,
further supported by exhaustive statistical assessments. Key interactions, such as π–π stacking
and H· · ·X contacts, are spotlighted, underscoring their role in the crystal’s inherent stability and
characteristics. Energy framework computations and density functional theory (DFT) analyses
elucidate the prevailing forces in the crystal and reveal geometric optimization facets and molecular
reactivity descriptors. Emphasis is given to the exploration of frontier molecular orbitals (FMOs),
aromaticity, and π–π stacking capacities. The research culminates in distinguishing electron density
distributions, aromatic nuances, and potential reactivity hotspots, providing a holistic view of the
compound’s structural and electronic landscape. Concurrently, molecular docking investigates
its interaction with the lipoprotein-associated phospholipase A2 protein. Notably, the compound
showcases significant interactions with the protein’s active site. Molecular dynamics simulations
reveal the compound’s influence on protein stability and flexibility. Although the molecule exhibits
strong inhibitory potential against Lp-PLA2, its drug development prospects face challenges related
to solubility and interactions with drug transport proteins.

Keywords: 2-methoxy-4,6-diphenylnicotinonitrile; X-ray diffraction; orthorhombic crystal system;
CH–π interaction; Hirshfeld surface; π–π stacking; density functional theory; HOMO–LUMO gap;
aromaticity indices; molecular electrostatic potential

1. Introduction

In the realm of drug discovery and design, pyridine derivatives have consistently
been of interest due to their notable bioactive properties, as evidenced by several seminal
studies [1,2]. Given the importance of understanding structure–reactivity relationships, our
study focuses on 2-methoxy-4,6-diphenylnicotinonitrile, a distinguished member of this
class of compounds. The intention behind this investigation is to elucidate its structural
characteristics, paving the way for further pharmacological exploration.

Recent advancements have spotlighted the significance of nicotinonitrile (3-cyanopyridine)
derivatives, primarily due to their multifaceted biological activity [3]. These deriva-
tives have been recognized for their antibacterial [4,5], antitumor [6], anticancer [7], car-
diotonic [8], antiviral (specifically against avian influenza) [9], and anticonvulsant prop-
erties [10]. Certain compounds within this category exhibit an ability to inhibit sul-
fide:quinone oxidoreductase, which offers protection against detrimental cardiac remodel-
ing and heart failure [11].
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Beyond their biological attributes, nicotinonitriles are also renowned for their dis-
tinctive photophysical properties [3,12,13], paving the way for their potential applications
in nonlinear optics [14], liquid crystal technologies [15], fluorescent molecular switches
tailored to metal ion detection [16], and organic light-emitting devices [17].

The comprehensive structural and molecular analysis of this compound holds consid-
erable importance.

A limited number of studies have addressed this topic in the existing literature [18].
Commonly, research concerning the crystallographic analysis of 2-methoxy-4,6-diphenylnic
otinonitrile predominantly employs spectroscopy techniques for structure characterization,
providing an overarching structure elucidation via theoretical method analyses. Building
on this foundation, our research delves deeper into these theoretical methodologies, fur-
nishing a comprehensive and intricate study. Furthermore, we introduce supplementary
applications to enhance the understanding and practical implications of the molecule’s
structure.

The quest for novel and efficacious drug candidates often hinges on the exploration
of unique molecular structures and their inherent properties. An integral part of this
pursuit involves the detailed understanding of the molecular and crystal structures of these
candidates. The compound 2-methoxy-4,6-diphenylnicotinonitrile is one such compound
that has recently garnered attention in the realm of molecular research. X-ray diffraction
has historically been a primary tool to examine molecular and crystal structures, offering
insights into atomic arrangements and intermolecular interactions [19].

Hirshfeld surface calculations provide a more nuanced understanding of molecular
characteristics and intermolecular interactions [20]. The analysis of these interactions can
be instrumental in predicting physicochemical properties, solubility, and stability, all of
which are vital for drug development [21]. Moreover, the application of density functional
theory (DFT) in predicting the structural properties of compounds has revolutionized
modern computational chemistry [22], especially the WB97XD functional, which has shown
consistent accuracy in various systems [23].

The molecular landscape, reactivity, and electronic properties of a compound can provide
valuable insights into its potential as a drug candidate. Given the significance of such evalu-
ations, this study sought to explore the properties of 2-methoxy-4,6-diphenylnicotinonitrile
using a combination of analytical techniques.

2. Results and Discussion
2.1. Description of the X-ray Crystal Structure

The X-ray diffraction (XRD) results confirm that the title compound crystallizes in the
orthorhombic crystal system, adhering to the P21212 space group (Table 1). The asymmetric
unit is composed of crystallographically independent tested molecules, as depicted in
Figure 1A with ORTEP diagrams drawn at a 70% probability ellipsoid level.

The molecular structure of the 2-methoxy-4,6-diphenylnicotinonitrile molecule com-
prises a pyridine ring [Cg1: C1 to C5;N1], a phenyl ring [Cg2: C8–C13], and a second
phenyl ring [Cg3: C14–C19]. These rings are bridged by a C1–C8 bond and a C3–C14 bond,
respectively. The dihedral angle, which measures the angle between two planes, between
the mean planes of the pyridine ring (Cg1) and the first phenyl ring (Cg2) is found to be
10.853(58)◦. This suggests that these two rings are almost coplanar, indicating a relatively
flat structure in this region of the molecule. On the other hand, the dihedral angle between
the mean planes of the pyridine ring (Cg1) and the second phenyl ring (Cg3) is larger, at
42.019(53)◦. This suggests a more pronounced spatial separation between these two rings,
indicating a deviation from planarity and resulting in a more three-dimensional structure
(Figure 1A,B) [24].
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Table 1. Crystal structure and refinement details for 2-methoxy-4,6-diphenylnicotinonitrile.

Parameter Data

Identification code 983247

Empirical formula C19H14N2O

Formula weight 286.32

Temperature/K 100(2)

Crystal system orthorhombic

Space group P21212

a/Å 15.0686(16)

b/Å 24.327(3)

c/Å 3.8986(4)

α/◦ 90.00

β/◦ 90.00

γ/◦ 90.00

Volume/Å3 1429.1(3)

Z 4

ρcalcg/cm3 1.331

µ/mm−1 0.084

F(000) 600.0

Crystal size/mm3 0.22 × 0.11 × 0.06

Radiation MoKα (λ = 0.71073)

2Θ range for data collection/◦ 3.18 to 56.92

Index ranges −19 ≤ h ≤ 20, −31 ≤ k ≤ 31, −5 ≤ l ≤ 5

Reflections collected 12356

Independent reflections 3344 [Rint = 0.0465, Rsigma = 0.0411]

Data/restraints/parameters 3344/0/200

Goodness-of-fit on F2 1.036

Final R indexes [I ≥ 2σ (I)] R1 = 0.0404, wR2 = 0.0880

Final R indexes [all data] R1 = 0.0481, wR2 = 0.0933

Largest diff. peak/hole/e Å−3 0.20/−0.21

Table 2 and Figure 2A,B describe the significant intermolecular interactions that con-
tribute to the crystal packing of 2-methoxy-4,6-diphenylnicotinonitrile in the solid state.
These interactions are significant as they determine the arrangement of the molecules
in the crystal lattice and thus have a profound influence on the physical and chemical
properties of the solid material. The intermolecular interactions of the title compound were
found to be weak but significant. The H6B· · ·H10 interaction, involving two hydrogen
atoms, has an interaction length of 2.364 Angstroms, which is 0.036 Angstroms shorter
than the sum of the van der Waals radii of two hydrogen atoms. This indicates a weak
yet significant interaction between these atoms, contributing to the stability of the crystal
structure. The H6A· · ·H6A interaction also involves two hydrogen atoms. The interaction
length is slightly longer (2.372 Angstroms), and the deviation from the sum of the van der
Waals radii of the atoms involved is also smaller (0.028 Angstroms). This suggests that
this interaction might be slightly weaker than the H6B· · ·H10 interaction. The H17· · ·C10
interaction, a CH–π interaction between a hydrogen atom and a carbon atom in a π system,
has a length of 2.824 Angstroms and a deviation from the sum of the van der Waals radii of
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−0.076 Angstroms; this interaction is weaker than the hydrogen interactions but still con-
tributes to the overall crystal packing. The interactions involving nitrogen and hydrogen
atoms, namely N2· · ·H19, N2· · ·H2, and N2· · ·H13, are likely weak hydrogen bonding
or dipole–dipole interactions between the nitrogen and hydrogen atoms. Similarly, the
H12· · ·H16 interaction, also involving two hydrogen atoms, is analogous to the H6B· · ·H10
and H6A· · ·H6A interactions. While these interactions are weaker compared to strong
covalent bonds, they play a crucial role in determining the crystal structure.
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Figure 1. (A) ORTEP representation of the title compound, depicted at a 70% probability ellipsoid 
level, illustrating the three-dimensional shape of the electron density around the atoms. (B) Repre-
sentation of the centroids of the rings, where Cg1 (green) incorporates atoms C1, C2, C3, C4, C5, and 

Figure 1. (A) ORTEP representation of the title compound, depicted at a 70% probability ellipsoid
level, illustrating the three-dimensional shape of the electron density around the atoms. (B) Represen-
tation of the centroids of the rings, where Cg1 (green) incorporates atoms C1, C2, C3, C4, C5, and N1;
Cg2 (brown) contains atoms C8, C9, C10, C11, C12, and C13; and Cg3 (blue) comprises atoms C14,
C15, C16, C17, C18, and C19, highlighting the positioning and composition of the constituent atomic
rings.

Table 2. Hydrogen bonding in cocrystal 2-methoxy-4,6-diphenylnicotinonitrile.

Number Angle/◦ Length/Å Length-VdW Symm. op. 1 Symm. op. 2

1 H6B· · ·H10 138.99 2.364 −0.036 x,y,z 1 − x,−y,−1 + z

2 H6A· · ·H6A 149.55 2.372 −0.028 x,y,z 1 − x,−y,z

3 H17· · ·C10 159.57 2.824 −0.076 x,y,z 1.5 − x,1/2 + y,−z

4 N2· · ·H19 136.08 2.749 −0.001 x,y,z −1/2 + x,1/2 − y,−1 − z

5 N2· · ·H2 176.33 2.702 −0.048 x,y,z −1/2 + x,1/2 − y,−z

6 N2· · ·H13 159.25 2.663 −0.087 x,y,z −1/2 + x,1/2 − y,−z

7 H12· · ·H16 126 2.398 −0.002 x,y,z 1/2 + x,1/2 − y,1 − z
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2.2. Hirshfeld Surface Calculations

The three-dimensional Hirshfeld surfaces, characterized by properties such as dnorm,
di, de, curvedness, and shape index, were analyzed at a high standard resolution with
an isovalue of 0.5. The molecule exhibits a surface volume of 350.32 Å3 and an area of
329.44 Å2. The globularity value of 0.729 indicates a moderately spherical structure, while
the a sphericity value of 0.189 suggests that the molecule is not perfectly spherical, pointing
to a degree of asymmetry in its shape [25,26].

These metrics provide a quantitative evaluation of the molecule’s spatial characteristics.
Moving forward, we will explore the unique features identified within the crystalline and
molecular structure of the title compound, delving into each of these properties in detail.

An extensive statistical examination of the Hirshfeld surface characteristics for a
particular chemical system is shown in Table 3. The metrics comprise the normalized
distance, the shape, and the curvature of the surface, as well as the distances from the
Hirshfeld surface to the closest atoms inside and outside the molecule. The accompanying
Sigma values shed light on the molecular interactions that shape the Hirshfeld surface
and provide additional insights into the diversity of these features. Additionally, the
‘Nu’ measure is introduced, necessitating more background information for a complete
understanding.

Table 3. Statistical analysis of Hirshfeld surface properties for the molecular system.

Name Mean+ Mean− Pi Sigma+ Sigma− SigmaT Nu

di 1.67 ~ 0.216 5.08 × 109 ~ 2.16 × 1014 0

de 1.69 ~ 0.207 5.16 × 109 ~ 2.20 × 1014 0

dnorm 0.45 −0.0287 0.2 3.63 × 108 45.3 1.54 × 1013 6.92 × 10−10

Shape Index 0.515 −0.407 0.408 2.39 × 108 2.61 × 107 7.49 × 1012 0.0419

Curvedness 0.0626 −1.04 0.438 152 1.93 × 109 8.19 × 1014 3.68 × 10−10

2.2.1. Dnorm

The Hirshfeld surface, an essential tool in understanding the molecular and crystal
structures of compounds, is mapped with respect to the dnorm property for the compound
2-methoxy-4,6-diphenylnicotinonitrile. This mapping employs a distinct color scheme where
the color red corresponds to a value of −0.0678 (a.u), indicating a low-electron-density area,
while the color blue represents a value of 1.4149 (a.u), signifying a high-electron-density
region. A striking feature of this mapping is a conspicuous red spot visible within the
contour of the Hirshfeld surface, as depicted in Figure 3A,B. This small red spot indicates the
presence of weak intermolecular interactions of several types within the crystal structure of the
compound [27]. These interactions, while weak, play a critical role in the overall structure and
stability of the crystal, influencing its chemical properties and behavior. For a comprehensive
understanding of these interactions, one can refer to Table 2, which provides a detailed
breakdown of each type of interaction, their frequency, their relative contributions to the
total surface area, and other quantitative data. Furthermore, Figure 2B provides a graphical
representation of these interactions, showing how they affect the spatial arrangement of
molecules within the crystal structure. This combination of quantitative data and visual
representation aids in a thorough understanding of the complex interplay of forces within
the crystal structure of 2-methoxy-4,6-diphenylnicotinonitrile [28–30].
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Figure 3. The three-dimensional Hirshfeld surface map is exhibited, with dnorm values mapped onto
the surface using a red-white-blue color scheme. In this scheme, red regions signify closer contacts
and a negative dnorm value, indicative of the existence of weak intermolecular interactions of various
types (refer to Table 2 for details), as visible in the circular red spot within the contour in panel (A).
White areas denote contacts around the van der Waals separation, and blue regions represent longer
contacts with a positive dnorm value in panel (A). Panel (B) showcases the Hirshfeld surface, again
mapped on dnorm, but, in this instance, it illustrates the connections between different molecules
within the crystal via diverse types of bonds (details of these bonds can be found in Table 2).

2.2.2. De and Di

The discussion of de and di values is paramount to the exploration of the electron den-
sity distribution around molecules, facilitating a profound understanding of the molecular
geometry and interactions. de signifies the distance from the nearest nucleus outside to the
surface, offering a depiction of the region with the maximum likelihood of encountering
an electron. In contrast, di represents the distance from the nearest nucleus inside to the
surface, elucidating the extent of deviation of the electron distribution from sphericity.

Figure 4 presents the spatial mapping of the de and di surfaces for the molecule under
consideration. The color gradient utilized is consistent for both surfaces, with red resonating
with values 1.0815 and 1.0820 (a.u) and blue corresponding to 2.4558 and 2.4371 (a.u). Such
visualization facilitates a clear demarcation between the de and di orientations. In the case
of the titled compound, hydrogen atoms H6A, H6B, H2, H10, H12, H13, H16, H17, and H19
are situated in close proximity to the external boundary of the de surface, as showcased in
Figure 4A,B. Intriguingly, these hydrogen atoms concurrently act as the proximate donor
nuclei to the di surface, reflected as red contours in Figure 3C [31]. These visual inferences
underscore the existence of subtle intermolecular interactions in the tested compound
(refer to Table 2 for details). This postulation finds alignment with insights derived from
the Hirshfeld surface analysis, mapped based on electrostatic potentials and dnorm. It is
notable that both surfaces have conspicuously green, flat sections, suggesting the presence
of π–π stacking interactions in the crystal packing—a paramount factor in determining
molecular stability and impacting several biological functions [31].
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Figure 4. A consistent color scale was employed for both de and di conformations, using red to signify
1.0815 and 1.0820 (a.u) and blue to denote 2.4558 and 2.4371 (a.u), respectively, to optimize visual
interpretation. Red spots are used to indicate the nearest nuclei relative to the surface—internally
for di (C), and externally for de (A,B). The various hydrogen atoms involved in intermolecular
interactions (refer to Table 2) serve dual roles: they are the closest internal nuclei for di and the nearest
external nuclei for de, a fact visually represented by red spots within the contour.

2.2.3. Curvedness

The Hirshfeld surface, an insightful tool in analyzing molecular and crystal structures,
is mapped in three dimensions with respect to the curvedness property for the compound
2-methoxy-4,6-diphenylnicotinonitrile. This specific molecule is characterized by a planar
configuration comprising three aromatic rings. In the curvedness mapping visualized
in Figure 5 [32], a color coding scheme is employed, with red (–3.3) representing flat
regions of the molecule and blue (+0.4) delineating the edges. This color scheme aids
in the clear differentiation of the molecular structure’s contours and provides a vivid
visual representation of its three-dimensional configuration. One of the most intriguing
features of this mapping is the presence of yellow to red spots within the contours, which
represent areas of very weak intermolecular interactions. These interactions can be further
understood by referring to Table 2, which provides a more detailed breakdown of the types
and extent of these interactions. Notably, there are green-colored flat regions circumscribed
by the red spots on the surface, particularly around the ring atoms (the rings on either side
of the same molecule). The presence of these green regions is significant as it confirms the
existence of π–π stacking interactions in the crystal packing of the title compound. π–π
stacking effects, which typically occur between aromatic rings or between aromatic rings
and the π electrons of double bonds, are a key consideration in the study of crystal packing.

Molecules 2023, 28, x  7 of 40 
 

 

   

Figure 4. A consistent color scale was employed for both de and di conformations, using red to 
signify 1.0815 and 1.0820 (a.u) and blue to denote 2.4558 and 2.4371 (a.u), respectively, to optimize 
visual interpretation. Red spots are used to indicate the nearest nuclei relative to the surface—inter-
nally for di (C), and externally for de (A,B). The various hydrogen atoms involved in intermolecular 
interactions (refer to Table 2) serve dual roles: they are the closest internal nuclei for di and the 
nearest external nuclei for de, a fact visually represented by red spots within the contour. 

2.2.3. Curvedness 
The Hirshfeld surface, an insightful tool in analyzing molecular and crystal struc-

tures, is mapped in three dimensions with respect to the curvedness property for the com-
pound 2-methoxy-4,6-diphenylnicotinonitrile. This specific molecule is characterized by 
a planar configuration comprising three aromatic rings. In the curvedness mapping visu-
alized in Figure 5 [32], a color coding scheme is employed, with red (–3.3) representing 
flat regions of the molecule and blue (+0.4) delineating the edges. This color scheme aids 
in the clear differentiation of the molecular structure’s contours and provides a vivid vis-
ual representation of its three-dimensional configuration. One of the most intriguing fea-
tures of this mapping is the presence of yellow to red spots within the contours, which 
represent areas of very weak intermolecular interactions. These interactions can be further 
understood by referring to Table 2, which provides a more detailed breakdown of the 
types and extent of these interactions. Notably, there are green-colored flat regions cir-
cumscribed by the red spots on the surface, particularly around the ring atoms (the rings 
on either side of the same molecule). The presence of these green regions is significant as 
it confirms the existence of π–π stacking interactions in the crystal packing of the title 
compound. π–π stacking effects, which typically occur between aromatic rings or between 
aromatic rings and the π electrons of double bonds, are a key consideration in the study 
of crystal packing. 

  
  

Figure 5. The figure displays the Hirshfeld surface, mapped according to the curvedness property, 
using a color scheme where −3.3 represents flat regions (depicted in red) and +0.4 indicates edges 
(shown in blue). Panels (A,B) provide both front and rear views of the title molecules. The presence 

Figure 5. The figure displays the Hirshfeld surface, mapped according to the curvedness property,
using a color scheme where −3.3 represents flat regions (depicted in red) and +0.4 indicates edges
(shown in blue). Panels (A,B) provide both front and rear views of the title molecules. The presence
of noteworthy flat regions over the ring structures on both sides suggests π–π stacking interactions.
These interactions are represented as yellow spots located within black-colored contour lines.
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Shape Index

The Hirshfeld surface, a valuable tool in visualizing and understanding the intricacies
of molecular and crystal structures, has been mapped based on the shape index for this
analysis. The shape index is a unique measure that provides a two-valued descriptor
of the shape at each point on a surface, distinguishing between convex, concave, and
flat regions. For this particular mapping, depicted in Figure 6, a color scheme has been
employed where −1.0 signifies concave regions (represented in red) and +1.0 indicates
convex regions (portrayed in blue). One of the distinct features of this mapping is the
red spot nestled within the contour. This spot is a clear confirmation of the existence of
very weak intermolecular interactions present within the structure, a fact that is further
elaborated in Table 2. Despite being weak, these interactions play a crucial role in defining
the overall structure and stability of the compound. In addition to the red spot, the mapping
reveals several smaller regions displaying a yellowish-red hue. These concave areas are
indicative of additional weak intermolecular interactions that are also present within the
structure, further contributing to its stability and unique properties. A noteworthy feature
of the shape index mapping of this test compound is the presence of red- and blue-colored
triangles. These triangles, which represent regions of varying curvature on the Hirshfeld
surface, are indicative of the existence of π–π interactions within the crystal packing of
the compound, as stated in reference [20]. π–π interactions, commonly occurring between
aromatic rings or between aromatic rings and the pi electrons of double bonds, are of
significant importance in the crystal packing and stability of many compounds. Their
presence in the crystal packing of this test compound sheds light on the compound’s
specific structural characteristics and behavior.
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Figure 6. This image depicts the Hirshfeld surface, mapped according to the shape index. The
presence of a red spot nestled within the contour signifies a very weak intermolecular interaction.
The appearance of triangles colored in red and blue indicates the existence of π–π interactions. The
blue protrusions and red indentations represent points of contact between neighboring molecular
Hirshfeld surfaces.

2.2.4. The Fragment Patch

The fragment patch analysis of the Hirshfeld surface for the compound 2-methoxy-
4,6-diphenylnicotinonitrile provides valuable insights into the intermolecular interactions
within its crystal structure; see Figure 5A–D. This is achieved by examining the area of each
fragment patch, which corresponds to the closest atomic contacts on the Hirshfeld surface.
From the provided data, it is observed that the fragment patches vary significantly in size,
ranging from 6.0 Å2 to 71.7 Å2 (Table 4).
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Table 4. Fragment patch information for 16 fragment patches of Figure 7.

Color of the
Area

Area
Number. Area/Å2 Color of the

Area
Area

Number Area/Å2

1 7.7 9 12.4
2 69.9 10 30.8
3 22.2 11 6.0
4 31.7 12 9.1
5 7.7 13 9.4
6 10.6 14 11.2
7 10.6 15 71.7
8 9.6 16 8.7
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Figure 7. This figure displays the Hirshfeld surface, mapped in accordance with the fragment patch,
featuring identifiers from 0 to 15. The presented images, labeled as (A–D), offer both front and
rear views of the title molecules, with and without contours, respectively, for a comprehensive
visualization. Particularly noteworthy are the substantial flat and expansive areas corresponding to
fragment patches 2 and 15 located over the rings on either side of the structure, indicative of π–π
stacking. Conversely, smaller fragment patch areas scattered across the surface represent weaker
interactions.

This considerable variation indicates a broad range of interaction strengths present
in the crystal structure of the compound. In particular, the fragment patches labeled as
2 (Figure 7A,B) and 15 (Figure 7C,D), which measure 69.9 Å2 and 71.7 Å2, respectively,
stand out due to their large size. The significant expanses of these patches suggest that the
atoms that they correspond to are involved in robust intermolecular interactions. These
interactions contribute substantially to the overall stability and behavior of the compound.
Moreover, the large areas of these patches also hint at the presence of pi–pi interactions
within the crystal packing of the compound. pi–pi interactions, typically occurring between
aromatic rings or between aromatic rings and the pi electrons of double bonds, are of
significant importance in the crystal packing and stability of many compounds. Their
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presence in this compound sheds more light on its unique structural characteristics and
behavior. On the other end of the spectrum, fragment patches 5, 11, and 16, with areas of
7.7 Å2, 6.0 Å2, and 8.7 Å2, respectively, represent the smallest patches. These smaller areas
suggest that the corresponding atoms are involved in weaker intermolecular interactions
within the crystal structure. The remaining fragment patches, with areas ranging from
9.1 Å2 to 31.7 Å2, indicate a range of intermediate-strength interactions. These interactions
could involve a variety of bonds, such as van der Waals forces, dipole–dipole interactions,
or weaker hydrogen bonds.

2.2.5. Two-Dimensional Fingerprint Plots

The two-dimensional fingerprint plots serve as a comprehensive visual depiction of the
intermolecular interactions at play within the crystal structure. These plots also quantify the
specific contributions of each interaction type towards establishing the three-dimensional
Hirshfeld surface, thereby providing a detailed portrayal of the compound’s molecular
dynamics. In our investigation, we have derived two-dimensional fingerprint plots for all
possible pairs of contact points (as shown in Figures 7 and 8). An extensive analysis of
these plots yielded specific results, which are catalogued systematically in Table 5.

Molecules 2023, 28, x  11 of 40 
 

 

hydrogen and the more electronegative oxygen atoms, influencing the physical properties 
of the crystal, including characteristics such as melting and boiling points. 

Similarly, the hydrogen–nitrogen (H···N) interactions, accounting for approximately 
14.1% of the total intermolecular forces, are not the strong hydrogen bonds often seen in 
biological structures. Instead, these are weaker intermolecular forces, resonating with the 
overall weak interaction theme seen in the crystal packing of the investigated compound. 
Despite their relative weakness, these H···N interactions play a significant role in stabiliz-
ing and defining the shape of the crystal structure. The interactions between hydrogen 
and carbon atoms, denoted as H···C interactions, account for approximately 12.8% of the 
overall contribution to the stability of the crystal structure. These interactions are com-
monly associated with van der Waals forces, which, although weaker than hydrogen 
bonds, still play a significant role in maintaining the structural integrity of the crystal. 

The carbon–carbon (C···C) interaction within the crystal structure, contributing 15.5% 
according to the provided data, plays a pivotal role in maintaining the stability and influ-
encing the properties of the crystal structure. Given that this structure includes aromatic 
rings, a significant portion of these C···C interactions are likely due to π–π stacking. These 
π–π stacking interactions, arising from overlapping p-orbitals in adjacent aromatic rings, 
can significantly affect the way in which the molecules pack within the crystal structure, 
often leading to a more closely packed and stable arrangement. Additionally, these inter-
actions may have a notable impact on other properties of the crystal, such as its light ab-
sorption and emission characteristics, which are an important consideration in the area of 
optical materials. In brief, the H···H contact holds primary importance inside the crystal 
structure, whereas the remaining interactions also exert a substantial influence on the 
crystal’s characteristics and stability. Gaining a comprehensive understanding of the in-
tricate dynamics of these interactions might yield useful insights into the behavior of the 
material across various conditions. 

  

Figure 8. This illustration showcases the 2D and 3D fingerprint plots of the test compound. In the 
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Figure 8. This illustration showcases the 2D and 3D fingerprint plots of the test compound. In
the 2D plot, the y-axis denotes ‘de’ (distance to the nearest external element) and the x-axis shows
‘di’ (distance to the nearest internal element) of the 3D Hirshfeld surface. Blue spots represent
specific X· · ·Y element pair contributions, while grey spots outline the combined contributions of all
interacting pairs. The left depicts dnorm surface patches and their contribution percentages, while
the right highlights intramolecular interactions with neighboring molecules in the compound crystal.
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Table 5. Percentage of total surface area representing close interactions between internal and external
atoms.

Inside Atom
Outside Atom

O N C H

C 0.1 1.5 15.5 7.7 24.9

H 2.7 6.5 5.1 48.5 62.8

N 0.1 0 1.3 7.6 9

O 0 0.1 0.1 3.1 3.3

2.9 8.2 22.1 66.9

Based on the presented Figures 8 and 9, it can be inferred that the H· · ·H interaction
holds a prominent position, accounting for 48.5% of the overall interaction strength. This
observation implies that weak van der Waals forces exert a strong influence on the cohesive
nature of the compound’s crystal structure. The prevalence of this interaction at a significant
proportion can exert influences on the properties of the crystal, potentially resulting in
reduced density, increased malleability, and a potentially lower melting point in comparison
to crystals that are predominantly governed by stronger intermolecular forces.
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According to the results from the fingerprint plot analysis and the interpretation of
the intermolecular interactions in the crystal packing of the test compound in Table 2, the
interactions between hydrogen and oxygen atoms, denoted as H· · ·O, contribute to around
5.8% of the overall molecular forces. However, contrary to what is commonly observed,
these interactions are not strong hydrogen bonds. Instead, they are weak intermolecular
interactions, less potent than hydrogen bonds but still contributing stability to the crystal
structure. These weak H· · ·O interactions arise from the electrostatic attraction between
hydrogen and the more electronegative oxygen atoms, influencing the physical properties
of the crystal, including characteristics such as melting and boiling points.

Similarly, the hydrogen–nitrogen (H· · ·N) interactions, accounting for approximately
14.1% of the total intermolecular forces, are not the strong hydrogen bonds often seen in
biological structures. Instead, these are weaker intermolecular forces, resonating with the
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overall weak interaction theme seen in the crystal packing of the investigated compound.
Despite their relative weakness, these H· · ·N interactions play a significant role in stabi-
lizing and defining the shape of the crystal structure. The interactions between hydrogen
and carbon atoms, denoted as H· · ·C interactions, account for approximately 12.8% of
the overall contribution to the stability of the crystal structure. These interactions are
commonly associated with van der Waals forces, which, although weaker than hydrogen
bonds, still play a significant role in maintaining the structural integrity of the crystal.

The carbon–carbon (C· · ·C) interaction within the crystal structure, contributing 15.5%
according to the provided data, plays a pivotal role in maintaining the stability and influenc-
ing the properties of the crystal structure. Given that this structure includes aromatic rings,
a significant portion of these C· · ·C interactions are likely due to π–π stacking. These π–π
stacking interactions, arising from overlapping p-orbitals in adjacent aromatic rings, can
significantly affect the way in which the molecules pack within the crystal structure, often
leading to a more closely packed and stable arrangement. Additionally, these interactions
may have a notable impact on other properties of the crystal, such as its light absorption
and emission characteristics, which are an important consideration in the area of optical
materials. In brief, the H· · ·H contact holds primary importance inside the crystal structure,
whereas the remaining interactions also exert a substantial influence on the crystal’s charac-
teristics and stability. Gaining a comprehensive understanding of the intricate dynamics
of these interactions might yield useful insights into the behavior of the material across
various conditions.

2.3. Energy Frameworks

The energy framework is an essential tool used to comprehend the various energy
forms that play a role in the supramolecular assembly of molecules within a crystal [33]. The
energy framework calculations in this study were conducted using the CrystalExplorer 17
software, which is widely acknowledged as a reliable tool for this specific investigation. The
computations utilized a B3LYP/6-31G(d,p) functional basis set, which is widely recognized
and employed in the field of computational chemistry. The calculation of interaction
energies was performed for a cluster with a radius of 3.8 Å centered around a solitary
molecule of the substance under investigation. The selected scale factors aligned with
previously published values [29,30,33].

The three-dimensional energy frameworks in Figure 10 and Table 6 illustrate the
molecules surrounding the central molecule (depicted by a black ball and stick model)
within a default radius of 3.8 Å. These molecules are color-coded for clarity. The energy
frameworks for the primary compound were developed using default red-, green-, and
blue-colored solid cylinders, representing Coulombic or classical electrostatic energy (Eele),
dispersion energy (Edis), and total energy components (Etot), respectively. These frame-
works, as displayed in Figure 10, are visualized along the crystallographic a, b, and c axes
for the molecules under examination. Upon detailed examination of Figures 10 and 11, one
can notice that the cylinder representing the dispersion energy is noticeably thicker than
the cylinders corresponding to the other energy types. The larger size of the dispersion
energy cylinder is indicative of the substantial contribution of dispersion intermolecular
interactions to the energy framework of the crystal.

The varying thickness of the solid cylinders in each energy framework signifies the
relative interaction strength between their constituent molecular units, which is further
substantiated by the noticeably higher negative energy values (refer to Table 4).

Furthermore, these tables also detail a color-coding scheme for molecules interacting
at different Cartesian coordinates, and they provide information about the number of
interacting pairs with the central molecule (N), their molecular centroid distance (R), and
the rotational symmetry operation (symmetry). These details are crucial in calculating
the lattice energy of a crystal. The interaction energy calculations within the molecule’s
cluster indicate that the highest total interaction energy (Etot − 54.31 kJ/mol) is linked to
two molecules (signified by an orange color in Figures 9–11). These molecules, with the
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symmetry operation (x, y, z), are positioned above and below the plane of the primary
molecule at a molecular centroid distance (R) of 3.9 Å, resulting from π–π stacking interac-
tions (Figure 11). The second highest total interaction energy (−27.85 kJ/mol) is associated
with two molecules (depicted by a sky color in Figures 9–11). These molecules, with the
symmetry operation (x + 1/2, −y + 1/2, −z), are located at the sides of the molecule at a
distance of 8.28 Å (Figure 11). They result from the weak intermolecular interactions of
N2· · ·H2–C2 and N2· · ·H13–C13.
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Table 6. The component is presented in the form of interaction energies for the tested molecule,
measured in kilojoules per mole (kJ/mol). ‘N’ represents the number of surrounding molecules
relative to the original molecule, identified by the respective color code. ‘R’ signifies the distance
between the centroids of the molecules, calculated as the mean atomic position.

N Symop R Electron
Density Eele Epol Edis Erep Etot

2 −x, −y, z 10.44 B3LYP/6-
31G(d,p) −0.9947 −0.4697 −7.6196 5.1944 −4.8259

2 x, y, z 3.90 B3LYP/6-
31G(d,p) −2.0088 −3.5951 −95.9593 55.0986 −54.3109

1 −x, −y, z 9.69 B3LYP/6-
31G(d,p) −2.7551 −0.8832 −19.1408 10.9829 −13.4501

2 −x + 1/2, y +
1/2, −z 12.77 B3LYP/6-

31G(d,p) −0.8316 −0.3984 −8.7222 0.0000 −8.7693

2 −x + 1/2, y +
1/2, −z 13.03 B3LYP/6-

31G(d,p) −2.8150 −0.2619 −7.7392 0.0000 −9.9093

2 x + 1/2, −y +
1/2, −z 8.28 B3LYP/6-

31G(d,p) −13.6349 −6.3419 −28.7381 26.3618 −27.8500

2 x + 1/2, −y +
1/2, −z 9.60 B3LYP/6-

31G(d,p) −7.7203 −3.2340 −8.5227 5.6320 −14.4981

2 x + 1/2, −y +
1/2, −z 8.67 B3LYP/6-

31G(d,p) 0.1625 −0.6978 −11.9824 6.7784 −6.5917

1 −x, −y, z 14.38 B3LYP/6-
31G(d,p) 1.5232 −0.1605 −3.1131 0.0000 −1.2192
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Table 7. Comparison of bond lengths (in Ångstroms) between experimental values from X-ray
diffraction and theoretical predictions using B3LYP, WB97XD, and B3PW91 with the 6-311G(d,p)
basis set for the compounds.

Length/Å Experimental Theoretical (DFT) Absolute Error

Atom SC-XRD B3PW91 wb97xd b3lyp B3PW91 wb97xd b3lyp

O1—C5 1.3583(19) 1.331 1.3397 1.43 0.0273 0.0186 0.0717

O1—C6 1.437(2) 1.4243 1.4345 1.43 0.0127 0.0025 0.007

N1—C1 1.359(2) 1.3419 1.3485 1.3948 0.0171 0.0105 0.0358

N1—C5 1.311(2) 1.3139 1.317 1.3951 0.0029 0.006 0.0841

N2—C7 1.147(2) 1.1516 1.1558 1.1466 0.0046 0.0088 0.0004

C1—C2 1.388(2) 1.3888 1.395 1.3952 0.0008 0.007 0.0072

C1—C8 1.485(2) 1.4846 1.4843 1.54 0.0004 0.0007 0.055

C2—C3 1.397(2) 1.3956 1.4 1.3947 0.0014 0.003 0.0023

C3—C4 1.400(2) 1.3966 1.4057 1.3954 0.0034 0.0057 0.0046

C3—C14 1.487(2) 1.4829 1.4851 1.54 0.0041 0.0019 0.053

C4—C5 1.411(2) 1.4124 1.4198 1.3948 0.0014 0.0088 0.0162

C4—C7 1.435(2) 1.4272 1.4243 1.54 0.0078 0.0107 0.105

C8—C9 1.398(2) 1.3964 1.4025 1.3952 0.0016 0.0045 0.0028

C8—C13 1.397(2) 1.3966 1.4028 1.3948 0.0004 0.0058 0.0022

C9—C10 1.385(2) 1.3865 1.3899 1.3947 0.0015 0.0049 0.0097

C10—C11 1.390(2) 1.39 1.3939 1.3954 0 0.0039 0.0054

C11—C12 1.386(2) 1.3894 1.3934 1.3948 0.0034 0.0074 0.0088

C12—C13 1.380(2) 1.3876 1.3907 1.3951 0.0076 0.0107 0.0151

C14—C15 1.399(2) 1.395 1.4009 1.3952 0.004 0.0019 0.0038

C14—C19 1.395(2) 1.396 1.4022 1.3948 0.001 0.0072 0.0002

C15—C16 1.388(2) 1.3878 1.3913 1.3947 0.0002 0.0033 0.0067

C16—C17 1.382(2) 1.3893 1.3929 1.3954 0.0073 0.0109 0.0134

C17—C18 1.386(2) 1.3894 1.3932 1.3948 0.0034 0.0072 0.0088

C18—C19 1.386(2) 1.3875 1.391 1.3951 0.0015 0.005 0.0091

Mean Absolute Error (MAE) 0.004825 0.006538 0.022013

The weakest interaction is with two violet–colored molecules at a molecular centroid
distance (R) of 14.38 Å and with the symmetry operation (−x, −y, z), indicating the lowest
total interaction energy (−1.22 kJ/mol). As anticipated, in the molecule’s cluster, the total
interaction energies are weaker for molecules at longer centroid distances, aligning with
the principles of electrostatics.

Additionally, the conversion factors (kele, kdis, kpol, and krep) for total energies
are only reported for two benchmarked energy models of electron density functions (CE-
HF. . .HF/3-21G and CE-B3LYP . . . B3LYP/6-31G(d,p)), and these are appropriately scaled
(shown under Table 4). From the overall study of energy frameworks, it emerges that
the dispersion energy (Edis) components dominate the classical electrostatic energy (Eele)
frameworks (Figure 11).
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Figure 11. This figure presents the energy components for the examined compound, as viewed along
the crystallographic a, b, and c axes. The thickness of the solid cylinders within the framework
corresponds to the magnitude of the interaction energies between pairs of molecules. In the total
energy frameworks, the molecules represented in orange and blue denote the highest interaction
energy, which is −54.3109 kJ/mol, as detailed in Tables 6 and 7.

The 2-methoxy-4,6-diphenylnicotinonitrile molecule, in its crystalline form, boasts a to-
tal interaction energy of −141.43 kJ mol−1, a cumulative product of various energy contribu-
tions. Among these contributions is the electrostatic energy, amounting to −29.07 kJ mol−1,
which signifies the energy associated with the interaction of the molecule’s charged compo-
nents, with a negative value indicating the presence of attractive forces. Polarization energy,
at −16.04 kJ mol−1, corresponds to the molecule’s ability to modify its electron cloud in
response to the nearby presence of other molecules. Dispersion energy, alternatively known
as van der Waals or London dispersion forces, is set at −191.54 kJ mol−1 and represents
the energy resulting from temporary correlations within the electron movements of the
interacting molecules. Lastly, the repulsion energy, amounting to 110.05 kJ mol−1, is indica-
tive of the repulsive forces that arise when the electron clouds of the interacting molecules
come into close proximity, as demonstrated by its positive value. In the 2-methoxy-4,6-
diphenylnicotinonitrile crystal, the most potent force is the dispersion energy, given its
magnitude of −191.54 kJ mol−1, which indicates that the transient correlations in electron
movement between interacting molecules play a crucial role in the overall stability of the
crystal structure (Figure 11).
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In a study by Mackenzie et al. [33], scale factors corresponding to the data in Table 6
were presented for two benchmarked energy models. For the CE-HF model utilizing HF/3-
21G electron densities, the assigned scale factors were k_ele = 1.019, k_pol = 0.651, k_disp
= 0.901, and k_rep = 0.811. Similarly, for the CE-B3LYP model incorporating B3LYP/6-
31G(d,p) electron densities, the scale factors were k_ele = 1.057, k_pol = 0.740, k_disp =
0.871, and k_rep = 0.618. These factors play a crucial role in adjusting the components of
interaction energy in computational chemistry models.

Based on the provided results in Figure 12, two primary interactions are presented:
π–π stacking and weak intermolecular interactions involving N2 with H2–C2 and H13–C13.
Analyzing the energy contributions, we can observe the following.

1. For the π–π stacking interaction, the electrostatic term is −2.01, while the dispersion
term significantly contributes with a value of −95.96. The combination of both these
interactions leads to a substantial total energy term of −54.31. This suggests that the
π–π stacking interaction is predominantly stabilized by the dispersion forces, which
are known to be critical for π systems. While the electrostatic contribution is minimal
in this context, it still plays a role in determining the overall energy of the interaction.

2. For the weak intermolecular interactions involving N2, the electrostatic contribution is
−13.63, which is notably higher in magnitude than that observed for π–π stacking. The
dispersion term for this interaction is −28.74, which, while still significant, is considerably
less dominant than its counterpart in the π–π stacking. The total energy term for this
interaction is −27.85, indicating that both electrostatic and dispersion interactions are
nearly equally contributing to the stability of these weak intermolecular contacts.
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Figure 12. The figure presents interaction energies for the title compound as calculated using the CE-
B3LYP model. Evident from the interaction energies table, the dominant interaction occurs through
the π–π stacking motif between the central molecule (highlighted in yellow mesh) and its x, y, z
symmetry-related molecule (depicted in orange), yielding an interaction energy of −54.3109 kJ mol−1.
Subsequently, the second most robust interaction is characterized by an energy of −27.85 kJ mol−1,
involving the N2· · ·H2–C2, N2· · ·H13–C13 motifs (indicative of weak intermolecular interactions)
between the central molecule and the x + 1/2, −y + 1/2, −z symmetry-related molecule (represented
in dodger blue). The cylinders are color-coded as red, green, and blue, signifying the electrostatic
term, dispersion term, and total energy term, respectively. Additionally, the thickness of the solid
cylinders corresponds to the magnitude of interaction energies between molecular pairs.
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In summary, while the π–π stacking is largely governed by dispersion forces, the weak
intermolecular interactions are more balanced in their energy contributions, with both
electrostatic and dispersion terms playing important roles.

2.4. Density Functional Theory (DFT) Computations
2.4.1. Optimization of the Structure

The geometric optimization of the molecular structure of the compound was conducted
at two different theory levels, DFT/B3PW91/6-311G(d,p), DFT/WB97XD/6-311G(d,p), and
DFT/B3LYP/6-311G(d,p). These optimized structures are visually presented in Figure 13.
The bond lengths and angles calculated from all theoretical levels were then juxtaposed
with the experimental data derived from X-ray diffraction, as documented in Table 7. An
in-depth examination of Table 7 reveals a compelling comparison of the experimental
and theoretical bond lengths. Impressively, the study shows stronger alignment between
the experimental values and the calculations made with DFT/B3PW91/6-311G(d,p) and
DFT/WB97XD/6-311G(d,p) than with DFT/B3LYP/6-311G(d,p). This finding underscores
the superior reliability of the DFT/B3PW91/6-311G(d,p) and WB97XD function over the
B3LYP in these particular theoretical calculations. The reliability of the B3PW91 and
WB97XD function is further substantiated by the mean absolute error (MAE) calculations.
The MAE for B3PW91 and WB97XD is noted to be 0.004825 and 0.0065375, which is
significantly lower than the MAE for B3LYP, recorded as 0.0220125. This result suggests
that the B3PW91 and WB97XD methods provide a more accurate prediction of the molecular
geometry, reflecting a closer correspondence with the experimental data. Therefore, for
theoretical calculations involving this particular compound, the B3PW91 and WB97XD
function appears to be the more reliable choice [34].
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Figure 13. Overlapping of the X-ray crystal structure with the optimized structure of the compound.
(A) The superimposed structures using the [WB97XD/6-311G(d,p)] optimized basis set, where the
X-ray crystal structure is depicted in green and the theoretical structure in violet. (B) The aligned
structures employing the [B3LYP/6-311G(d,p)] optimized basis set, with the X-ray crystal structure
again illustrated in green and the theoretical structure in violet.

Table 8 presents a detailed comparison between the experimental bond angles and
those obtained from the molecular structure’s geometric optimization. The correlation
between the experimental data and the values produced by the WB97XD and B3PW91
functions is notably stronger than with the B3LYP function. This observation is solidified
by the mean absolute error (MAE) values: 0.386275◦ for WB97XD, 0.42631875◦ for B3PW91,
and a notably higher 1.62583125◦ for B3LYP. A smaller MAE signifies that the theoretical
prediction closely mirrors the experimental data. Consequently, the considerably reduced
MAE for WB97XD and B3PW91 indicates that their predictions align better with the
experimental observations. Therefore, the WB97XD and B3PW91 functions are more
reliable than the B3LYP in predicting this compound’s molecular structure’s bond angles,
making them preferable for theoretical geometric optimization.
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Table 8. Comparison of bond angles (in degrees) between experimental values obtained from X-ray
diffraction and theoretical predictions using B3LYP, WB97XD, or B3PW91 with the 6-311G(d,p) basis
set for the compounds.

Angle/◦ Experimental Theoretical (DFT) Absolute Error

Atoms SC-XRD B3PW91 wb97xd b3lyp B3PW91 wb97xd b3lyp

C5—O1—C6 116.07(13) 117.6143 118.0351 109.5 1.5443 1.9651 6.57

C5—N1—C1 117.68(14) 118.9425 119.0151 120 1.2625 1.3351 2.32

N1—C1—C2 121.80(15) 121.6597 121.2835 119.9985 0.1403 0.5165 1.8015

N1—C1—C8 115.97(14) 116.191 116.4997 120.0043 0.221 0.5297 4.0343

C2—C1—C8 122.23(14) 122.1361 122.2057 119.9972 0.0939 0.0243 2.2328

C1—C2—C3 120.49(15) 120.1082 120.599 120.0086 0.3818 0.109 0.4814

C2—C3—C4 117.52(15) 117.8936 117.65 119.9942 0.3736 0.13 2.4742

C2—C3—C14 119.74(15) 119.6337 119.6121 120.0128 0.1063 0.1279 0.2728

C4—C3—C14 122.74(15) 122.4719 122.7377 119.993 0.2681 0.0023 2.747

C3—C4—C5 117.62(15) 117.7392 117.5435 119.994 0.1192 0.0765 2.374

C3—C4—C7 123.46(15) 122.9391 123.3874 119.9811 0.5209 0.0726 3.4789

C5—C4—C7 118.89(15) 119.3067 119.0467 120.0249 0.4167 0.1567 1.1349

O1—C5—C4 115.69(14) 116.5456 116.1911 120.0113 0.8556 0.5011 4.3213

N1—C5—O1 119.45(15) 119.8054 119.9158 119.984 0.3554 0.4658 0.534

N1—C5—C4 124.86(15) 123.6463 123.8904 120.0047 1.2137 0.9696 4.8553

N2—C7—C4 178.56(19) 179.8173 179.2402 180 1.2573 0.6802 1.44

C9—C8—C1 120.03(14) 119.5014 119.8124 119.9972 0.5286 0.2176 0.0328

C13—C8—C1 121.52(15) 121.7039 121.764 120.0043 0.1839 0.244 1.5157

C13—C8—C9 118.44(15) 118.7942 118.4223 119.9985 0.3542 0.0177 1.5585

C10—C9—C8 120.84(16) 120.5916 120.7559 120.0086 0.2484 0.0841 0.8314

C9—C10—C11 120.12(16) 120.1896 120.2645 119.9942 0.0696 0.1445 0.1258

C12—C11—C10 119.29(16) 119.6758 119.5661 119.994 0.3858 0.2761 0.704

C13—C12—C11 120.81(17) 120.1707 120.2242 120.0047 0.6393 0.5858 0.8053

C12—C13—C8 120.49(16) 120.5715 120.7626 120 0.0815 0.2726 0.49

C15—C14—C3 121.35(15) 121.4162 121.4486 119.9972 0.0662 0.0986 1.3528

C19—C14—C3 119.47(14) 119.384 119.7933 120.0043 0.086 0.3233 0.5343

C19—C14—C15 119.15(15) 119.193 118.7431 119.9985 0.043 0.4069 0.8485

C16—C15—C14 119.70(16) 120.2317 120.4784 120.0086 0.5317 0.7784 0.3086

C17—C16—C15 120.56(16) 120.2587 120.3076 119.9942 0.3013 0.2524 0.5658

C16—C17—C18 120.19(15) 119.8341 119.7065 119.994 0.3559 0.4835 0.196

C17—C18—C19 119.64(16) 120.0176 120.0971 120.0047 0.3776 0.4571 0.3647

C18—C19—C14 120.72(15) 120.4614 120.6642 120 0.2586 0.0558 0.72

Mean Absolute Error (MAE) 0.42631875 0.386275 1.625831

2.4.2. Global Reactivity Descriptors for the Investigated Compound

The analysis of the global reactivity descriptors for 2-methoxy-4,6-diphenylnicotinonitrile
provides insightful information about its chemical reactivity and stability, as well as its
potential interactions with other compounds. These indices were calculated through
conceptual density functional theory (CDFT), which provides a theoretical framework for
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an understanding of the electronic structures of molecular systems. As shown in Table 9,
the vertical ionization potential (IP) of the compound is 7.7691 eV. This value quantifies the
minimum energy required to remove an electron from the molecule, indicating the stability
of the compound towards oxidation. A high IP generally suggests a lower tendency to lose
an electron and, hence, lower reactivity. The vertical electron affinity (EA) of the compound,
which measures the energy change when an additional electron is added to the molecule,
is relatively low (0.3931 eV). This suggests that the compound is not particularly prone to
reduction. The Mulliken electronegativity of the molecule is 4.0811 eV. Electronegativity is
a measure of the ability of an atom or molecule to attract electrons. Higher electronegativity
suggests a stronger ability to attract electrons. The chemical potential is −4.0811 eV, which
is equivalent to the negative of the Mulliken electronegativity. This descriptor reflects the
tendency of the molecule to accept or donate electrons. A lower (more negative) chemical
potential suggests higher reactivity. The calculated hardness of the molecule is 7.3759 eV;
this measures the resistance of the molecule to changes in electron configuration. Higher
hardness indicates greater stability and lower reactivity. In contrast, the softness, which is
the reciprocal of the hardness, is 0.1356 eV−1. Higher softness suggests higher reactivity.
The electrophilicity index is 1.1290 eV; it is a measure of the propensity of the molecule to
accept electrons (i.e., to act as an electrophile). A higher electrophilicity index indicates the
higher likelihood of the molecule to be attacked by nucleophiles. Finally, the nucleophilicity
index is 2.8345 eV. This descriptor provides an indication of the ability of the molecule to
donate electrons (i.e., to act as a nucleophile). A higher nucleophilicity index suggests a
greater tendency for the molecule to attack electrophiles [35–37].

Table 9. Evaluated compounds’ global reactivity descriptor values (expressed in eV), computed
utilizing the wB97X-D/6.31G (d,p) theoretical model.

Vertical IP
(eV)

Vertical EA
(eV)

Mulliken
Electronegativity

(eV)

Chemical
Potential

(eV)

Hardness
(eV)

Softness
(eV−1)

Electrophilicity
Index
(eV)

Nucleophilicity
Index
(eV)

7.7691 0.3931 4.0811 −4.0811 7.3759 0.1356 1.1290 2.8345

2.4.3. Analysis of Local Reactivity Indices for the Examined Molecule

The local reactivity descriptors, specifically the electrophilic P+
k and nucleophilic P−

k
Parr functions, provide valuable insights into the reactivity behavior at the atomic level
for the 2-methoxy-4,6-diphenylnicotinonitrile compound. These functions offer a detailed
understanding of how each atom within the compound behaves in terms of electrophilic
and nucleophilic reactivity.

The electrophilic Parr function P+
k measures the propensity of an atom to accept an

electron pair (i.e., act as an electrophile). From the provided data, C4 has the highest
electrophilic Parr function value (9.618), indicating that this carbon atom is the most likely
to accept an electron pair, thereby making it the most electrophilic site within the compound;
see Figure 14A.

On the other hand, the nucleophilic Parr function P−
k provides an indication of the

tendency of an atom to donate an electron pair (i.e., act as a nucleophile). In this case, C1
has the highest nucleophilic Parr function value (6.829), suggesting that this carbon atom is
the most likely site for electron pair donation, making it the most nucleophilic site within
the molecule; see Figure 14B.

Interestingly, some atoms show a significant difference between their electrophilic
and nucleophilic tendencies. For instance, C2 has a high electrophilic value (5.788) and a
negative nucleophilic value (−2.458), demonstrating that this atom is more prone to accept-
ing electrons rather than donating them. Conversely, C3 shows a negative electrophilic
value (−3.521) and a high nucleophilic value (5.293), suggesting that this atom is more
likely to donate electrons rather than accept them. Overall, these local reactivity descriptors
allow us to identify the most reactive sites within the 2-methoxy-4,6-diphenylnicotinonitrile
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compound and understand their behavior in potential chemical reactions. This information
can be particularly useful in predicting the compound’s interactions with other molecules
and its behavior in various chemical environments (Table 10).
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Table 10. Computed local electrophilic P+
k and nucleophilic P−

k Parr functions derived from Mulliken
atomic spin densities for the investigated molecules.

Atoms P+
k P−

k

C1 0.5642 6.829

C2 5.788 −2.458

C3 −3.521 5.293

C4 9.618 5.372

C5 −0.047 −0.941

N7 −0.332 2.558

O8 2.468 −0.084

C9 0.266 0.0119

C13 −2.552 −0.833

N14 4.712 3.193

C15 0.871 −0.194

C16 −0.325 0.841

C17 −0.005 1.176

C18 0.270 −0.366

C20 −0.01592 −0.53473

C22 0.316333 1.631732

C26 3.001526 −0.09676

C27 1.516165 2.361079

C28 1.541635 2.098325

C29 −0.80325 −1.1757

C31 −0.79917 −1.06386

C33 4.678211 3.593401
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2.4.4. Frontier Molecular Orbitals (FMOs)

The frontier molecular orbitals (FMOs), specifically the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), are critical in
assessing a molecule’s chemical stability and electronic properties. These orbitals serve
as key determinants in molecular interactions with other chemical entities, providing
insights into the molecule’s reactivity and interaction potential. Figure 15 offers a detailed
visualization of these FMOs, enabling an in-depth exploration of the compound’s bonding
schemes and potential for electronic transitions.
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Figure 15. Visualization of the frontier molecular orbitals for the specified molecule, calculated using
the DFT methodology with the wB97XD functional and the 6-311G(d,p) basis set under gas-phase
conditions. Red color indicates positive electron density, while green color signifies negative electron
density. This display encompasses the highest occupied molecular orbital (HOMO) and its lower-
energy counterparts H–1, H–2, H–3, H–4, H–5, and H–6, as well as the lowest unoccupied molecular
orbital (LUMO) and its higher-energy counterparts L+1, L+2, and L+3. These visual representations
also highlight the major and minor contributions of atomic orbitals, facilitating a better understanding
of possible electronic transitions and interactions within the molecule.

The frontier molecular orbitals offer profound insights into the electronic behavior
and interactions of the specified molecule; see Table 11 and Figure 15. The first transition,
occurring at a wavelength of 283.9 nm and corresponding to an energy of 35227.9 cm−1,
boasts a significant oscillator strength of 0.5084. This suggests a high probability of this
transition. The dominant pathway for this transition is from the HOMO to the LUMO,
contributing 86% of the entire transition. Notably, the other minor contributions come from
the H–4 to LUMO and H–1 to LUMO transitions, contributing 2% and 4%, respectively.
This pronounced HOMO->LUMO transition emphasizes the molecule’s π–π* interaction, a
signature of conjugated systems.
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Table 11. Computed absorption wavelengths (λ, in nm), excitation energies (in eV), and oscillator
strengths (f) for the subject compound.

No. Energy (cm−1) Wavelength (nm) Osc. Strength Major
Contributors Minor Contributors

1 35,227.88 283.8661 0.5084 HOMO->LUMO
(86%)

H–4->LUMO (2%),
H–1->LUMO (4%)

2 40,377.73 247.6613 0.0355

H–5->LUMO
(38%),

H–2->LUMO
(19%)

H–4->LUMO (3%),
H–4->L+3 (2%),

H–3->LUMO (6%),
H–2->L+1 (2%),

H–1->LUMO (6%),
HOMO->L+1 (9%),
HOMO->L+3 (4%)

3 40,469.68 247.0986 0.0694

H–5->LUMO
(27%),

H–1->LUMO
(50%)

H–6->LUMO (2%),
HOMO->LUMO (4%),

HOMO->L+1 (7%)

The second transition, identified at an energy of 40,377.7 cm−1 and a wavelength
of 247.7 nm, has a modest oscillator strength of 0.0355. Predominantly, this transition
is governed by the H–5 to LUMO and H–2 to LUMO pathways, contributing 38% and
19%, respectively. Several minor pathways contribute to this transition, with particular
emphasis on the H–4 to LUMO and H-4 to L+3 transitions. These diverse contributors
signal varied electronic interactions within the molecule. The complex interplay suggests
potential overlaps between different orbital types, pointing towards mixed σ–π and π–π*
interactions.

Transition three, discerned at 247.1 nm or 40,469.7 cm−1, has an oscillator strength
of 0.0694. This transition prominently involves the H–5 to LUMO and H–1 to LUMO
pathways, with impressive contributions of 27% and 50%, respectively. Additionally, there
are minor contributions, notably the H–6 to LUMO and HOMO to L+1 transitions. The
significant presence of the H–1 to LUMO transition within this energy suggests extensive
electron transfer involving the molecular region associated with the H–1 orbital.

Collectively, these transitions and their contributing orbitals provide an intricate pic-
ture of the electronic structure of the molecule. The most dominant HOMO->LUMO
transition speaks to the molecule’s reactivity and its potential for π–π interactions. Mean-
while, the varied minor contributors in the following transitions illuminate the complex
electronic landscape of the molecule, indicative of a spectrum of bond types and molecular
orientations.

The energy differential between these orbitals, commonly referred to as the HOMO–
LUMO gap, offers insights into the molecular stability, reactivity, and electronic properties
of a compound [38]. A smaller HOMO–LUMO gap often indicates increased electrical
conductivity and diminished kinetic stability. The HOMO represents the molecule’s ca-
pacity to donate electrons, while the LUMO signifies its ability to accept electrons [39].
For the molecule under investigation, 75 out of the 480 molecular orbitals are occupied.
The presented Table 11 provides a detailed analysis of the molecular orbitals (MOs) of the
compound under investigation, specifically focusing on the distribution of electron density
between the phenyl group (C6H5) and 2-methoxy-nicotinonitrile (C7H3N2O) components
of the molecule. Each row of the table represents a specific molecular orbital, characterized
by its energy level (eV), symmetry (A), and the percentage contribution of each compo-
nent to the orbital. It also includes accurate values for the distribution of electron density.
Notably, the HOMO (75th orbital) and LUMO (76th orbital) are highlighted, with energy
levels of −8.41 eV and −0.4 eV, respectively. The electron density in the HOMO is majorly
contributed by the C7H3N2O component (66%), while, in the LUMO, it is reversed, with
C7H3N2O contributing 69%.
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The density of states (DOS) spectrum provides a comprehensive analysis of the energy
levels within a specified energy range, (∆E), as illustrated in Figure 16. When this spectrum is
integrated with contributions from distinct atomic or functional groups, it is referred to as the
partial density of states (PDOS), as delineated in Figures 15 and 16 and Table 12 [40]. Such data
facilitate the identification of the electronic contributions of diverse molecular fragments to both
the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO). Evidenced by Figures 16B and 17, the HOMO, anchored at −8.41 eV, predominantly
garners its attributes from the phenyl (C6H5) segment (r-ring (C), refer to Section 2.4.5.) and
the 2-methoxy-nicotinonitrile (C7H3N2O) fragment, contributing 34% and 66%, respectively.
Such dominance underscores the principal role that these groups play as electronic state occu-
piers, hinting at their potential electron-donating capacity in chemical interplays. In contrast,
Figures 15 and 16 and Table 12 elucidate that the LUMO, situated at −0.4 eV, predominantly
derives its characteristics from the same HOMO fragments, with contributions of 31% and
69%, respectively. This indicates that these molecular segments predominantly populate the
vacant electronic states, accentuating their potential as electron acceptors during molecular
interchanges. Notably, the phenyl fragment (A ring, reference Section 2.4.5.) offers minimal
contributions to both the HOMO and LUMO, as visualized in Figure 15.
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Figure 17. The figure presents a topology analysis for electron density on the title compound, opti-
mized at the WB97XD/6-311G(d,p) level of theory using the Multifunctional Wavefunction Analyser
(Multiwfn). The molecular structures illustrated include labels for rings and pseudorings, with the
phenyl rings represented by (A) and (C), and the six-membered ring of diphenylnicotinonitrile desig-
nated as (B). Orange spheres represent critical points for H-bonds, while yellow spheres correspond
to those for rings. Bond paths are denoted by brown lines, and the indices of Critical Points (CPs) are
labeled with blue numbers. These detailed renderings were generated using MULTIWFN.
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Table 12. Analysis of molecular orbitals, their energy levels, and electron density distribution between
C6H5 and C7H3N2O components of the molecule. The table provides detailed data for the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), alongside
other significant orbitals.

MO eV Symmetry C6H5 C7H3N2O Accurate Values

6 L+10 3.74 A 72 28 0.719 0.281

85 L+9 3.59 A 46 54 0.455 0.545

84 L+8 3.32 A 87 13 0.867 0.133

83 L+7 3.12 A 21 79 0.21 0.79

82 L+6 3 A 77 23 0.77 0.23

81 L+5 2.06 A 69 31 0.695 0.305

80 L+4 1.85 A 49 51 0.487 0.513

79 L+3 1.39 A 98 2 0.98 0.02

78 L+2 1.34 A 97 3 0.965 0.035

77 L+1 0.67 A 50 50 0.497 0.503

76 LUMO −0.4 A 31 69 0.312 0.688

75 HOMO −8.41 A 34 66 0.342 0.658

74 H–1 −9.04 A 76 24 0.761 0.239

73 H–2 −9.33 A 98 2 0.978 0.022

72 H–3 −9.33 A 99 1 0.986 0.014

71 H–4 −9.6 A 56 44 0.558 0.442

70 H–5 −10.08 A 9 91 0.087 0.913

69 H–6 −10.51 A 29 71 0.287 0.713

68 H–7 −11.37 A 8 92 0.084 0.916

67 H–8 −11.76 A 28 72 0.284 0.716

66 H–9 −11.84 A 74 26 0.74 0.26

65 H–10 −11.93 A 77 23 0.769 0.231

2.4.5. Evaluating the Aromaticity and π–π Stacking Capability of the Analyzed Molecule

The objective of this study was to quantitatively evaluate the aromatic nature of the
molecule under consideration. To achieve this, various aromaticity indices, both electronic
and geometric-based, were used. The measurements obtained from these indices are
displayed in Table 13. Figure 17 presents the molecular structure diagrams, with distinct
labeling for rings and pseudorings. The results reveal that the Harmonic Oscillator Model
of Aromaticity (HOMA) values for the three rings in the molecule—the phenyl ring (A),
the diphenylnicotinonitrile six-membered ring (B), and the second phenyl ring (C)—are
0.995029, 0.961494, and 0.993422, respectively. The HOMA values for the phenyl rings A
and C are particularly noteworthy as they are significantly close to 1, suggesting a robust
aromatic character for these two rings. An essential aspect of the aromaticity analysis
is the Bird index calculation for the benzene rings (A and C), which are 97.17 and 96.64,
respectively. These values are markedly closer to the ideal value of 100 compared to the
Bird index for the pyridine ring (B), which is only 87.62. The difference in aromaticity
among the rings can be attributed to the disturbance in the cyclic π-electron delocalization.
This disturbance is caused by the effect of a phenyl group without substitution, which
seems to have a more significant impact on the pyridine ring.
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Table 13. Computed electronic and geometric aromaticity indices, together with LOLIPOP metric, for
the investigated molecules.

Rings
Shannon

Aromaticity
Index

Electron Density
Curvature HOMA Value LOLIPOP Value

Bird
Aromaticity

Index

A 2.13677 × 10−5 −0.015717083 0.995029 4.62163 97.174013

B 0.002116365 −0.018111547 0.961494 2.642712 87.617472

C 2.14365 × 10−5 −0.015807651 0.993422 5.569972 96.640669

The Shannon aromaticity indices (SAs) for rings A and C, as outlined in Table 13,
support the aromatic nature of these rings, as they are less than the defined threshold (SA
< 0.003). The antiaromatic behavior of the central pyridine ring, as indicated by its lower
HOMA value, is further reinforced by the electronic Shannon index. Its corresponding
SA value for ring B (0.002116365) is less than the antiaromatic benchmark of 0.005. The
curvature of the electron density measurements offers another layer of validation for the
aromaticity assessments. A more negative curvature correlates with increased aromaticity,
consistent with the other criteria of aromaticity.

Lastly, the Long-Range Order Parameter (LOLIPOP) is particularly enlightening, given
the direct correlation established between its values and π-stacking ability. The inverse
relationship between LOLIPOP values and π-depletion propensity implies that a lower
LOLIPOP value suggests a stronger π-stacking capacity. Therefore, ring B, with its lower
LOLIPOP value compared to rings A and C, possesses a stronger propensity for π-stacking,
potentially making it more interactive with other aromatic systems and more suitable for
applications requiring π interactions [41,42].

2.4.6. Electrostatic Potential Representation of the Molecule (MEP)

In the analysis of the molecular electrostatic potential (MEP) for 2-methoxy-4,6-
diphenylnicotinonitrile, the charge distribution across the molecule offers insights into
specific reactivity sites, as visualized in Figure 18. The MEP values range between
−5.954 × 10−2 and +5.954 × 10−2 atomic units (au). Intensely red regions represent
areas with pronounced negative MEP values, signifying electron-rich domains. Specifi-
cally, these nucleophilic sites are evidenced in areas surrounding the nitrogen atom of the
cyano group, rendering it susceptible to electrophilic attacks. On the other hand, deep
blue regions indicate areas with high positive MEP values, marking electron-deficient or
electrophilic sites. Several hydrogen atoms within the molecule lie in these blue domains,
suggesting that they are potential targets for interactions with electron-rich nucleophiles.
Intermediate green regions on the MEP map demarcate zones of relative electronic stability,
signifying areas with balanced charge distributions and, consequently, reduced reactivity.

Comparing this MEP analysis with the Frontier molecular orbitals (FMOs) offers an in-
depth view of the molecule’s reactivity. While the FMOs provide a picture of the molecule’s
possible electronic transitions, especially transitions between the HOMO and LUMO, the
MEP directly visualizes areas prone to specific chemical interactions. For instance, regions
identified as nucleophilic in the MEP analysis might correlate with areas where the HOMO
is densely populated, while electrophilic regions might align with areas dominated by the
LUMO. Together, the MEP and FMO analyses can elucidate potential bond interactions,
further refining the understanding of the molecule’s interactions in different chemical
environments [29,43,44].
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2.5. Molecular Docking Studies

Molecular docking simulations offer insights into the binding characteristics and
interactions between molecules and their target proteins, shedding light on the structure–
activity relationships. In this research, docking studies employed the MOE 2015.10 software,
sourced from the Chemical Computing Group Inc., Montreal, QC, Canada. A validation
procedure was executed by re-docking the target molecule, lipoprotein-associated phospho-
lipase A2 (Lp-PLA2) and its co-crystalline ligand to ensure accuracy in predicting binding
orientations.

The title compound was subjected to molecular docking against Lp-PLA2. The ratio-
nale behind this selection of the target stemmed from research by Jackson et al. [11], which
highlighted the activity of molecules belonging to the same class as our title compound.
The results showed noteworthy interactions between the title compound and several amino
acids in the active site of Lp-PLA2. For instance, the nitrogen atom (N19) of the pyridine
group in the title compound established a hydrogen bond interaction with GLN 352’s
NE2 atom, while the nitrogen (N36) of the cyano group showed interactions with both
LEU 153 and PHE 274. This interaction agrees with the conclusions of the MEP and FMO
studies. Furthermore, the 6-ring (pyridine ring) of the title compound demonstrated a
π–H interaction with PHE 110 (Figure 19A,B and Table 14). This interaction agrees with
the conclusions of the aromaticity study. These specific interactions play a crucial role in
determining the molecule’s binding affinity and stability.
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Table 14. Binding affinities and molecular interactions between the designated compound and
Lp-PLA2 (PDB ID: 6M07).

Ligand Receptor Interaction Distance E (kcal/mol) Score
(kcal/mol)

N 19 NE2 GLN 352 (A) H-acceptor 3.56 −0.8

−7.05
N 36 N LEU 153 (A) H-acceptor 2.85 −4.2

N 36 N PHE 274 (A) H-acceptor 3.39 −2.8

6-ring CZ PHE 110 (A) pi-H 3.83 −1.3

Delving deeper into the title compound’s molecular properties, the electrostatic poten-
tial representation (MEP) offers an understanding of the molecule’s electrostatic attributes,
revealing regions of positive and negative electron density. This can elucidate how the
molecule might interact with a target protein’s polar or charged residues. Concurrently,
examining the frontier molecular orbitals (FMOs) can shed light on the compound’s reactive
regions and potential electron donor or acceptor sites, which can further contribute to its
binding mode and strength of interaction with Lp-PLA2.

2.6. Molecular Dynamic Simulation
2.6.1. Root Mean Square Deviation (RMSD)

Analysis of the molecular dynamic simulation’s root mean square deviation (RMSD)
provides insights into the structural flexibility and conformational changes of the title
molecule when in complex with a protein, as compared to the native protein’s inherent
flexibility.

For the protein complexed with the title molecule, the average RMSD value was
1.098, suggesting a stable interaction with the protein. This is further supported by the
relatively small standard deviation (0.08). Interestingly, this value is slightly lower than
that observed for the native protein, which had a mean RMSD of 1.366, indicating that
the protein structure becomes somewhat more stabilized upon interaction with the title
molecule (Figure 20A).
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Figure 20. RMSD analysis of the title molecule’s interaction with the protein. (A) presents overall
protein stabilization upon ligand binding. (B) emphasizes enhanced stabilization in coil and turn
regions of the complex, while (C) depicts consistent beta-sheet flexibility and notable alpha-helix
stabilization.

Delving deeper into the secondary structures, the alpha-helix in the complex showed
a mean RMSD of 1.292, which is significantly lower than the 1.57 observed for the native
protein, suggesting that the helical regions might experience more pronounced stabilization
due to the ligand binding. Conversely, the beta-sheet regions seem to maintain similar
flexibility in both the complex (RMSD of 0.559) and the native protein (RMSD of 0.56)
(Figure 20C).

For the turn regions of the complex, the RMSD mean was 0.934, higher than the 0.805
seen in the native protein. This suggests that the ligand binding might be introducing slight
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perturbations or flexibility in the turn regions. The coil regions in the complex presented
an RMSD of 1.193, which, like the alpha-helix, is lower than the native protein’s RMSD
of 1.505 (Figure 20B). This highlights a trend where specific structural domains, like the
alpha-helix and coil, become more stabilized upon ligand binding, which could be crucial in
understanding the molecular underpinnings of ligand recognition and binding specificity.

2.6.2. Root Mean Square Fluctuations (RMSF)

Root mean square fluctuation (RMSF) values offer a glimpse into the flexibility ex-
hibited by individual amino acids in a given protein. Typically, the amino acid residues
interacting directly with the ligand tend to have diminished RMSF values. The rationale
behind this is straightforward: the ligand’s interaction enforces a certain level of rigidity on
the protein, and, consequently, residues exhibiting low RMSF values can indicate a strong
restrictive influence by the ligand. This, in turn, might suggest that the ligand has higher
inhibitory potential against its protein target [45].

In our current investigation, as depicted in Figure 21, the molecular dynamic simu-
lation (MDS) analysis of Lp-PLA2 interacting with the title compound illustrates notably
subdued fluctuations among individual amino acids, especially when juxtaposed against
other simulation data. Remarkably, amino acids in the region of 106–120 showed the most
pronounced reduction in fluctuations compared to their counterparts in native protein
simulations. For context, the native protein Lp-PLA2 exhibited an RMSF value of 0.293 Å
for Arg-82, a value of 1.243 Å for Phe-110, and the peak value being 2.27 Å for His-114. In
stark contrast, when bound to the title compound, these values shift to a mere 0.303 Å for
Arg-82, 0.61 Å for Phe-110, and 1.01 Å for His-114.
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Figure 21. RMSF plot for a 50 ns MDS of both native and complex proteins. The x-axis denotes the
protein residues while the y-axis showcases the RMSF values (in nm). Colors are differentiated as
follows: native (in red) and complex (in blue).

These observations not only underscore the ligand’s ability to impart rigidity to
the interacting residues but also suggest that these residues, which engage through pi–H
interactions with Phe-110 (Figure 19), resonate well with findings from the Hirshfeld surface
analysis and density functional theory. Collectively, based on the presented RMSF data, the
title compound emerges as a potent contender, manifesting remarkable restraints on the
target protein’s flexibility and implying its high inhibitory capability against Lp-PLA2.

2.6.3. Radius of Gyration (Rg)

The radius of gyration (Rg) is a pivotal parameter in molecular dynamic simulations
that provides insights into the overall compactness and shape of a protein. Essentially, it
evaluates the mass-weighted root mean square distance of a collection of atoms (in this
context, the protein’s backbone) from their collective center of mass. A consistent Rg value
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throughout a simulation suggests structural stability, while significant deviations might
indicate conformational changes or unfolding events.

In our analysis, the Rg values for both the native protein and the complex system were
found to be remarkably close, with the native protein registering an Rg value of 19.737 nm
and the complex system slightly less at 19.728 nm (Figure 22). Such proximate values
suggest that the binding of the ligand (forming the complex) did not lead to any substantial
alteration in the overall compactness of the protein, implying that the inherent structural
integrity of the protein was retained after ligand binding. This observation is of particular
importance, as it indicates that the ligand’s interaction with the protein did not induce
any drastic structural perturbations that might have otherwise compromised the protein’s
functionality or stability.
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2.6.4. Hydrogen Bond Analysis

Hydrogen bonds play a pivotal role in stabilizing protein–ligand interactions. In the
50 ns MDS study, there were instances of up to six hydrogen bonds, but, on average, one
bond persisted throughout (Figure 23A). The consistent hydrogen bond suggests a stable
interaction over the simulation duration. In Figure 23B, detailed analysis reveals that
LEU153, contributing mainly through the main chain, is the most dominant in forming
hydrogen bonds, showcasing an occupancy of 55.78%. Other residues, such as PHE274-
Main and GLY152-Main, exhibit transient interactions. Both main and side chain residues
participated in these bonds, underscoring the complexity of the ligand–protein interaction
dynamics in the system.
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2.7. ADMET and Physicochemical Property Prediction
2.7.1. Physicochemical Properties of 2-Methoxy-4,6-Diphenylnicotinonitrile

The compound 2-methoxy-4,6-diphenylnicotinonitrile exhibits a molecular weight of
286.11 Da, fitting comfortably within the acceptable range for drug-like molecules. It pos-
sesses three hydrogen bond acceptors and no donors, aligning with typical drug profiles. Its
moderate flexibility is demonstrated by its three rotatable bonds, and its structural integrity
is further suggested by its 3 rings and 19 rigid bonds. The compound’s topological polar
surface area (TPSA) of 45.91 Å2 suggests a good balance between membrane permeability
and solubility. However, concerns arise from its aqueous solubility value (logS) of −5.979
and high n-octanol/water distribution coefficient (logP) of 4.693, indicating limited water
solubility and increased lipophilicity, respectively.

In the context of drug development rules, the compound adheres to Lipinski’s Rule
of Five, indicating that it possesses characteristics commonly associated with orally active
drugs. However, it does not conform to the Pfizer and GSK rules, suggesting potential
challenges in drug development according to these specific guidelines.

In essence, while 2-methoxy-4,6-diphenylnicotinonitrile showcases properties indica-
tive of drug-like molecules, its pronounced lipophilicity and reduced solubility might pose
challenges in drug formulation.

2.7.2. ADMET Prediction of 2-Methoxy-4,6-Diphenylnicotinonitrile

The title compound’s absorption properties present a mixed profile. Its Caco-2 perme-
ability of −4.641 suggests excellent intestinal absorption potential. Similarly, the MDCK
permeability value of 3.12 × 10−5 falls within the excellent range, indicating favorable
membrane permeability. However, there are concerns regarding its interaction with P-
glycoprotein, as it is indicated to be a poor inhibitor with a score of 0.92, although it is
not likely to be a substrate. While the human intestinal absorption (HIA) rating of 0.004
indicates excellent absorption potential, the compound’s predicted human oral bioavail-
ability (F20%) is considered poor, with a score of 0.774. Conversely, its bioavailability
(F30%) score of 0.008 categorizes it as excellent. These results suggest that while the com-
pound has promising absorption properties in certain domains, its potential as an orally
bioavailable drug might be restricted due to its P-glycoprotein interactions and inconsistent
bioavailability predictions.

The title compound exhibits plasma protein binding (PPB) of 100.20%, exceeding the
preferred limit, which might impede its effectiveness. With a volume of distribution (VD)
of 0.681, it falls within the excellent range, suggesting primary confinement within the
vascular compartment. The compound’s potential to penetrate the blood–brain barrier
(BBB) is moderate, with a value of 0.38, indicating possible accessibility to the central
nervous system. However, its low fraction unbound in plasma (Fu) at 1.10% suggests
limited bioactive availability, potentially affecting its pharmacological action.

The title compound’s interactions with cytochrome P450 (CYP) enzymes suggest po-
tential metabolic pathways and drug–drug interactions. It shows strong potential to inhibit
CYP1A2 (0.96), CYP2C19 (0.907), and CYP2C9 (0.916), indicating possible interference
with drugs metabolized by these enzymes. Additionally, the compound is a probable
substrate for CYP1A2 (0.431), CYP2C9 (0.885), and CYP3A4 (0.251). However, it has a
minimal inhibitory effect on CYP2D6 (0.001) and CYP3A4 (0.136), reducing the potential
interactions with drugs processed by these enzymes. This metabolic profile suggests the
need for the title compound’s careful co-administration with other medications due to
potential interactions.

The title compound’s excretion properties give insights into its pharmacokinetics
and potential therapeutic utility. The drug clearance (CL) value is 8.261, which is beyond
the excellent threshold (≥5), indicating that the compound is efficiently cleared from the
system. Meanwhile, its half-life (T1/2) stands at 0.081, falling within the excellent range
(0–0.3). This suggests that the drug is rapidly metabolized and has a short duration of



Molecules 2023, 28, 6859 31 of 38

action in the body. Such a quick turnover might necessitate frequent dosing to maintain
therapeutic levels, depending on its intended application.

Evaluating the toxicity properties of the title compound provides essential insights into
its safety profile. The predicted maximum recommended daily dose (FDAMDD) is 0.901,
which is classified as poor based on its value falling in the 0.7–1.0 range. This suggests
caution when considering dosage recommendations. While it shows excellent potential as
a non-skin sensitizer, with a value of 0.058, its carcinogenicity potential is medium at 0.55,
indicating a moderate risk associated with prolonged exposure. The compound is very
promising in terms of non-eye corrosion, having an excellent value of 0.006. However, it
presents a high risk for eye irritation, as evidenced by its poor score of 0.961, suggesting the
necessity for precaution when handling or administering it. Additionally, the respiratory
toxicity value of 0.472 falls within the medium range, indicating potential concerns for
respiratory exposure. Taken together, while the title compound has certain favorable
toxicity profiles, there are notable areas of concern that warrant thorough evaluation before
therapeutic application.

3. Materials and Methods
3.1. Synthesis

The synthesis of the title compound was meticulously carried out as delineated
in Scheme 1, referencing the established protocol detailed in the scientific literature by
Al-Arab [46]. Following synthesis, the compound was subjected to a crystallization process
using acetone as the solvent. This resulted in the formation of slender, colorless crystalline
plates [24].
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3.2. Single-Crystal X-ray Diffraction

The molecular structure of the designated compound was unequivocally elucidated
through single-crystal X-ray diffraction analysis. Comprehensive details of this structural
determination are documented in the work conducted by Mague et al. [24].

The structural solution was achieved via direct methods with SHELXS-97 [47], while
geometrical parameters and weak interactions were analyzed using Olex2-1.5-alpha [48].
Visualization was facilitated through software suites such as MERCURY 3.1 [49] and DIA-
MOND 4.5 [50], with atomic-level details derived from ORTEP3 [51]. Pertinent structural
details are catalogued in Table 1, and specific bond distances and angles can be found in
Section 2.4.1.

4. Computational Details
4.1. Hirshfeld Surfaces

The in-depth analysis of 2-methoxy-4,6-diphenylnicotinonitrile hinged on the uti-
lization of the Hirshfeld surface methodology, which brought forth an understanding of
several molecular attributes. Aspects like dnorm, di, de, curvedness, and the shape index
were thoroughly mapped using the CrystalExplorer 21.5 software [20,29,30,52]. Specifically,
dnorm presented insights into normalized contact distances between atomic pairs in the
crystal structure [53,54], whereas the di and de surfaces pinpointed the closest interior and
exterior elements to the Hirshfeld molecular surface [55]. The color designations represent
the relative distances between X and Y: red indicates that the sum of their van der Waals
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radii is less than the established separation (dnorm < 0), blue signifies that it is greater
(dnorm > 0), and white means that it is exactly equal (dnorm = 0) [54].

The equation for dnorm is

dnorm =

(
di − rvdw

i

)
rvdw

i
+

(
de − rvdw

e

)
rvdw

e
(1)

Here, rvdw
i , rvdw

e represent the van der Waals radii for elements X and Y, respectively,
while di and de indicate their corresponding distances.

Curvedness and the shape index [56] were instrumental in capturing the surface
curvature and nuanced alterations in surface geometry, respectively [38,57]. The innovative
two-dimensional fingerprint plots enabled a detailed depiction of inter-atomic contact
contributions towards the Hirshfeld surface [58].

The analysis was executed using the CrystalExplorer 21.5 software [59], integrated
with the TONTO system [59,60]. For dnorm surfaces, a standardized color gradient was
employed, spanning from −0.15 atomic units (a.u.), represented in red, to 1.15 a.u., show-
cased in blue. Concurrently, the mapping parameters for shape index and curvedness were
set to range from −1.0 to 1.0 and −4.0 to 0.4 Å, respectively.

Recent advancements have enabled the detailed examination of intermolecular inter-
actions within crystals using the Hirshfeld surface analysis. One significant outcome is
the ability to map the molecular electrostatic potential on these surfaces, giving a direct
view of specific intermolecular interactions, particularly those of the form D-H· · ·A [24].
Gavezzotti’s PIXEL method has garnered attention for its capability to provide dependable
intermolecular energies using a combination of non-empirical and semi-empirical meth-
ods [61]. While other quantum mechanical techniques have been utilized, such as those by
Shishkin et al., they often require more computational time, limiting their application to
extensive molecular crystal studies [62].

Our research aimed to fine-tune an effective model to estimate intermolecular inter-
action energies. A prevalent model for such calculations in both organic and inorganic
molecular crystals is CrystalExplorer. This approach adopts Gavezzotti’s interaction energy
formula:

Etot = Eele + Epol + Edis + Erep (2)

In our methodology, we calculated the interaction energies between different molecules
in reference to the primary molecule within the crystal structure. The total interaction
energy is computed from several components: classical electrostatic interactions [33,63],
polarization energies based on recommended isotropic atomic polarizabilities, dispersion
corrections incorporating intermolecular atomic pairs, and repulsion energies calculated
from charge distributions. Utilizing the CrystalExplorer21.5 software, we engaged its
accurate energy model, particularly suitable for our title compound, which consists of
an asymmetric unit housing two molecules. Computations for molecules A and B were
executed separately, employing the crystallographic information file (.cif) as input. Each
calculation involved the primary molecule being surrounded by a cluster of fifteen other
molecules, totaling 465 atoms, within a 3.8 Å radius [33,64].

4.2. Density Functional Theory (DFT) Calculations

In the current study, detailed computational analyses of the title compound were
conducted as follows. Density functional theory (DFT) calculations were initiated using
the crystallographic information files (CIF) from the single-crystal X-ray data previously
reported (ccdc code 983247) by Mague et al. [24]. These provided the input geometries.
Geometry optimization of different isolated monomer models was undertaken in the
gaseous phase utilizing the Gaussian 09, Rev D.01 software package [65]. For visualization,
data analysis, modification, and the exportation of results, the GaussView 6.0 program [66]
was employed.
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The computational approach integrated the wB97XD functional from Head-Gordon
and associates, which incorporates Grimme’s D2 dispersion model and long-range cor-
rections [23]. Additionally, the renowned B3LYP functional [67] was used for geometric
structure optimization. Among these, wB97X-D was deemed superior in capturing hydro-
gen bonding interactions [29,52,68,69].

Frequency calculations on the optimized geometries confirmed all stationary points as
genuine minima, evidenced by zero imaginary frequencies. These validated geometries
were then subjected to single-point (SP) calculations at the identical theoretical level to de-
duce reactivity descriptors, frontier molecular orbitals (FMOs), the molecule’s electrostatic
potential (MEP), and aromaticity attributes [35,36,70].

To compute both global and localized chemical reactivity descriptors, the concepts
of conceptual DFT (CDFT), also referred to as chemical reactivity theory (CRT), were
employed through the MULTIWFN program [71–74]. The evaluation of electrophilic
P+

k and nucleophilic P−
k Parr functions was achieved by analyzing the Mulliken atomic

spin density (ASD) of both the radical anion and cation, all of which were derived from
optimized neutral geometries [71]. For SP energy calculations, an unrestricted open-
shell DFT approach was implemented, specifically WB97XD/6-311G(d,p). This utilized
combinations (charge and multiplicity) designated as (+1, 2) for cations and (−1, 2) for
anions.

Aromaticity indices and LOLIPOP metrics for the title compounds were calculated
via the MULTIWFN program [71]. Finally, time-dependent density functional theory (TD-
DFT) calculations were performed using the Gaussian software to determine electronic
excitation energies and the associated molecular orbital transitions. The resulting output
files were subsequently analyzed with the GaussSum 3.0 software. This analysis allowed
for the extraction of molecular orbital contributions associated with specific functional
groups within the molecule, as elaborated in references [75,76]. Moreover, GaussSum 3.0
was utilized to compute the density of states (DOS), the partial density of states (PDOS)
spectra, and UVData. These data are presented in Figure 15 and Table 11. It is imperative
to acknowledge that while TD-DFT provides a credible perspective on excitation energies,
emerging range-separated DFT techniques are expected to offer superior accuracy in their
calculations in subsequent revisions [77,78].

5. In Silico Methods
5.1. Molecular Docking

The Protein Data Bank (PDB) was used to obtain the crystal structure of lipoprotein-
associated phospholipase A2 (Lp-PLA2), which was given the ID 6M07 [79]. In this study,
the binding of the ligand title molecule to the receptor was examined using the molecular
docking software MOE 2015. First, the shape of the ligand was improved as much as
possible using the MMFF94x force field. Using the MOE 2015 model, the protonation states
of the structure were set and partial charges were given. Next, water molecules were taken
out of the PDB file for the protein. The Amber10 forcefield was used to fix any missing side
chains and residues and reduce the energy of the proteins. The groups that were made
were saved in the MDB format. Then, the best cluster was chosen based on the scoring
energy, how the ligand interacted with key residues, and how the ligand was oriented.

5.2. Molecular Dynamic Simulation

In this study, we employed molecular dynamic (MD) simulations to probe the behavior
and stability of our top-performing compound when bound to the lipoprotein-associated
phospholipase A2 (Lp-PLA2) protein (PDB ID: 6M07) [79]. Our selection was based on
both the binding scores and modes observed during docking. We adopted methodologies
from our prior research [30,80,81]. These simulations were executed using the NAMD
program [82]. To initiate the simulation, we acquired the requisite configuration files from
the CHARMM-GUI website [83,84]. We further refined the properties of our ligands with
the CHARMM general force field (CGenFF) tool accessible online. The entire protein–ligand
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system was immersed in a water environment using the TIP3P model. The system then
underwent an energy minimization process spanning 90 million steps to ensure stability,
which continued for a 50 ns timescale using the NVT ensemble. To comprehend and
interpret the results, we used the VMD viewer [85], which provided us with visual and
quantitative insights into the simulation. The structural deviations and flexibility during
the simulations were quantified by calculating root mean square deviation (RMSD) and
root mean square fluctuation (RMSF) values. Furthermore, we determined the molecule’s
compactness using parameters like Rg and SASA. Hydrogen bond analysis was performed
to gain deeper insights into the binding behavior and conformational alterations of the
protein–ligand complex.

5.3. Drug-Likeness and ADMET Prediction

Utilizing the ADMETLab2.0 online tool available at https://admetmesh.scbdd.com/
service/screening/index (accessed on 6 September 2023), we assessed the drug-likeness and
ADMET profiles of the designated compound. After inputting the compound’s molecular
structural data in either 2D or 3D format, the tool evaluated its drug-likeness based on
established criteria, notably Lipinski’s Rule of Five. The platform’s ADMET prediction
module, which integrates in-silico models with machine learning algorithms, subsequently
provided insights into the compound’s absorption, distribution, metabolism, excretion, and
toxicity properties, furnishing a comprehensive understanding of its potential therapeutic
viability.

6. Conclusions

The comprehensive study of 2-methoxy-4,6-diphenylnicotinonitrile reveals a unique
molecular arrangement, emphasizing the compound’s structure, governed by a pyridine
ring flanked by two phenyl rings. This configuration presents a fascinating interplay of
forces, with weak intermolecular interactions like H· · ·H contacts and substantial π–π
stacking due to p-orbital overlaps in adjacent aromatic rings. While these interactions
might be inherently weak, they serve as a cornerstone for the structural stability and
crystalline properties. Energy framework insights underscore the prominence of dispersion
intermolecular interactions, solidifying the crystal structure’s foundation. DFT analyses
further accentuate the aptness of the WB97XD function over B3LYP in capturing the
molecule’s intricate geometric nuances. Alongside this, reactivity descriptors illuminate the
molecule’s inherent chemical behavior, highlighting the principal reactive sites. Moreover,
frontier molecular orbitals (HOMO and LUMO) emerge as pivotal in determining the
electronic demeanor and robustness of the compound, with a noteworthy HOMO–LUMO
gap reflecting its stability. Aromaticity investigations corroborate the dominant aromatic
characteristics of the phenyl rings, whereas the pyridine ring displays subdued aromaticity,
attributed to disruptions in cyclic π-electron delocalization. The molecule’s π-stacking
capabilities are prominently exhibited by the pyridine ring, demonstrating its proclivity
for π–π interactions. Lastly, the MEP analysis meticulously maps out the molecule’s
electrophilic and nucleophilic sites, providing an intricate framework of its interaction
dynamics in varied chemical contexts.

Molecular docking studies reveal significant interactions between the title compound
and Lp-PLA2, specifically noting hydrogen bonding and π–H interactions. Molecular dy-
namic simulations, including RMSD and RMSF analyses, suggest that the title compound
has a stabilizing effect on certain secondary structures of Lp-PLA2. The title compound does
not drastically change the overall compactness of Lp-PLA2 upon binding, as evidenced by
the radius of gyration. Hydrogen bond analysis underpins the molecule’s stable interaction
over the simulation period. The compound 2-methoxy-4,6-diphenylnicotinonitrile show-
cases properties indicative of drug-like molecules. However, its pronounced lipophilicity
and reduced solubility might pose challenges in drug formulation. ADMET prediction
portrays a mixed profile, indicating potential challenges in oral bioavailability due to
P-glycoprotein interactions. Additionally, the compound’s interactions with specific cy-

https://admetmesh.scbdd.com/service/screening/index
https://admetmesh.scbdd.com/service/screening/index
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tochrome P450 enzymes suggest potential metabolic pathways and drug–drug interactions.
In essence, while the compound offers promising interactions and effects on Lp-PLA2, its
pharmacological applications require further consideration.
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