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Abstract: Two-dimensional (2D) materials with atomic thickness, tunable light-matter interaction,
and significant nonlinear susceptibility are emerging as potential candidates for new-generation
optoelectronic devices. In this review, we briefly cover the recent research development of typi-
cal nonlinear optic (NLO) processes including second harmonic generation (SHG), third harmonic
generation (THG), as well as two-photon photoluminescence (2PPL) of 2D materials. Nonlinear
light-matter interaction in atomically thin 2D materials is important for both fundamental research
and future optoelectronic devices. The NLO performance of 2D materials can be greatly modu-
lated with methods such as carrier injection tuning, strain tuning, artificially stacking, as well as
plasmonic resonant enhancement. This review will discuss various nonlinear optical processes and
corresponding tuning methods and propose its potential NLO application of 2D materials.

Keywords: nonlinear optics; 2D materials; SHG; THG; 2PPL; modulation

1. Introduction to Nonlinear Optics in 2D Materials

As a particular and interesting branch of modern optics, nonlinear optics mainly focus
on the study of interaction between intense laser light and matter [1–3]. Shortly after the
invention of the ruby laser in 1961, Franken et al. used a ruby laser with a wavelength of
694 nm to pass through a quartz crystal to generate ultraviolet light at 347 nm [4,5]. This is
the earliest observed optical second harmonic generation (SHG) phenomenon, marking
the birth of nonlinear optics. Nonlinear optics studies the phenomenon originating from
the interaction between an intense laser with matter and has been widely used in laser
generation, quantum optics, quantum computing, et al. [6–10]. Ordinary light sources with
low intensity, such as sunlight and fluorescent lamps, cannot trigger the NLO responses,
giving linear optical responses that obey superposition principles. Meanwhile, the intensity
of a focused laser can reach 1015 to 1022 W/cm2, which means the electric field of the
laser light source becomes comparable with that of the interatomic electric field (105 to
108 V/m) [11] and satisfies the requirement for a nonlinear response.

However, there are still many challenges in NLO applications, including high power
loss [12], intricate nonlinear effects [13], and limited material response [14]. To solve these
problems, researchers design high-performance platforms for integrated nonlinear optics
to reduce the power loss [15], realize a large enhanced nonlinear response through resonant
photonic nanostructures [16], and explore new materials with a high nonlinear coeffi-
cient [17]. Simultaneously, there are great challenges in integrating traditional nonlinear
optical materials with other material platforms for on-chip applications [18,19]. Therefore,
for future photonics and optoelectronics, it is very important to discover new materials
with a large NLO response to meet the upcoming challenges through chip integration.
These new materials are expected to provide innovative ways to enable new devices with
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new functions, high performance, and new device properties (e.g., reduced complexity,
size, and cost, as well as a high nonlinear coefficient).

NLO materials include organic and inorganic materials. The most common organic
NOL materials include 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate (DAST)
crystal [20], chromophores [21–23], et al. Organic NLO materials show excellent properties,
such as a high electro-optical coefficient, easy-to-produce significant nonlinear polarization,
fast response rate, high bandwidth, and good processability [24]. The disadvantage is that
the carrier mobility of organic materials is generally low and the carrier recombination
rate is low, which limits the modulation rate of organic terahertz modulation devices to a
certain extent [24]. In this review, we mainly focus more on the nonlinear optical properties
and control methods related to inorganic materials.

In recent years, 2D materials attracted more and more attention from researchers since
the atomic-layer-thick graphene was successfully obtained with mechanical exfoliation [25].
Compared to their 3D counterparts, the atomically thin thickness of 2D materials exhibits
unique electronic and optical properties due to reduced dielectric shielding and enhanced
Coulomb interactions [26–32]. With the advantages of an ultra-broadband absorption and
large nonlinear optical response of 2D materials, they can be widely used in numerous
nonlinear applications. For example, optical communication [33], frequency conversion [34,35],
imaging and characterization [36,37], electro-optic modulators [38,39], mode-locking [40–42],
and Q-switching [43]. Investigation and modification of the NLO properties of 2D materials
facilitate the evolution of optical and optoelectronic devices.

In this review, we survey recent progress of NLO properties including SHG, THG, and
2PPL in 2D materials, and discuss effective methods for the realization of dynamic control of
NLO properties. We first briefly describe the physical mechanisms of the nonlinear optical
process of SHG, THG, and 2PPL and the phase-matching conditions in materials. Then, we
mainly focus on the nonlinear optics characterization applied in 2D materials, i.e., layer
number, crystal orientation, grain boundary, and probing excitonic states. Furthermore, we
discuss different methods such as carrier injection, strain, artificially stacking, as well as
plasmonic enhancement control to realize the dynamic control of nonlinear optical signals
in 2D materials. Finally, we summarize the advantages and disadvantages of different
control methods, and present a perspective of potential research topics.

1.1. Second Harmonic Generation (SHG)

For the nonlinear process, the light-induced polarization
∼
P(t) is a power series of electric

field
∼
E(t), which can be described mathematically with the following equations [44,45]:

∼
P(t) = ε0[χ

(1)∼E(t) + χ(2)
∼
E(t)

2
+ χ(3)

∼
E(t)

3
+ · · · ]

≡
∼
P
(1)

(t) +
∼
P
(2)

(t) +
∼
P
(3)

(t) + · · ·
(1)

where ε0 represents the vacuum permittivity and χ(1) is the linear susceptibility,
which plays a role in the linear process such as absorption. χ(2) is the second-order
NLO susceptibility, which determines processes such as the sum and difference frequency
generation and electro-optic rectification. χ(3), the third-order NLO susceptibility, is related
to the third-order nonlinear effect, such as the third harmonic generation (THG) and two-
photon photoluminescence (2PPL), four-wave mixing, Kerr lens effect, self-focusing, and
white light generation with self-phase modulation [46]. The relationship between different

orders of nonlinear susceptibilities and their applications is shown in Figure 1.
∼
P
(1)

(t) and
∼
P
(n)

(t) (n > 1) are the induced linear polarization and nonlinear polarization, respectively.
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Figure 1. Summary of different orders of NLO susceptibilities and their applications, reprinted from 
reference [47]. 

Sum frequency generation occurs when two input photons with the frequency of 𝜔  
and 𝜔  are combined, generating one photon with frequency 𝜔  due to the second-or-
der nonlinear polarization. This is a parametric process that obeys the energy conserva-
tion, i.e., ℏ𝜔 + ℏ𝜔 =  ℏ𝜔 . SHG is a special case of sum frequency generation, where 
only one input laser exists. Hence 𝜔  = 𝜔  and 𝜔  = 2𝜔 . The transition energy level dia-
gram of SHG is represented in Figure 2; here, the |𝜙⟩ represents the ground state, and the |𝜑 ⟩ and the |𝜑 ⟩ denotes two virtual states. 

  
Figure 2. Schematic (a) and energy diagram (b) of the SHG process. 

1.1.1. Time and Spatial Inversion Symmetry 
The second harmonic signal will vanish for the medium with inversion symmetry (as 

demonstrated below). When E changes to the reverse direction, i.e., 𝑬(𝒕) = −𝑬(𝒕), the po-
larization 𝑷(𝒕) will flip the sign and become −𝑷(𝒕) accordingly:  −𝑷(𝒕) = χ( )(−𝑬(𝒕))   (2)

Figure 1. Summary of different orders of NLO susceptibilities and their applications, reprinted from
reference [47].

Sum frequency generation occurs when two input photons with the frequency of ω1
and ω2 are combined, generating one photon with frequency ω3 due to the second-order
nonlinear polarization. This is a parametric process that obeys the energy conservation,
i.e., h̄ω1 + h̄ω2 = h̄ω3. SHG is a special case of sum frequency generation, where only one
input laser exists. Hence ω1 = ω2 and ω3 = 2ω1. The transition energy level diagram of
SHG is represented in Figure 2; here, the |φ〉 represents the ground state, and the | ϕv1〉
and the | ϕv2〉 denotes two virtual states.
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1.1.1. Time and Spatial Inversion Symmetry

The second harmonic signal will vanish for the medium with inversion symmetry

(as demonstrated below). When E changes to the reverse direction, i.e.,
∼
E(t) = −

∼
E(t), the

polarization
∼
P(t) will flip the sign and become −

∼
P(t) accordingly:

−
∼
P(t) =χ(2)

(
−
∼
E(t)

)2 (2)
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According to Neumann’s principle, which indicates that the susceptibility tensor must
be invariant by all the symmetry operators of the medium, the χ(2) should be unchanged.

Thus, combine
∼
P(t) = χ(2)

(∼
E(t)

)2 and −
∼
P(t) = χ(2)

(
−
∼
E
(
t
))2 , and we obtain χ(2) = 0.

An expansion is that all the even-order susceptibility must be 0 for the medium with
inversion symmetry.

1.1.2. Phase-Matching Condition

The phase-matching condition should be achieved in order to achieve high con-
version efficiency for nonlinear bulk crystal, which means ∆k should be equal to zero
(∆k = k1 + k2 − k3) [48,49]. The momentum conservation determines this equation. The
momentum of foundational frequency and the frequency doubling light can be described
with the momentum conservation:

P2ω =
n2ω h̄2ω

c0
and Pω =

nω h̄ω
c0

(3)

where the h̄ is the reduced Planck constant; c0 is the speed of light in the vacuum; ω is the
angular frequency; and n2ω and nω are the refractive indicies of the doubling frequency
and the incident frequency, respectively. Due to the dispersion, generally, the refractive
index of 2ω is larger than ω, making the condition of P2ω = Pω hard to fulfil. The phase
matching can be achieved with birefringence.

1.2. Third-Order NLO Processes

This section briefly introduces two typical third NLO processes relevant to the research
work on THG and 2PPL presented in this thesis. THG is similar to SHG, where three
photons with the same energy h̄ω1 are absorbed simultaneously, followed by generating a
new photon with the energy of 3h̄ω1. Figure 3a depicts the principle of THG. Unlike the
χ(2) that will vanish in crystal with inversion symmetry, χ(3) always exists, independent
of the crystal symmetry. However, χ(3) is generally orders of magnitude weaker than χ(2)

for frequency conversion crystal [50]. An explanation from the perspective of quantum
mechanics is that the possibility of three photons being present simultaneously is much
less than two [51,52].
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Figure 3. Energy diagrams of (a) THG and (b) 2PPL processes.

2PPL is induced with the two-photon absorption (TPA), an NLO absorption process
involving simultaneous absorption of two photons and the transition from the ground
state to the excited state [53]. After that, one photon with fixed energy is emitted, and the
semiconductor decays back to the ground state, as shown in Figure 3b. Due to almost the
same photoluminescent process, the emission spectra of 2PPL should generally possess a
similar shape, peak position, and lifetime compared to the PL spectra [54–58].
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It is easy to confuse the 2PPL with SHG, as 2PPL and SHG processes have some
similarities, including the quadratic dependence of emission intensity on the excitation
intensity. However, they are different: the emission of SHG is from a virtue state, whereas
that of 2PPL originates from the real states. In other words, SHG is parametric while 2PPL
is nonparametric, which involves absorption and energy relaxation.

Finally, it is worth noting that one-photon and two-photon processes obey different
selection rules. As the optical section rule relies on the final state symmetry, transitions
of one-photon excitation are only allowed for final states with even parity (such as the s
state), while the two-photon excitations can reach final states with odd parity (such as the p
state). Thus, unlike linear optics, information about dark excitons can be probed from the
wavelength-dependent 2PPL and SHG.

2. Nonlinear Optics Characterization of 2D Materials

Two-dimensional materials with atomic layer thickness have large nonlinear optical
coefficients and have attracted more and more attention. At the same time, since the
nonlinear optical signals of 2D materials including SHG, THG, and 2PPL signals are very
sensitive to the thickness, crystal phase, crystal axis orientation, grain boundary, and
excitonic state of the material, nonlinear optics (NLO) spectroscopy can serve as a rapid,
nondestructive, and accurate characterization method for 2D materials.

2.1. Determining the Layer Number

Among 2D materials, transition metal chalcogenides (TMDCs) such as MoS2, WS2,
WSe2, hBN, etc., have become the most popular research objects because of their excellent
charge-carrier mobility, high nonlinear coefficients, and high switching ratio [59–61]. TMDC
materials are relatively common and stable in nature mainly in 1T, 2H, and 3R crystal
phases [62–64]. As we discussed above, SHG will vanish for the medium with inversion
symmetry [65]. Xiang Zhang et al. reported an SHG generated from the 2H and 3R crystal
phase of MoS2 and discussed the relationship between SHG intensity and thickness in
thin-layer (1~6L) MoS2 [66]. As shown in Figure 4a, the odd layers of the 2H phase retain
a net nonlinear dipole with noncentral inversion symmetry, whereas centrosymmetric
even layers exhibit a zero second-order nonlinear coefficient. Therefore, the SHG intensity
oscillates with the layer number in the 2H thin layer as exhibited in Figure 4c. Contrary to
2H-phase crystal, 3R MoS2 maintains broken inversion symmetry from the monolayer to
bulk, and the layers retain the same orientation but shift along the in-plane direction, and
leads to parallel in-plane nonlinear dipoles as shown in Figure 4b. When the thickness of
the 3R MoS2 is less than half of the coherence length (L) between the fundamental incident
laser and SH signal [67], the SHG intensity of 3R MoS2 (for 1–5 layers) is proportional to
the square of its thickness as can be seen from Figure 4c. If the thickness of 3R MoS2 is
larger than the coherent length, the optical path difference (OPD) between the upper and
lower surface of thicker 3R MoS2 needs to be considered. A model including bulk nonlinear
coefficient contribution and interface interaction (MoS2–air/MoS2–substrate interfaces) is
proposed by Xinfeng liu et al. [68]. The distribution of SHG intensity oscillations with
thickness can be well explained using this model (Figure 4d).

Unlike SHG, THG can exist in structures with central inversion symmetry. José C. V.
Gomes et al. studied the dependency between THG and the number of layers in WSe2 [69].
The results indicate that for thin-layered WSe2 (1~9L), the THG intensity is proportional
to the square of the layer number (N2) as shown in Figure 4e. This quadratic scaling with
thickness serves as direct evidence that each layer contributed independently to the overall
THG, since the third-harmonic susceptibility of the N layer is proportional to that of the
single layer:

∣∣∣χ(3)
N

∣∣∣ = N ×
∣∣∣χ(3)

s

∣∣∣.
Similar to SHG, the influence of interference effects needs to be considered for de-

pendence of the THG intensity on the thickness in thick-layered 2D materials. Vladimir
O. Bessonov et al. reported THG intensity versus thickness on thicker-layered hexagonal
boron nitride (hBN) and explained that the THG signal generated with the surface layer
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interferes with the generation of deeper layers, leading to a decrease in THG intensity [70].
In addition, the second interface (hBN/substrate) will affect the location of maxima and
minima in the thickness dependence of THG (Figure 4f). Since SHG relies on the broken
inversion symmetry, it can be used to judge parity layers in 2H-phase 2D materials. The
distribution relationship between the SHG/THG signal intensity of 3R-phase/all-phase 2D
materials and the thickness can be inferred according to the model considering the interface
interference effect.
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Figure 4. (a) Schematic of the crystal structure of 2H- and 3R-phase MoS2 (two-layer unit cell outlined
in red) with Mo atoms in maroon and S atoms in yellow; (c) SH intensity of the 3R and 2H MoS2

normalized to the respective single-layer intensity at an SH energy of 1.81 eV; (d) THG peak intensity
of WSe2 as a function of layer number N (N = 1 . . . 9); (e,f) thickness dependence of SHG and
THG peak intensity for 3R MoS2 and 2H hBN, respectively; panel (a–c) adapted with permission
from Ref. [66], Copyright 2014, American Chemical Society; panel (d) adapted with permission
from Ref. [68], Copyright 2017, American Chemical Society; panel (e) adapted with permission
from Ref. [69], Copyright 2018, Scientific Reports; panel (f) adapted with permission from Ref. [70],
Copyright 2014, American Chemical Society.

2.2. Crystal Orientation Identification and Mapping the Grain Boundary

Since crystal orientation and grain boundaries play a major role in the physical prop-
erties of two-dimensional layered materials, it is important to find efficient character-
ization methods to visualize them. Compared with traditional angle-resolved Raman
spectroscopy [71,72], X-ray diffraction (XRD) [73,74], high-resolution transmission electron
microscopy (HR-TEM) [75,76], and other characterization methods, the advantages of a
high speed and nondestructive characterization have made nonlinear optical spectroscopy
a powerful method for determining the orientation of the crystal axis and mapping the
grain boundary.

Because the effective second-order nonlinear coefficients de f f = 1/2χ(2) are highly
correlated with structural symmetry, angle-resolved SHG can be used as a fast and nonde-
structive characterization method for the crystallographic orientation of 2D materials. The
polarization direction of the SHG depends on the direction of the incident electric field and
de f f of the materials, which can be expressed with the following function [37]:

E(2ω) · ê2ω = Cê2ω · χ(2) : êω êω (4)
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ISHG =
∣∣∣ê2ω · de f f · ê2

ω

∣∣∣2 (5)

where êω and ê2ω represent the direction of the incident and outgoing electric field, C is
the scaling factor that includes the local electric field factor. In the 2H-phase 2D materials
(like hBN, MoS2, etc.), the odd-numbered layer structure belongs to the D3h point group.
Through the simplification of crystal symmetry, de f f satisfied the matrix as follows:

de f f =

 0
d21
0

0
d22
0

0
0
0

0
0
0

0
0
0

d16
0
0

 (6)

Among them (d21 = d16 =−d22), if the incident light is perpendicular to the sample and
the incident electric field is projected onto the armchair direction of the sample as shown in
Figure 5a, the parallel and perpendicular SHG of 2H-phase TMDCs can be written as

I‖ = I0cos2(3θ)

I⊥ = I0sin2(3θ) (7)

Here, θ represents the azimuth angle of the material, and I0 is the maximum intensity
of the SHG. Since θ = 0◦ corresponds to a direction where the polarization of the pump
beam is along the armchair direction, the SHG intensity reaches its largest state. Tony F.
Heinz and José C. V. Gomes et al. found that the SHG intensity polar plot of odd-layered
hBN, MoS2, and WSe2 exhibits a six-lobed shape, which corresponds to the D3h symmetry
as shown in the right side of Figure 5a and the left side of Figure 5b, respectively [69,77]. In
contrast, José C. V. Gomes et al. carried out the polarization-dependent THG measurement
on monolayer WSe2 and reported that the intrinsic THG response is independent of the
incident polarization (Figure 5b) [69]. Kaihui Liu et al. also performed a similar experiment
and monitored the pattern evolution in monolayer WS2 [78]; the results confirmed that
the generated THG satisfied the relationship with the polarized incident laser, I‖ = I0,
I⊥ = 0, which means that THG is polarization-independent. Polarization-resolved nonlin-
ear spectroscopy can identify the crystal axis orientation, while a THG image can realize the
visualization of grain boundaries. Lasse Karvonen et al. carried out multiphoton (SHG and
THG) characterization studies by scanning a laser beam over the MoS2 flakes (Figure 5c)
with two galvo mirrors; SHG and THG images obtained without an analyser in front of the
detector are shown in Figure 5c,f [79]. In the total-SHG image, only GB1 appears as dark
due to the destructive interference of the SHG fields from the neighbouring grains [80].
Figure 5e presents results for polarized SHG imaging (parallel-polarized excitation and
detection); only the area above GB1 is visible, suggesting a large difference between the
upper (A1 and A2) and lower (B1 and B2) parts, which indicates that the polarized SHG
image can resolve the crystal orientations. The contrast difference between neighbouring
grains is due to the anisotropic polarization pattern of SHG [60], and the occurrence of
destructive interference depends on whether the edges of the neighbouring grains are of
the same type and the incident light polarization is perpendicular to the bisecting direction
of the grain edges [81]. Contrasting the SHG image, all the GBs (GB1-GB4) can be clearly
seen from the THG image (Figure 5f). Since THG does not depend on the parity of the layer
number and exhibits no polarization dependence on the crystallographic axis angle, a THG
image can serve as a rapid and sensitive visualization method of grain boundaries.
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Figure 5. (a) Left: schematic diagram of the atomic structure of TMDC material, where θ represents
the azimuth angle of the material. The angle θ = 0◦ corresponds to a direction where the polarization
of the pump beam is along the armchair direction. Right: schematic view of SH intensity polar
plot of monolayer hBN and MoS2; (b) polarization-dependent SHG and THG of WSe2; (c) optical
image of MoS2 with marked grains (A1, A2, B1, and B2) and grain boundaries (GB1, GB2, GB3,
and GB4); (d) experimental SHG mapping image of MoS2 without analyser, scale bars: 10 µm;
(e) experimental SHG image with parallel polarized excitation and detection; (f) experimental THG
mapping of MoS2 without analyser; panel (a) adapted with permission from Ref. [77], Copyright
2013, American Chemical Society; panel (b) adapted with permission from Ref. [69], Copyright 2018,
American Chemical Society; panel (c–f) adapted with permission from Ref. [79], Copyright 2017,
Nature communications.

2.3. Probing Excitonic State

Monolayer TMDs with atomic thickness usually exhibit a strong Coulomb interaction
as a result of reduced dielectric screening effects. This leads to the formation of a series
of discrete excitonic states near the band edge called “Rydberg” excitons [82–84]. As can
be seen from Figure 6a, the “Rydberg” excitonic states below the quasiparticle bandgap
generally exhibit electronic energy levels analogous to the hydrogen series labelled as 1s, 2p,
3p, and so on [85]. If the incident electromagnetic wave is in resonance with the energy of
the exciton states, light–matter interaction will be significantly enhanced [86,87]. Whether
it is the giant PL emission enhancement [88,89] or the nearly 100% light absorption near
the exciton state [90], it proves the existence of the exciton resonance effect. Similarly, the
exciton resonance effect in TMDs is also applicable to its nonlinear optical properties. For
example, signals of SHG, 2PPL, and THG can be greatly enhanced by up to three orders of
magnitude if the excitation energy is resonant with the corresponding excitonic state. Based
on the symmetry selection rules of electronic transition, a one-photon excitation process
can only reach states with even parity (dipole-allowed bright states) while two-photon tran-
sitions can reach odd-parity states with nonzero orbital angular momentum. This means
that bright states like “ns” can be detected with optical reflectance spectroscopy [82,83]
or photoluminescence (PL) excitation (PLE) spectroscopy [91]. The dark states like “np”
and “nd” can be probed with two-photon photoluminescence excitation (2PPLE) spec-
troscopy [85]. Since the generation of an SHG signal is the combination of electric–dipole
(ED) and magnetic–dipole (MD) optical transitions, SHG excitation spectroscopy (SHGE)
can probe both even (“s”) and odd (“p”) parity states [92]. The generation of THG does
not depend on the broken inversion symmetry, and its resonance excitonic energy is high.
Therefore, it can not only detect bright “ns” states but also high-energy excitonic states like
C and D excitons.
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from Ref. [85], Copyright 2014, Nature; panel (b) adapted with permission from Ref. [92], Copyright
2015, Physical Review Letters; panel (c) adapted with permission from Ref. [93], Copyright 2022,
Advanced Materials.

Based on the above principle, G. Wang et al. carried out an SHGE, PLE, as well as
2PPLE experiment on monolayer WSe2 at 4K as shown in Figure 6b and the excitation
power was kept constant in the experiments [92]. According to the transition selection rule
discussed above, the SHGE spectrum detects “1s”, “2s/2p”, and “3s/3p” excitonic states
of the A exciton as well as “1s” and “2s/2p” excitonic states of the B exciton. However,
the energy difference between the “s” and “p” states is too small to distinguish from the
SHGE spectrum. Since 2PPLE and PLE can only detect dark “p” states and bright “s”
states, respectively, combining them with SHGE can achieve a detailed identification of
Rydberg exciton states. Ziliang Ye et al. also similarly probed the excitonic effects in
monolayer WS2 and demonstrated that there is no significant shift in the excitation energy
of either the “s” or the “p” states with different capping layers by measuring 2PPLE of
monolayer WS2 with different dielectric capping layers, including water, immersion oil,
and aluminium oxide [85]. Yadong Wang et al. demonstrated broadband THGE (≈1.79 to
3.10 eV) in monolayer MoS2 to explore prominent fingerprints of excitonic states including
“s” series excitons and free-band electronic states [93]. As exhibited in Figure 6c, remarkable
THG enhancement at certain photon energies has been observed and the effective third-
order nonlinear susceptibility at different THG energies was calculated. By fitting the
peak labelled as P1-P7 in Lorentzian functions and comparing that with the second-order
differential of the reflectance spectrum, the authors successfully identified “1s” and “2s” of
the A exciton as well as the 1s state of B, C, and D excitonic states with a higher energy level.

Therefore, broadband and high-contrast nonlinear optical spectrums can serve as new
characterization methods to uncover several relevant electronic states such as bright s series,
dark excitons, as well as band-edge excitonic states. This nondestructive and fast method
of determining the excitonic state facilitates our further study of the physical properties
related to the exciton in 2D materials.
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3. Tuning Methods

Nonlinear light-matter interaction in atomically thin TMD is important for both fun-
damental research and future optoelectronic devices. In recent years, researchers have tried
different methods such as carrier injection, strain, artificially stacking, as well as plasmonic
enhancement control to realize the dynamic control of nonlinear optical signals.

3.1. Carrier Injection Tuning

Xiong’s group demonstrated the emergence of an SHG signal in 2L WSe2 with plas-
monic hot-electron injection as shown in Figure 7a [94]. The SHG is absent in 2L WSe2
due to the centrosymmetry; however, when the gold nanorod is coupled with 2L WSe2,
the SHG signal of the bilayers changes from nothing to a presence as shown in Figure 7b.
Under the excitation of an 850 nm pump laser, only the plasmonic metal can be excited,
and the rise time around 120 fs and the decay lifetime around 1 ps are consistent with
that of plasmonic hot-electron generation and transfer time. The mechanism involved was
considered to be the broken inversion symmetry in 2L WSe2 with hot-electron injection
and thus inducing an SHG. Similarly, Xiong’s group also demonstrated manipulation of
the bond charges in a 2L WSe2 by applying a perpendicular electric field. They reported
the charge-induced SHG (CHISHG) from the 2H-2L-WSe2-based back-gate field transistors,
shown in Figure 7c–e [95]. Under the gate voltage of−40 V, the SHG intensity from bilayers
was found to be 1000 times weaker than that from the monolayer. There is a charge (hole)
accumulation in the sample and efficient SHG can be observed, as shown with the back-gate
sweep of source-drain current Isd in Figure 7e. The authors explained the origination of
SHG with a bond charge model: charge accumulation in the W metal planes leads to a
nonuniform electric distribution, which breaks the symmetry of bilayers. In another work,
Xiaodong Xu et al. reported the electrical control of SHG intensity regarding a monolayer
WSe2 field-effect transistor [39]. They chose the electrostatic doping method induced with
strong exciton charging effects in monolayer TMD materials. If the two-photon excitation
energy is resonant with the A exciton as shown in Figure 7f, the resonant SHG can be
tuned with electrostatic doping and exhibits a nearly four-fold intensity reduction and
gate voltage (Vg) is swept from −80 to 80 V. If the two-photon excitation energy is 30 meV
above or below the exciton resonance, Vg has no effect on the SHG (Figure 7g), supporting
the idea that the SHG tuning originates from the modulation of oscillator strength at the
exciton resonance.
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respectively; (c) schematic view of the WSe2 device configuration; (d) SHG spectra of WSe2 under
different back gate; (e) Isd curve of the bilayer WSe2 device as a function of VG; (f) SHG spectra of
monolayer WSe2 where the two-photon excitation energy has resonance with the exciton at selected
gate voltages; (g) normalized SHG peak intensity versus gate voltage when two-photon excitation
energy is above, below, and resonant with the A exciton, respectively. Panel (a,b) adapted with
permission from Ref. [94], Copyright 2018, American Chemical Society; panel (c–e) adapted with
permission from Ref. [95], Copyright 2015, American Chemical Society; panel (f,g) adapted with
permission from Ref. [39], Copyright 2015, Nature Nanotechnology.

3.2. Strain Tuning

Mechanical strain can deform the crystal lattice, thus enabling the modulation of SHG.
For example, Mennel et al. found that strain can alter the polarization dependence of SHG
for monolayer MoS2 [96]. Figure 8a,b show that under the 1% strain, the polarization pattern
of SHG deforms along the uniaxial strain. Electric gating and charge injection can also be
utilized to break the symmetry, and this fascinating property is only possible in TMDCs. In
another work, Li et al. reported a heterostructure combining mechanically exfoliated MoS2
and TiO2 nanowires and realized the modulation of the second harmonic polarization of
MoS2 through the spontaneous strain of different orientations, as shown in Figure 8c [97].
The MoS2/TiO2 heterojunction region is ten times stronger than the SHG of monolayer
MoS2, while the region of pure TiO2 does not produce any signal. It proves that the
enhancement of the second harmonic signal in this heterojunction region does not originate
from titanium dioxide direct contribution, as shown in Figure 8d. Therefore, in layered 2D
materials, since the second harmonic is very sensitive to strain, strain modulation of the
second harmonic in 2D materials is very promising.
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Figure 8. (a,b) Schematic showing the two-point bending method for applying uniaxial strain
and the change of polarization-dependent SHG pattern under strain, reprinted from reference,
with permission from Springer Nature; (c) image of TiO2/MoS2 heterojunction junction region;
(d) characterization of second harmonic intensity imaging; panel (a,b) adapted with permission
from Ref. [96], Copyright 2018, Nature Communications; panel (c,d) adapted with permission from
Ref. [97], Copyright 2018, Nature Communications.

3.3. Artificially Stacking

SHG is highly sensitive to lattice symmetry and crystallographic axis orientation
of the material. Hence, it can be modulated with artificial symmetry control, such as



Molecules 2023, 28, 6737 12 of 19

manipulating the adjacent layer alignment and applying external stimulation. Lin et al.
stacked multiple triangular WS2 sheets in a concentric manner to form a pyramid, shown
in Figure 9a [98]. With the number of layers superimposed, the SHG intensity will show
a trend of decreasing oscillation similar to that of 2H. With more than 70 layers, the SHG
intensity will significantly occur. The main reason for the enhancement is due to the edge
SHG enhancement of the multilayer structure, which will eventually be 45 times stronger
than that of a single layer, as shown in Figure 9b. Furthermore, Fan et al. reported a detailed
SHG study of spiral WS2 multilayer nanosheets with a twisted angle of 5 degrees, as shown
in Figure 9c [99]. In contrast to the diminishing oscillation of normal 2H-phase WS2, the
SHG intensity of spiral WS2 increases with the layer number (see Figure 9d). This spiral
WS2 with enhanced SHG signals in multilayers extends the NLO application of TMDCs.
Hsu et al. in 2014 first started the investigation of SHG in TMDC heterostructures. They
fabricated chemical vapor deposition (CVD)-grown homo-stacked MoS2/MoS2 and studied
the SHG generation with different stacking angles, as shown in Figure 9e [100]. Their
experiment demonstrated that SHG from the artificial bilayer is a coherent superposition of
that from individual layers, with a phase difference determined with the stacking angle.
For a bilayer with a 2H stacking order (θ = 60◦), the SHG totally vanishes, and for a 3R
stacking order AA (θ = 0◦), the SHG is nearly three times stronger than that from the
monolayer, shown in Figure 9f. In addition to stacking the same TMDC material, there
is also the stacking of different materials to form a heterojunction structure to enhance
the SHG and THG. Zhang et al. fabricated a typical monolayer WS2 (WSe2) and MoS2
(MoSe2) heterostructure, keeping its triangular domain shape, as shown in Figure 9g [101].
Figure 9h,i show the parallel-polarized SHG images of the lateral heterostructures of WSe2-
MoSe2 and WS2-MoS2, respectively. The maximum SHG image of the lateral heterostructure
of WS2-MoS2 was obtained at the position of θ = 0◦.
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grown using CVD; (d) layer-dependent SHG spectra of the spiral WS2; (e) a schematic illustration of
the artificially stacked bilayer MoS2 with arbitrary stacking angle θ; (f) optical microscopy images and
SHG intensity mapping of bilayer MoS2 with different stacking orders; (g) heterostructure of TMD
atomic layers; (h) polar plot of the parallel polarization SHG intensity of lateral heterostructure of WS2-
MoS2 atomic layers; (i) polar plot of the parallel polarization SHG intensity of lateral heterostructure
of WSe2-WSe2 atomic layers; panel (a,b) adapted with permission from Ref. [98], Copyright 2018,
American Chemical Society; panel (c,d) adapted with permission from Ref. [99], Copyright 2017,
American Chemical Society; panel (e,f) adapted with permission from Ref. [100], Copyright 2014,
American Chemical Society; panel (g–i) adapted with permission from Ref. [101], Copyright 2015,
American Chemical Society.

3.4. Plasmonic Enhancement

There are two types of plasmons: localized surface plasmons and surface plasmons.
Surface plasmons refer to the collective oscillation of free electrons on the metal surface
when light is incident on the interface between the metal and the dielectric. When the
frequency of the incident light is the same as the oscillation frequency of the electrons, the
electromagnetic field will be confined on the metal surface and generate. The enhancement
of the local electric field generated with plasmons can effectively improve the conversion
efficiency of the second harmonic. Local surface plasmons can effectively confine light
to the sub-wavelength region, thereby significantly enhancing the local electromagnetic
field. Shi et al. reported a 400-fold SHG enhancement by coupling the monolayer WS2 to
the 2D Ag nanogrooves. as shown in Figure 10a [102]. The resonant electric field inside
the nanogroove was designed at 430 nm, overlapping with the C exciton resonance in
WS2. In addition, the presence of grooves provides much stronger enhancement than that
with the Ag plant, as shown in Figure 10b. Wang et al. combined the flexible substrate
PDMS with a single layer of WS2 to design a surface plasmon structure [103], which
achieved a second harmonic enhancement of more than three orders of magnitude, as
shown in Figure 10c. A 7000-fold SHG enhancement at the channel was finally obtained
by controlling the size of the strip structure, as shown in Figure 10d. Previously, SHG or
THG was enhanced separately, and SHG and THG were not enhanced at the same time.
Shi et al. designed a hybrid nanostructure of monolayer WS2 integrated with a plasmonic
cavity as shown in Figure 10e [104]. Optimum 1000-, 3000-, and 3800-fold enhancement
was achieved for two-photon photoluminescence, second harmonic generation, and third
harmonic generation, respectively, in the optimized cavity structure, which is composed
of the Au/SiO2 (50 nm/10 nm) substrate, monolayer WS2, PAH, and CTAB-coated single
AuNH, as shown in Figure 10f. Meanwhile, results show that plasmon enhanced NLO
spectroscopy could serve as a general method for probing high-order Rydberg excitonic
states of 2D materials. With the maturity of the surface plasmon technology and the in-
depth understanding of the localized surface plasmon resonance, it is possible to design
a more refined structure that can better confine the incident electric field in the future to
increase the SHG and THG.
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4. Summary and Outlook

In this review, we summarize the research progress on typical nonlinear optical (NLO)
processes in 2D materials, including SHG, THG, and 2PPL. It is worth noting that for 2D
materials, not only the inorganic TMD materials mentioned in the review show interesting
nonlinear optical properties but also organic 2D materials such as covalent organic frame-
works (COFs), metal–organic frameworks (MOFs), and chromophore-conjugated nano-
materials exhibit attractive nonlinear optical properties, especially the giant two-photon
absorption (2PA) [105–107]. For example, fullerene derived with chromophore-conjugated
nanomaterials corresponds to 2D characters due to the interactive fullerenyl hydropho-
bic intermolecular interaction forces and exhibits large cross-sections of 2PA [108,109].
Compared to 2D inorganic materials, molecular chromophores are advantageous in larger
cross-sections and tuning the 2PA properties with different functional groups; however, it
is challenging to precisely control the spatial arrangement of the chromophores and the
chromophore molecules usually exhibit poor orientation stability [24]. For inorganic 2D
TMD materials, they have good stability and exhibit a high SHG and THG nonlinear coeffi-
cient. However, their 2PPL signals are still relatively limited due to their weak quantum
efficiency and small cross-section. Therefore, appropriate enhancement and regulation
methods are still urgent issues that researchers need to solve.

In addition, we demonstrate that the nonlinear optical spectroscopy can serve as a
characterization method for 2D materials such as determining the layer number, crystal
orientation identification, and mapping the grain boundary and probing excitonic state.
By means of carrier injection tuning, strain tuning, artificial stacking, and surface plasmon
enhancement, nonlinear optical signals in 2D materials can be effectively modulated. Table 1
shows the above kinds of regulation methods and modulation effects.

The NLO feature has the characteristics of high-speed measurement, nondestructive
measurement, large-area measurement, and multi-mode. Combining different tuning
methods can have a large number of applications in optoelectronic devices like all-optical
devices, photonic information communication, and even nonlinear optical valleytronics.
For example, combining the plasmonic modulation and nonlinear optical signals can be
applied in the application of nonlinear valleytronics in TMDC materials [110,111]. The use
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of strain tuning as well as excitonic resonant excitation can broaden the modulation depth
and range and further improve the performance of the NLO response of TMDC [112].

Table 1. Summary of different tuning methods.

Tuning Methods Material Regulatory Range

Carrier injection

Plasmonic hot electron 2LWSe2 Zero to nonzero [94]

Charge accumulation 2L WSe2 Zero to nonzero [95]

Electrical gating 1L WSe2 a factor of four [39]

strain tuning uniaxial strain MoS2 1.0% tensile strain [96]

heterojunction strain MoS2 10 times enhanced [97]

triangle stack WS2 45 times enhanced [98]

Artificially spiral stack WS2
hundreds of times

1 layer -M layer [99]

stacking homojunction stacking MoS2
4 times enhanced

stacking angle 0–60◦ [100]

heterojunction stacking MoX2-WX2 6-fold symmetry [101]

enhanced SHG WS2 400 times enhanced [102]

Plasmonic enhanced SHG WSe2 7000 times enhanced [103]

Enhancement enhanced SHG and THG WS2
SHG 3000 times enhanced

THG 3800 times enhanced [104]

Finally, for the future development direction, we can explore the nonlinear optical
properties of new 2D materials and their heterostructures such as 2D magnetic materials
and related control methods, and create highly stable and high-quality nonlinear optical
integrated devices to broaden their application fields in semiconductor electronics, spin
valley electronics, and other fields.
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