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Abstract

:

The greenhouse gas SF5CF3 was photochemically activated with SIMes (1,3-Bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene) to give 1,3-dimesityl-2,2-difluoroimidazolidine (SIMesF2), and 1,3-dimesitylimidazolidine-2-sulfide, as well as the trifluoromethylated carbene derivative 1,3-dimesityl-2-fluoro-2-trifluoromethylimidazolidine. CF3 radicals, as well as SF4, serve presumably as intermediates of the conversions. In addition, the photochemical activation of SF5CF3 was performed in the presence of triphenylphosphine. The formation of triphenyldifluorophosphorane and triphenylphosphine sulfide was observed.
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1. Introduction


The greenhouse gases SF5CF3 and SF6 are both chemically highly inert and have a long atmospheric lifetime [1,2,3]. Whereas the activation of SF6 has been well established in the last decade [4,5,6,7,8,9,10,11,12,13,14,15,16,17], the studies on SF5CF3 are rare. Dresdner et al. published the reaction of SF5CF3 with perfluoropropylene at temperatures of 425 °C–513 °C to give perfluoroethane and SF4 [18,19,20]. Huang et al. were able to decompose the greenhouse gases SF6 and SF5CF3 via photolysis in the presence of propene at 184.9 nm [21]. Another SF5CF3 activation was performed at the rhodium hydrido complex [{Rh(µ-H)(dippp)}2] (dippp = 1,3-bis(diisopropylphosphanyl)propane) to yield a binuclear rhodium compound bearing a bridging SCF3 ligand [16]. We previously reported on a photocatalytic reduction of SF5CF3 using [Ir(dtbbpy)(ppy)2]PF6 (4,4′-di-tert-butyl-2,2′-dipyridyl, ppy = 2-phenylpyridine) as the photocatalyst and NEt3 as the reductant. The generation of a CF3 radical led to the development of a process for the trifluoromethylation of aromatics [22]. With regard to the activation of SF6, the N-heterocyclic carbene SIMes was used to achieve a photolytic activation at 311 nm, yielding 1,3-dimesityl-2,2-difluoroimidazolidin (SIMesF2, 2) and 1,3-dimesitylimidazolidine-2-sulfide. It was also shown that alcohols can be subsequently fluorinated in situ [15]. Rotering et al. demonstrated that triphenylphosphine can be utilized to activate SF6 under irradiation to yield Ph3PF2 and Ph3P=S in a ratio of 3:1. The latter mixture was used in situ for the deoxyfluorination of carboxylic acids [23]. For both processes, SF6 was presumably initially reduced to give SF6−. The latter can generally transform into an SF5 radical and a fluoride, or into SF5− and a fluorine radical [17,24,25]. SF5CF3, however, produces CF3 radicals and the SF5− anion after reduction [26,27]. In this paper, we report on the thermal and photochemical activation of SF5CF3 by the N-heterocyclic carbene SIMes to result in fluorinated and trifluoromethylated heterocycles [28]. The photochemical activation process of SF5CF3 using triphenylphosphine was studied for comparison.




2. Results


2.1. Thermal Activation of SF5CF3 with SIMes


Heating a 1:1 mixture of SIMes and SF5CF3 at 90 °C for 190 min in toluene-d8 led to the formation of 1,3-dimesityl-2-fluoro-2-trifluoromethylimidazolidine (1), SIMesF2 (2) and 1,3-dimesitylimidazolidine-2-sulfide (3), with NMR yields of 18%, 31%, and 31% based on the amount of SF5CF3 (Scheme 1). The 19F NMR spectrum (Figure 1) of the mixture shows a signal at δ = −55.8 ppm for SIMesF2 (2), which is consistent with the literature [15,28,29], as well as a doublet at δ = −76.3 with a coupling constant 3JFF of 4.2 Hz, and a quartet at δ = −83.1 with a coupling constant 3JFF of 4.4 Hz for compound 1. The formation of 3 was further confirmed through comparing the 1H NMR spectrum with the data reported in the literature [15]. It was noted that traces of trifluoromethane were also observed according to the 19F NMR spectrum. Heating the sample further for one hour led to a decrease in the amount of 1 and SIMesF2 (2) and, instead, more trifluoromethane and trifluoromethane-d1 were observed. The latter can be formed due to the reaction of an intermediate CF3 radical (see below) via hydrogen or deuterium atom transfer. Attempts to achieve a similar transformation in benzene gave the considerably lower amounts of 1, 2, and 3, possibly due to the lower reaction temperature, which was limited by the boiling point of benzene.




2.2. Photolytic Activation of SF5CF3 with SIMes


When a mixture of SF5CF3 and 6.7 equivalents of SIMes was irradiated at 311 nm in benzene-d6 for 3 h, the formation of 62% of 1, and 105% of 2 and 3 was observed, as well as 1% of α,α,α-trifluorotoluene-d5 (Scheme 2). All yields are NMR yields based on the amount of SF5CF3. Further irradiation for 16 h led to the hydrolysis of 2 by adventitious water, to give a urea derivative and HF. The generation of 4 could then be due to the presence of HF. Compound 4 and the thiourea product 3 were observed in a ratio of 4:7. In addition, as described below, the trifluoromethylation of C6D6 will result in the generation of DF. DF can subsequently lead an FDF− derivative of 4. Compound 4 shows a singlet at −65.68 ppm in the 19F NMR spectrum for the CF3 group and a broad signal at −169.40 ppm, indicating the presence of an FHF− anion. The presence of the cation was also confirmed via ESI-MS. Independently synthesized 1,3-dimesityl-2-trifluoromethylimidazolinium tetrafluoroborate showed the same signal in the 19F NMR spectrum. The formation of α,α,α-trifluorotoluene-d5 with a yield of 22% (based on SF5CF3) was confirmed via 19F NMR spectroscopy and GC-MS. The irradiation of a benzene-d6 solution of SF5CF3 at 311 nm for 168 h without the presence of SIMes gave α,α,α-trifluorotoluene-d5 with a yield of 2% only. With toluene-d8 as a solvent, the photochemical activation of SF5CF3 with SIMes led to the formation of CD3C6D5CF3, although the reaction is not selective, and small amounts for unknown products can be detected in the 19F NMR spectrum. Trifluoromethylation proceeded at the ortho (9%, NMR yield based on the consumption of SF5CF3) and para (5%) position of toluene-d8, but also at the meta position (4%) [22,30,31].




2.3. Mechanisms for the Activation of SF5CF3


Compound 1 was then investigated regarding its ability to transfer a CF3 group to aromatics. Thus, the reaction mixture of 1, SIMesF2 (2) and 3 in C6D6, obtained for the thermal SF5CF3 activation, (Scheme 1) was degassed under a vacuum to remove any excess of SF5CF3 and irradiated afterwards at 311 nm. No formation of α,α,α-trifluorotoluene-d5 was observed. This suggests that 1 is not capable of transferring a CF3 group to aromatics. However, as mentioned above, the formation of compound 1 resembles a process known in the literature for the photochemical activation of SF6 by N-heterocyclic carbenes, which is initiated by an electron transfer [15,28]. Thus, a SET (single-electron transfer) after carbene excitation to SF5CF3 can be proposed to give a carbene radical cation and SF5CF3− radical anion (Scheme 3). The formation of an N-heterocyclic carbene radical cation as an intermediate has been proposed by Severin et al. in their discussion of the reaction between SIMes and [Ph3C][B(C6F5)4] to yield [SIMes-C6H5–CPh2]+ at −40 °C [32,33]. The SF5CF3− radical anion will then decompose to give SF5− and a CF3 radical. The latter transformation is consistent with low-temperature electron attachment experiments [27,34,35]. The formed CF3 radical recombines with the SIMes radical cation to form 5 bearing an SF5− anion. The SF5− anion can convert into SF4 and 6 [24,36,37]. Compound 6 then reacts to give the observed compound 1 via the nucleophilic attack of the fluoride. SF4 reacts further, yielding SIMesF2 (2) and the thiourea derivative 3, as was shown in independent experiments [15]. For the thermal activation of SF5CF3, a comparable transformation can be imagined, although electron transfer can be hampered by a kinetic barrier. In this regard, an incipient transition state or pre-interaction of the nucleophilic carbene with SF5CF3 seems to be conceivable [8,23,38,39]. It should be noted that an ion flow tube study shows that OH− reacts with SF5CF3, yielding CF3OH and SF5− [40]. As mentioned above, DF can be formed in association with the photochemical trifluoromethylation of the aromatic compounds. For this process, initially a cyclohexadienyl radical via reaction with a CF3 radical with C6D6 might be generated [22,30,41,42,43]. The cyclohexadienyl radical can then transfer an electron to the SIMes radical cation, giving a cyclohexadienyl cation. The latter reacts with a fluoride, which stems from SF5−, and forms α,α,α-trifluorotoluene-d5, as well as DF.



To confirm the presence of radical intermediates, TEMPO (2,2,6,6-tetramethylpiperidinyloxy) was added to a mixture of SIMes and SF5CF3 in C6D6. After 5 h of irradiation at 311 nm, signals for SIMesF2 (2) and TEMPO-CF3 (8) [44] in a ratio of 1:1 were observed in the 19F NMR spectrum (Scheme 4). The presence of the thiourea derivative 3 was confirmed via 1H NMR spectroscopy, as well as via GC-MS. It should be noted that the addition of TEMPO to the reaction of SF5CF3 with SIMes under non-photolytic conditions did not show the formation of TEMPO-CF3, which indicates that no CF3 radicals were formed.



Furthermore, 1,1-diphenylethylene was used as an additional trapping reagent for the CF3 radical. After irradiation at 311 nm for 4 h, the trifluoromethylated olefin 9 (0.5% based on the amount of 1,1-diphenylethylene), and the trifluoroalkane 10 (0.6% based on the amount of 1,1-diphenylethylene) were observed in a ratio of 2:3, as well as SIMesF2 2 (25% based on the amount of SIMes), 1 (10% based on the amount of SIMes), and the thiourea derivative 3, among traces of other compounds, such as trifluoromethane (Scheme 4). Mechanistically, the CF3 radical reacts with 1,1-diphenylethylene, and a trifluoromethylbenzyl radical is formed. Two molecules of the latter can generate the olefin 9 and the alkane 10 via hydrogen atom transfer. The formation of trifluoromethane can be explained by HAT from the trifluoromethylbenzyl radical to also yield 9.




2.4. Activation of SF5CF3 with Triphenylphosphine


The described reactivity of SIMes was compared with that of PPh3. Thus, the photolysis of PPh3 and SF5CF3 at 353 nm led to the formation of 11 with a yield of 10%, and 12 with a yield of 28% (based on the amount of PPh3, see Scheme 5). α,α,α-Trifluorotoluene-d5 was formed, as well. Additionally, traces of F3PPh2, Ph2PF4−, and O=PPh2F were observed, according to the 19F NMR spectra [45]. In contrast to the described reactivity with SIMes, the generation of a phosphorane containing a CF3 group was not observed. The products were identified via 31P NMR, 19F NMR spectroscopy, as well as ESI-MS, and the data are consistent with compounds known in the literature [23]. Irradiation at a wavelength of 375 nm led to the formation of only small amounts of phosphorane 12, and only traces of α,α,α-trifluorotoluene-d5. No thermal activation of SF5CF3 in toluene-d8 could be achieved via heating the reaction solution at 100 °C for 9 h. Notably, Buß et al. reported on the thermal activation of SF6 using strongly basic phosphines [8], but could not observe the thermal activation of SF6 with PPh3, due to the lower nucleophilicity of the latter [23].



A possible mechanism involves SET from the phosphine to the SF5CF3, resulting in the formation of a SF5CF3− radical anion and a PPh3+ radical cation (Scheme 6). The SF5CF3 radical anion then decomposes to give a CF3 radical and a SF5− anion [27,34,35]. The latter can either decompose to fluoride and SF4, or give a Ph3PF radical via reaction with PPh3+. PPh3 reacts with SF4, yielding F2PPh3 and SPPh3. The generated Ph3PF might become further fluorinated via intermediate sulfur fluorides or SF4, to yield PPh3F2. The CF3 radical reacts with the solvent C6D6, yielding α,α,α-trifluorotoluene-d5 and, presumably, DF, possibly via the re-oxidation of a cyclohexadienyl radical cation with PPh3+, and subsequent deprotonation with fluoride. It should be noted that Dielmann et al. also proposed, for the photochemical activation of SF6 with triphenylphosphine, a mechanism based on DFT calculations, in which an electron is initially transferred from a π orbital of an arene moiety of PPh3 to the delocalized σ* orbital of SF6 [23].





3. Materials and Methods


3.1. General Instruments, Methods, and Materials


All reactions were performed under an argon atmosphere, to exclude air and moisture. Chemicals were stored in an argon-filled glass apparatus, using the standard Schlenk-technique. SIMes was synthesized from 1,3-Bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-1-ium tetrafluoroborate, KOtBu, and NaH, all of which were heated at night under a vacuum prior to use. TEMPO, SF5CF3, and PPh3 were purchased from commercial sources, and used without further purification. 1,1-Diphenylethylene was stored over a molecular sieve (3 Å) before use. Toluene-d8, C6D6, and THF-d8 were stored over Solvona®. All solvents were distilled and degassed prior to use, and stored under argon over molecular sieves (3 Å). As the light source, an LED lamp with a peak wavelength of 375 nm from Innotas Produktions GmbH (Zittau, Germany) was used, as well as a photo Multirays reactor (Helios Italquartz, Cambiago, Italy) equipped with ten light sources (15 W), with an emission maximum of 311 nm or 353 nm. The NMR spectra were recorded at room temperature with a Bruker AV III 300 or Bruker DPX 300 spectrometer (Ettlingen, Germany). The chemical shifts in the 1H and 13C{1H} NMR spectra were calibrated to the residual solvent signal of the deuterated solvents. The 1H NMR spectra were referenced as C6D5H: δ = 7.16 ppm; toluene-d7: δ = 6.97 ppm; CHD2CN: δ = 1.94 ppm, and CHDCl2: δ = 5.32 ppm. The 13C{1H} NMR spectra were referenced as C6D6: δ = 128.06 ppm; toluene-d8: δ = 20.43 ppm; CD3CN: δ = 1.32 ppm and CD2Cl2: δ = 53.84 ppm. The 19F NMR spectra were referenced externally to CFCl3 at δ = 0.0 ppm. As an internal standard for the quantification, 1-fluoropentane was used with δ of −217.6 ppm in the 19F NMR spectrum. GC–MS measurements were conducted using an Agilent 6890N gas chromatograph with a capillary column (Agilent 19091S-433 Hewlett-Packard 5 MS: 30 m length, 0.25 mm inside diameter, 0.25 μm film thickness) and an Agilent 5973 Network mass selective detector. Helium (0.74 bar, 1.2 mL/min, 40 cm/s) was used as the carrier gas. The electron impact ionization was carried out with an ionization voltage of 70 eV. Mass spectra were measured with a Micromass Q-Tof-2 instrument, with a Linden LIFDI source (Linden CMS GmbH, Weyhe, Germany). ESI-MS spectra were recorded using an ADVION EXPRESSION CMS spectrometer, as an eluent CD3CN was used, and the sample was directly injected into the instruments. The data were analyzed using ADVION DATA EXPRESS Version 6.0.11.3. Caution: in some experiments, traces of HF were generated. Immediate access to procedures in case of contact with HF-containing solutions must be available.




3.2. Activation of SF5CF3 with SIMes by Heating


A PFA tube was filled with SIMes (0.016 g, 0.0525 mmol) and 1-fluoropentane (6 μL, 0.0525 mmol) as an internal standard. The tube was attached to a steel line, and C6D6 (0.4 mL) was condensed into the PFA tube. After the solvent was degassed, SF5CF3 (175 mbar, 0.0525 mmol) was condensed into the PFA tube, which was then flame-sealed under a vacuum. The reaction mixture was heated at 90 °C for 3 h. Compound 1 was detected with a yield of 18%, 2 was detected with a yield of 31%, and 3 was detected with a yield of 31%. All yields are NMR yields (internal standard: 1-fluoropentane) based on SF5CF3.



NMR data for 1,3-dimesityl-2-fluoro-2-trifluoromethylimidazolidine 1: 19F NMR (282.4 MHz, tol-d8): δ = −76.3 (d, 3F, 3JFF = 3.8 Hz, CF3), −83.1 (q, 1 F, 3JFF = 3.8 Hz, F) ppm.



NMR data for 1,3-dimesityl-2,2-difluoroimidazolidin 2: 19F NMR (282.4 MHz, tol-d8): δ = −55.8 (s) ppm. The obtained NMR data are consistent with those in the literature [15].



Analytical data for 1,3-dimesitylimidazolidine-2-sulfide 3: 1H NMR (300.1 MHz, tol-d8): δ = 2.09 (m, 6 H, p-CH3), 2.22 (m, 12 H, o-CH3), 3.21 (s, 4H, NCH2CH2N), 6.71 (s, 4H, HAr) ppm., GC-MS (tol-d8): calculated (m/z) for [3]: 338.18 experimental (m/z) for [3]: 338. The obtained NMR data are consistent with those in the literature [15].



Reaction products 1, 2, and 3 were degassed (freed of SF5CF3) and irradiated at 311 nm in the photochemical reactor at 311 nm. After irradiation for 16 h, no trifluoromethylated solvent was observed.




3.3. Photochemical Activation of SF5CF3 with SIMes


A PFA tube was filled with SIMes (0.032 g, 0.105 mmol) and 1-fluoropentane (6 μL, 0.0525 mmol) as an internal standard. The tube was attached to a steel line, and C6D6 (0.4 mL) was condensed on top. After the solvent was degassed, SF5CF3 (87 mbar, 0.026 mmol, 1 eq) was condensed into the solution, and the PFA tube was flame-sealed under a vacuum. The reaction mixture was irradiated in a UV reactor (311 nm) at room temperature for 16 h.



Analytical data for 4: 19F NMR (282.4 MHz, C6D6): δ = −170.1 (br s, 2H), −65.6 (s, 3F) ppm., ESI-MS (CD3CN): calculated (m/z) for [4]+: 375.2, experimental (m/z) for [4]+: 375.3.



Analytical data for α,α,α-trifluorotoluene-d5: 19F NMR (282.4 MHz, C6D6): δ = −62.4 ppm., GC-MS (C6D6): calculated (m/z) for [α,α,α-trifluorotoluene-d5]: 151, experimental (m/z) for [α,α,α-trifluorotoluene-d5]: 151. The obtained NMR data are consistent with those in the literature [22].




3.4. Experiments to Trap Radicals


3.4.1. Addition of TEMPO to Reaction Mixture


A PFA tube was filled with SIMes (0.015 g, 0.05 mmol) and TEMPO (0.034 g, 0.22 mmol, 4.4 eq). The tube was attached to a steel line, and C6D6 (0.4 mL) was condensed on top. After the solvent was degassed, SF5CF3 (300 mbar, 0.09 mmol, 1.8 eq) was condensed into the solution, and the PFA tube was flame-sealed under a vacuum. The reaction mixture was irradiated in a UV reactor (311 nm) at room temperature for 12 h. TEMPO-CF3, SIMesF2, and compound 1 (1,3-Bis(2,4,6-trimethylphenyl)-imidazolidin-2-sulfide) were observed via 19F and 1H NMR spectroscopy and GC-MS.



Analytical data for 8: 19F NMR (282.4 MHz, C6D6): δ = −56.5 ppm. The obtained NMR data are consistent with those in the literature [15,22].




3.4.2. Addition of 1,1-Diphenylethylene


A PFA tube was filled with SIMes (0.016 g, 0.0525 mmol) and 1,1-diphenylethylene (46 µL, 0.263 mmol, 5 eq). The tube was attached to a steel line, and C6D6 (0.4 mL) was condensed on top. After the solvent was degassed, SF5CF3 (175 mbar, 0.0525 mmol, 1 eq) was condensed into the solution, and the PFA tube was flame-sealed under a vacuum. The reaction mixture was irradiated in a UV reactor (311 nm) at room temperature for 3 h. Compounds 9 and 10 were observed via 19F NMR spectroscopy with a 0.5% and 0.6% NMR yield (compared to 1,1-diphenylethylene), and via GC-MS; SIMesF2 2 was observed via 19F NMR spectroscopy with 25% (NMR yield, based on the amount of SIMes), 1,3-dimesityl-2-fluoro-2-trifluoromethylimidazolidine 1 was observed with a yield of 10% (NMR yield, compared to the amount of SIMes), and a signal for compound 3 was observed via 1H NMR spectra and GC-MS.



Analytical data for 9: 19F NMR (282.4 MHz, C6D6): δ = −55.6 (t, 3JFF = 10.2 Hz) ppm, GC-MS (C6D6): calculated (m/z) for [9]: 248.08, experimental (m/z) for [9]: 248. The obtained NMR data are consistent with those in the literature [46,47].



Analytical data for 10: 19F NMR (282.4 MHz, C6D6): δ = −63.3 (t, 3JFH = 10.2 Hz) ppm., GC-MS (C6D6): calculated (m/z) for [10]: 250.10, experimental (m/z) for [10]: 250. The obtained NMR data are consistent with those in the literature [46,48].





3.5. Activation of SF5CF3 with PPh3


A Young flask was filled with PPh3 (0.5 g, 1.9 mmol) and 1-fluoropentane (100 μL, 0.875 mmol) as an internal standard. The mixture was dissolved in C6D6 (20 mL). The Young flask was attached to a steel line. After the solvent was degassed, the flask was filled with SF5CF3 (1.3 bar). The reaction mixture was irradiated in a UV reactor (353 nm) at room temperature for 43 h. Compounds 11 and 12 were observed via 19F and 31P NMR spectroscopy. A signal for α,α,α-trifluorotoluene-d5 was observed (0.065 mmol) via 19F NMR spectroscopy.



Analytical data for 11: 31P NMR (121.5 MHz, C6D6): δ = 42.28 (s)., ESI-MS (CD3CN): calculated (m/z) for [11 + 2Na+ + H−]+: 341.05, experimental (m/z) for [11 + 2Na+ + H−]+: 341.05. The obtained NMR data are consistent with those in the literature [13,23].



Analytical data for 12: 19F NMR (282.4 MHz, C6D6): δ = −39.0 (d, 1JFP = 664.44 Hz) ppm., 31P NMR (121.5 MHz, C6D6): δ = −55.21 (t, 1JFP = 663.42 Hz), ESI-MS (CD3CN): calculated (m/z) for [13 + K]+: 339.05, experimental (m/z) for [13 + K]+: 339.3. The obtained NMR data are consistent with those in the literature [13,23].





4. Conclusions


In conclusions, reaction routes for the activation of the greenhouse gas SF5CF3 with SIMes and PPh3 were developed. Photochemical processes presumably proceed by an initial electron transfer to the fluorinated substrate, and provide CF3 radicals. This is revealed via trapping experiments of a CF3 radical, and also the trifluoromethylation of C6D6. The studies complement efforts regarding the activation and degradation of fluorinated compounds [49,50,51,52,53,54,55,56].
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Scheme 1. Activation of SF5CF3 at 90 °C in toluene-d8. 
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Figure 1. 19F NMR spectrum for SIMesF2 2 and 3. 
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Scheme 2. The irradiation of SIMes and SF5CF3 in C6D6 at 311 nm (the NMR yields are based on the amount of SF5CF3). 
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Scheme 3. The proposed mechanism for the activation of SF5CF3 with SIMes in benzene-d6. 
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Scheme 4. Experiments to trap CF3 radicals (a) via the addition of TEMPO, and (b) via the addition of 1,1-diphenylethylene (* NMR yield based on the amount of 1,1-diphenylethylene, ** NMR yield based on the amount of SIMes). 
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Scheme 5. The reduction of SF5CF3 with triphenylphosphine (* based on the amount of PPh3). 
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Scheme 6. The proposed mechanism for the activation of SF5CF3 with triphenylphosphine. 
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