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Abstract: The folded structures of proteins can be accurately predicted by deep learning algorithms
from their amino-acid sequences. By contrast, in spite of decades of research studies, the prediction of
folding pathways and the unfolded and misfolded states of proteins, which are intimately related to
diseases, remains challenging. A two-state (folded/unfolded) description of protein folding dynamics
hides the complexity of the unfolded and misfolded microstates. Here, we focus on the development
of simplified order parameters to decipher the complexity of disordered protein structures. First,
we show that any connected, undirected, and simple graph can be associated with a linear chain
of atoms in thermal equilibrium. This analogy provides an interpretation of the usual topological
descriptors of a graph, namely the Kirchhoff index and Randić resistance, in terms of effective force
constants of a linear chain. We derive an exact relation between the Kirchhoff index and the average
shortest path length for a linear graph and define the free energies of a graph using an Einstein model.
Second, we represent the three-dimensional protein structures by connected, undirected, and simple
graphs. As a proof of concept, we compute the topological descriptors and the graph free energies
for an all-atom molecular dynamics trajectory of folding/unfolding events of the proteins Trp-cage
and HP-36 and for the ensemble of experimental NMR models of Trp-cage. The present work shows
that the local, nonlocal, and global force constants and free energies of a graph are promising tools to
quantify unfolded/disordered protein states and folding/unfolding dynamics. In particular, they
allow the detection of transient misfolded rigid states.

Keywords: protein folding; intrinsically disordered proteins; graph theory; Kirchhoff index; Wiener
index; molecular dynamics

1. Introduction

In spite of significant advances in experimental [1–7], theoretical [8–19], and computa-
tional research [20–29], many questions related to protein folding remain unanswered [19].
In particular, a complete understanding of preferred folding pathways and misfolding
and protein aggregation, which are related to neurodegenerative diseases, still remains a
challenge. So far, none of these problems can be tackled by current deep-learning and other
recent successful computational approaches of protein folding [25], as these methods relate
two ensembles of end structures, the linear sequences of amino acids (completely unfolded
unstable structures) and the protein folded geometries extracted from an experimental
database, and have no reliable information on the ensemble of intermediate structures. It
is worth noting that the inclusion of sequence databases in these methods only improves
the results by a few percent, emphasizing the importance of information arising from the
physical laws: the database of equilibrium experimental structures.
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According to Anfinsen’s principle, the equilibrium protein structure (native state
in vivo ) is the global minimum of the protein free energy in vitro [8], i.e., it is governed by
the second law of thermodynamics. More precisely, the protein equilibrium structure is de-
fined by the amino-acid sequence and the thermodynamical parameters of the environment
(T, p, pH) [9]. The protein folding phenomenon is thus cast in thermodynamic terms as a
phase transition between an unfolded state and a folded native state. From the Boltzmann
law, we know that free energy always involves all microstates. The partition of microstates
in folded and unfolded ensembles is at the heart of Landau’s order parameter theory
for which the free energy is expanded as a function of one macroscopic parameter that
varies between the two phases. This two-state view is challenged by the nanoscopic nature
of the macromolecules. Unlike a macroscopic system, there is no sharp unique melting
temperature of the transition for a protein, as it depends on the physical property (order
parameter) measured and its spatial localization [4,17,18]. Moreover, protein folding may
occur through intermediate states or even via a continuum of states (barrierless folding) [6].
A predominant description of protein folding is thus the consideration of an expansion
of free energy as a continuous function of order parameter(s): the protein free-energy
landscape (FEL) [12]. As for glasses, the protein FEL has multiple local minima [14,30–32].
It evolves as a function of temperature, as often pictured as a funnel [12]. The protein
FEL concept is essential to understanding the misfolding and aggregation of these hetero-
geneous polymers. A challenging problem is to define appropriate order parameters to
describe the folded, misfolded, unfolded, and intrinsically disordered ensembles of protein
structures. The nonfolded state of proteins is not necessarily random, nor does it resemble
a Gaussian chain model, and must be characterized. For example, we showed recently
that the α-synuclein monomer, a prototypical intrinsically disordered protein involved in
Parkinson’s disease, occurs in two distinct disordered states by using an FEL representation
based on two order parameters [33]. Therefore, there is still a need to develop useful
representations (order parameters) of the folding process based on fundamental laws. The
present work aims to develop and test order parameters derived from graph theory [34,35]
to contribute to the characterization of protein-disordered ensembles. The theoretical con-
cepts developed in the present work will be tested for protein structures extracted from
all-atom molecular dynamics (MD) simulations. Small- and medium-size proteins have
been successfully folded using physical laws by all-atom MD simulations [22].

To associate a graph with a protein structure, we represent the amino acids by just a
set of points (vertices of the protein graph) together with lines (edges of the graph) joining
pairs of these points according to some rules (see Section 3). We select the Cα atom in the
protein structure as a vertex representing each amino acid in the graph. For example, the
model protein studied here, TRP-cage, will be represented by a graph of 20 vertices. The
graph derived from atom positions in a 3D protein structure is hereby called a protein
graph (PG). Unlike 3D models, where each Cα atom has a defined position in space and
links between the Cα represent pseudo bonds, the relative positions of the vertices and of
the shape and length of lines representing edges of a 2D representation of the PG have a
priori no significance. The selection of a specific representation of a PG in 2D will depend
on some additional descriptors which will serve to cluster the vertices in groups to reveal
hidden information in structural or dynamical properties.

The applications of graphs and simplified three-dimensional networks to analyze pro-
tein structures and functions have been widely developed [36–39]. It was established early
that graphs representing protein structures share the characteristics of small-world net-
works [40–43]. Critical amino acids [44], conserved amino-acids networks [45] in proteins,
and signal propagation within the macromolecule were identified by using graphs [42].
Network models were applied to study protein flexibility [46,47], protein unfolding [48],
and protein folding pathways [49–51]. The complex network of folding pathways can be
represented by a graph where each vertex is a microstate or ensemble of microstates, and
the edges represent the transitions between them [49].
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Here, we show that two topological descriptors of a PG, the Kirchhoff index and the
average shortest path between two vertices, can be used to cluster folded and disordered
protein structures. Using a linear chain model and statistical physics, we demonstrate
that the Kirchhoff index has the physical meaning of the inverse global force constant of
the network, and we introduce the local force constant of a vertex, which can be related
to Einstein’s seminal model of crystal heat capacity. The free-energy models of the PG
are thus defined based on Einstein’s hypothesis and normal mode analysis. As a proof of
concept, the present order parameters are used to analyze an all-atom molecular dynamics
folding/unfolding trajectory and the ensemble of experimental NMR models of the fast-
folder Trp-cage protein. To test the robustness of the findings, the analysis of the topological
parameters was repeated for an all-atom molecular dynamics folding/unfolding trajectory
of the fast-folder HP-36 protein.

This paper is organized as follows. In Section 2.1, we present the theory based on the
analogy between a PG and a 1D chain with harmonic spring force constants. An analytical
relation between the Kirchhoff index and the average shortest path length of a graph is
derived for a fully unfolded protein. The definitions of the local, nonlocal, and global
force constants of a PG and their relation with the Randić resistance of a graph, as well
as the definition of the free energies of a PG, are given. In Section 2.2, numerical results
are presented for the MD trajectory of Trp-cage. The results for HP-36 are presented in the
Section S2 of the Supplementary Materials, as they are similar to those presented in the
main text for Trp-cage protein. Technical details on the numerical construction of the PG
and on the MD are reported in Section 3. This paper concludes with Section 4.

2. Results and Discussion
2.1. Theory
2.1.1. Mechanical Interpretation of a Simple, Connected, and Undirected Graph

Here, we introduce the topological equivalence between a simple, connected, and
undirected graph and a linear chain of atoms with interatomic harmonic potentials.

First, we consider the Hamilonian of the linear chain with n atoms in the harmonic
approximation:

H = ε0 +
1
2

n

∑
i=1

n

∑
j=1

φijuiuj (1)

where φ is the force constant matrix (Hessian), ui and uj are the displacements of the ith
and jth atoms of the chain, and ε0 is the ground-state energy. Because the chain is linear,
the displacements are scalar numbers, which can take positive or negative values. By
construction, the chain is connected: there is no atom not linked to another.

Newton’s equations of motion are:

(∀i) : fi = miüi (2)

where mi is the mass of atom i. The force fi is conservative:

fi = −
∂H
∂ui

= −
n

∑
j=1

φijuj (3)

From Equation (3), one finds:

(∀i) : φii = −
n

∑
j=1
j 6=i

φij (4)

because for a rigid translation, i.e., ui = U (∀i), all the forces must be zero.
Second, we consider a graph G = (V, E) with vertex set Vand edge set E. The number

of vertices in V is n. We assume the graph to be undirected, simple, and connected. A
pair of vertices vi and vj has edge weight wij, which is defined to be 0 if there is no edge
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between vi and vj. Because the graph is assumed undirected, wij = wji. The adjacency
matrix A has elements:

Aij = wij if i 6= j and Aii = 0 (5)

The degree di of the ith vertex is the sum of the weights of all edges having vi as
one end:

di =
n

∑
j=1,j 6=i

wij =
n

∑
j=1,j 6=i

Aij (6)

The Laplacian L of the graph is defined as usual by:

Lij = −Aij if i 6= j and Lii = di (7)

There is a complete equivalence between L and φ if we interpret the nondiagonal
elements of the force constant matrix as proportional to minus the weights of the edges of a
graph connecting the atoms, i.e.,

φij = −Aijc = −wijc if i 6= j (8)

where c is an arbitrary force constant, which ensures the proper physical dimension of φ.
Therefore, we have:

φ = cL (9)

For a particular case of an unweighted graph for which A is a binary matrix (all
nonzero weights are equal to 1), the associated linear chain has atoms connected with the
same spring force constant c. For the particular case of the PG, A is binary. The vertices
of the PG represent all the Cα atoms of the protein. An edge within the PG represents a
contact between two Cα atoms, i.e., they are at a distance in the 3D protein structure shorter
than a cut-off radius (see Section 3 for the construction of the PG). The PG Laplacian is thus
equivalent to the force constant matrix of a linear chain where the atoms are connected
(according to A) by the same harmonic spring strength c.

The spectral properties of L are equivalent (to a constant factor) to the spectral prop-
erties of the Hessian (Equation (9)). For a chain of atoms having the same mass, i.e.,
(∀i) : mi = m, the eigenvalues of L are related to the vibrational modes of the chain.
Indeed, assuming a harmonic solution at the frequency ω for the displacement of the ith
atom, i.e., ui(t) = ui(0)eiωt, then üi(t) = (−ω2)ui(0)eiωt. Using this in Equation (3), we
find the following usual eigenvalue equation:

ω2ui(0) =
n

∑
j=1

[
φij

m

]
uj(0) ≡

n

∑
j=1

Bijuj(0) (10)

The diagonalization of B gives the frequencies ωl and eigenvectors el of the vibrational
modes of the chain:

Bij =
n

∑
l=1

ω2
l el(i)el(j) (11)

where el(i) is the component of the eigenvector of the ith atom in the lth vibrational mode.
We sort the modes by increasing frequency ωl+1 > ωl . The mode 1 corresponds to a
translation with ω1 = 0.

From Equations (9) and (10), the eigenvectors of L are identical to those of B, and thus
the spectral decomposition of L is:

Lij =
n

∑
l=1

λlel(i)el(j) (12)
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with eigenvalues given by:

λl =
ω2

l
Ω2 (13)

with Ω2 = c/m.
One has λ1 = 0 as expected for a connected graph. The lowest nonzero eigenvalue λ2

is named the algebraic connectivity, and the eigenvector e2 is the Fiedler vector, which can
be used to partition the graph. The corresponding vibrational mode 2 of the atomic chain is
the mode with the largest wavelength, i.e., the components of its eigenvector are those that
fluctuate less along the chain, i.e., less varying among the vertices in a graph.

2.1.2. Thermostatistical Interpretation of Topological Descriptors of a Simple, Connected,
and Undirected Graph

We define three descriptors of the thermal fluctuations of a linear chain of atoms with
harmonic interatomic potentials and show their equivalence with topological descriptors
of a simple, connected, and undirected graph.

The most general solution of the equations of motions is a linear combination of the
eigenmodes:

ui(t) =
n

∑
l=1

Ql(t)
el(i)√

mi
(14)

where Ql(t) are the weights of the modes, the so-called normal coordinates. Using
Equations (2) and (3), we have as usual for ∀l 6= 1:

√
µlQ̈l(t) +

√
µlω

2
l Ql(t) = 0 (15)

with the solution Ql(t) = Ql(0)cos(ωlt) and where µl is an arbitrary effective mass. For
l = 1, Ql = constant, and ω1 = 0. In the microcanonical ensemble (n, V, E) for which the
energy E is constant, i.e., Ql(0), it is easy to show that

〈Ql(t)Ql′(t)〉 = δll′
Q2

l (0)
2

(16)

where 〈. . .〉 = limτ→∞
1
τ

∫ τ
0 . . . is a time average. In the canonical ensemble (n, V, T), the

energy of the microstates are P2
l

2µl
+

ω2
l Q2

l
2 , with Pl being the momentum associated with

mode l. Using the equipartition theorem for the chain in thermal equilibrium, we have
∀l 6= 1: 〈

Q2
l

〉
T
=

kBT
ω2

l
(17)

where 〈. . .〉T is the average over all microstates in the canonical ensemble, T is the absolute
temperature, and kB is the Boltzmann constant. Because the normal coordinates are statisti-
cally independent in the harmonic approximation (as stated by Equation (15), there is no
coupling between the modes), thus we have:

〈QlQl′〉T = δll′Q
2
l (18)

and finally, from Equation (14),

〈
u2

i

〉
T
= kBT

[
n

∑
l=2

|el(i)|2

miω
2
l

]
=

kBT
k̂i

(19)

where we have introduced an effective local force constant (local stiffness) k̂i. Equation (19)
has a clear physical meaning: it represents the statistical fluctuations of the displacement of
the ith atom in a local harmonic potential with a curvature k̂i. Summing the atom thermal
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fluctuations of the entire chain defines an effective global force constant (global stiffness) K̂:

n

∑
i=1

〈
u2

i

〉
T
= kBT

[
n

∑
l=2

n

∑
i=1

|el(i)|2

miω
2
l

]
=

kBT
K̂

(20)

Equation (20) represents the entire chain as fluctuating in a harmonic ground-state potential
of curvature K̂. A third effective nonlocal force constant (nonlocal stiffness) can be defined
for the thermal fluctuations of a pair of atoms relative to each other:

〈(
ui − uj

)2
〉

T
= kBT

 n

∑
l=2

∣∣∣ el(i)√
mi
− el(j)√mj

∣∣∣2
ω2

l

 =
kBT
K̂ij

(21)

Equation (21) represents the fluctuations of each pair of atoms ij as if they were in a
harmonic potential with curvature K̂ij. The global force constant can also be defined and
measured for actual protein structures, where it is related to the dynamical transition of
proteins [52].

The relation between the force constants and the topological descriptors of the corre-
sponding graph is deduced from Equations (19) to (21) by using mi = m ∀i, the normaliza-
tion of eigenvectors ∑n

i=1|el(i)|2 = 1, and Equation (13) for the Laplacian eigenvalues:〈
u2

i

〉
T
=

γ

ki
(22)

n

∑
i=1

〈
u2

i

〉
T
=

γ

K
(23)〈(

u2
i − u2

j

)2
〉

T
=

γ

Kij
(24)

where γ ≡ kBT
c and with the dimensionless local (ki), global (K), and nonlocal (Kij) force

constants of the graph defined by

1
ki

=
n

∑
l=2

|el(i)|2

λl
(25)

1
K

=
n

∑
l=2

1
λl

(26)

1
Kij

=
n

∑
l=2

|el(i)− el(j)|2

λl
(27)

The three force constants are related to each other through three sum rules obtained by
using the normalization condition ∑n

i=1|el(i)|2 = 1:

1
K

=
1

2n

n

∑
i=1

n

∑
j=1
j 6=i

1
Kij

(28)

1
K

=
n

∑
i=1

1
ki

(29)

1
ki

=
1
n

[
n

∑
j=1

1
Kij
− 1

K

]
(30)

The formulation of the topological descriptors in the context of a chain in thermal equi-
librium provides an interesting physical interpretation of the known topological descriptors
of a graph as follows. The robustness of a graph is an important concept to measure the
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quality of a physical network represented by a graph, as in for example a telecommunica-
tion system. One measure of the robustness is related to the effective (Randić) resistances
of a graph [53]. For a pair of vertices (i, j), this quantity, noted Ωij, is defined through the
Moore–Penrose inverse of the Laplacian, L−1:

Ωij = L−1
ii + L−1

jj − 2L−1
ij (31)

From the spectral decomposition of the Moore–Penrose inverse of the Laplacian, i.e.,
L−1 = ∑n

i=1 el(i)el(j)/λl , one immediately find that the nonlocal force constant Kij and the
Randić resistance Ωij are simply inversely related:

Ωij =
1

Kij
(32)

Therefore, all the other force constants of a graph can be formulated in terms of Ωij
because of the sum rules (Equations (28)–(30)). As shown in Randić’s seminal paper, if a
connected graph is associated with an electric network with resistances equal to the inverse
of the weight wij between two nodes, Ωij represents the effective resistance between the
nodes i and j if a voltage difference is applied between these two nodes. By analogy, if the
connected graph is associated with a linear chain with interatomic force constants equal
to the weights wij (normalized by a constant c), Kij represents the effective force constant
between the atoms i and j if a couple of forces are applied to this pair of nodes, as explicitly
demonstrated in Section S4 of the Supplementary Materials. For a linear chain, the Randić
resistance Ωij of an atom pair is also exactly its compliance Cij [54] and equal to 1/Kij.
For a three-dimensional elastic network, the compliance is a 3 × 3 tensor representing the
elastic response of an atom pair to a couple of forces. A scalar compliance of a pair of nodes
of a three-dimensional elastic network, similar to the Randić resistance or nonlocal force
constant, can be computed by applying a couple of forces to the atoms in the direction of the
vector that joins them [54]. As demonstrated in Section S4 of the Supplementary Materials,
this scalar compliance [54] can be related analytically to the tensorial Randić resistance of
the atom pair (equal to the inverse of the nonlocal force constant matrix).

Another usual measure of the robustness of a graph is the Kirchhoff index of a graph,
K f , defined by the sum of the eigenvalues of the Moore–Penrose inverse of the Laplacian
and is simply the inverse of the global force constant:

K f =
1
K

(33)

The K f is proportional to the average Randić resistance of the graph. Indeed, from Equation (28),
K f = 1/K = (n− 1)

〈
Ωij
〉
/4. For a linear chain,

〈
Ωij
〉

is also its average compliance.
In the present thermal statistical interpretation of the topological descriptors, each

descriptor has the same physical meaning as the stiffness of a specific harmonic potential.

2.1.3. Relation between the Global Force Constant and the Average Shortest Path Length:
Analytical Results

The path length between two vertices is defined as the sum of the weights of edges
constituting the path. For a binary adjacency matrix, the length of a path between two
vertices is the number of edges of the path connecting them. For a path α(i, j) between the
vertices i and j, the length lα(i,j) is

lα(i,j) = ∑
pairs(r,s)
∈ α(i,j)

wrs = −
1
c ∑

pairs(r,s)
∈ α(i,j)

φrs (34)



Molecules 2023, 28, 6659 8 of 21

where (r, s) is an edge of the path α(i, j). The shortest path length between two vertices i
and j is an important topological descriptor. We use the notation l0

ij:

min
{

lα(i,j)
}

α(i,j)
= l0

ij (35)

The average over all shortest path lengths between all pairs of vertices of the graph,
〈
l0〉, is

another well-studied topological descriptor of the graph robustness and is defined by

〈
l0
〉
=

1
n(n− 1)

n

∑
r=1

n

∑
s=1
s 6=r

l0
rs (36)

In Equation (36), the double sum is the so-called graph Wiener index.
As both the Kirchhoff index and the average shortest path length describe the robust-

ness of a network in the literature, a natural question to ask is if and how they are related.
An analytical answer can be found for a binary adjacency matrix A of a graph for which the
first (i = 1) and last (i = n) vertices have degree 1, and all the others have degree 2. This
graph corresponds to a linear chain with spring force constants between nearest-neighbor
atoms only, and the PG is one of a completely unfolded protein (straight polypeptide). For
this graph, the average over all shortest path lengths is simply:

〈
l0
〉
=

1
n(n− 1)

n

∑
i=1

n

∑
j=1
|j− i| (37)

From Equation (37) and simple but tedious algebra (see Section S1 of the Supplemen-
tary Materials), one finds 〈

l0
〉
=

n + 1
3

(38)

The spectral properties of the Laplacian of this graph can be found analytically by
analogy with the corresponding linear chain of atoms where φij = −c between nearest-
neighbor atoms only. The vibrational frequencies and eigenvectors of such a chain are well
known [55] from which we find the eigenvalues of the Laplacian:

λl =
ω2

l
Ω2 = 4 sin2

(
(l − 1)π

2n

)
(39)

with l = 1, 2, 3, . . . n. Using Equations (26) and (39), the global force constant for this graph
is given by

1
K

=
1
4

n−1

∑
l=1

1

sin2
(

lπ
2n

) =
n2 − 1

6
(40)

where the last equality is found as follows. Using 2sin2
(

lπ
2n

)
= 1− cos

(
lπ
n

)
, we have

1
K

=
1
2

n−1

∑
l=1

1

1− cos
(

lπ
n

) (41)

We observe that xl ≡ cos
(

lπ
n

)
are the roots of the derivative of the Chebyshev polynomial

of the first kind Tn(x) = cos(nθ) with x = cos(θ). The derivative of Tn(x) is a polynomial
of degree n− 1 : Pn−1(x) ≡ dTn(x)

dx ≡ T′n(x) [56,57]. Using the chain rule for the derivatives,

Pn−1(x) = n sin(nθ)
sin(θ) = nUn−1(x), where Un(x) is the Chebyshev polynomial of the second
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kind [57]. Then, the sums in the right-hand-side of Equation (41) can be found by using the
general rule

d ln(Pn−1(x))
dx

=
n−1

∑
l=1

1
x− xl

(42)

where xl are the roots of Pn−1. From Equation (42), one has

1
2

n−1

∑
l=1

1

1− cos
(

lπ
n

) =
1
2

[
P′(1)
P(1)

]
(43)

Using l’Hôspital’s rule, one easily finds P(1) = n2, P′(1) = n4−n2

3 . Inserting these
expressions into Equation (43) leads to the announced result in Equation (40). Combining
Equations (38) and (40), we derive the analytical relation between K and

〈
l0〉 for this

particular graph:

1
K

=
〈

l0
〉(3

2

〈
l0
〉
− 1
)

(44)

which shows an inverse relation between the global force constant (1/Kirchhoff index) and
the average of the shortest path length.

Equation (44) defines the lowest possible value in the diagram (K, l) of a PG. Indeed,
for any PG, there is always a path from vertex i to vertex j with a length equal to |i− j|
because the corresponding Cα atoms form pseudo-bonds at a distance smaller than the
cut-off radius defining a contact (see Section 3). Any contact between the Cα of amino
acids not adjacent in the protein sequence in the 3D protein structure will add an edge
that either does not change the length |i− j| or reduces the length |i− j|. Therefore, the
average shortest length given by Equation (37) is the largest possible among all PGs having
the same number of vertices (n amino acids). Consequently, the smallest value of K is given by
Equation (40) and is proportional to n−2 for large n.

It is worth noting that the graph having the smallest average shortest path length is a
complete graph where all vertices are related to all the others by a single edge for which〈

l0〉 = 1. This graph is unrealistic for a macromolecule. The eigenvalues of the Laplacian
of a complete graph are well known: λ1 = 0 and λi = n ∀i 6= 1. Then, we have for such an
extreme case:

1
K

= 1− 1
n

(45)

For a large n, the K of a complete graph converges to its minimum mathematical value
of 1.

2.1.4. Einstein’s Model of a Graph

We build an Einstein model [55] of a simple, connected, and undirected graph by
using the mechanical analogy described in Section 2.1.2. The Einstein model is applied here
to protein structures recorded every picosecond. On this short timescale, each structure
can be considered as fluctuating harmonically on a frozen energy landscape both in the
folded and unfolded states. Experimentally, the fluctuations of the vibrational modes of a
protein as a function of time can be measured by single-molecule Raman spectroscopy [58].
Following the Einstein model hypothesis, one assumes that each atom i (for i = 1, . . . n) of
the linear chain with identical masses and force constants (c) has a position fluctuating in a
local harmonic potential with a local force constant k̂i (Equation (19)) with a local frequency
ω̂2

i ≡ (k̂i/m). Unlike the original Einstein model, one assumes a frequency difference for
each atom. The energy of each atom is given by

Êi = Êoi + (q +
1
2
)h̄ω̂i (46)
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where q is the number of vibrational quanta, and Êoi is the potential energy minimum of
atom i. Assuming thermal equilibrium at a temperature T in the (NVT) ensemble, the atom
internal energy is [55]

Ûi = Êoi +
kBT

2
ẑi coth

(
ẑi
2

)
(47)

with ẑi ≡ h̄ω̂i
kBT . The atom entropy is

Ŝi = kB

[
ẑi

(
1

exp(ẑi)− 1

)
− ln(1− exp(−ẑi))

]
(48)

The classical limit of enthalpy and entropy are found at high temperatures by expand-
ing the exponential around ẑi � 1:

lim
ẑi�1

Ûi = Êoi + kBT (49)

lim
ẑi�1

Ŝi = kB[1− ln(ẑi)] (50)

The classical limit of the free energy is simply

lim
ẑi�1

F̂i = Êoi + kBT ln(ẑi) (51)

The constant k̂i (local frequency ω̂i) is associated with a conformation of the chain, i.e.,
a PG built from the three-dimensional structure of the protein. Assuming some reference
conformation of the chain with a free energy F̂i(0) corresponding to a local force constant
k̂i(0) and frequency ω̂i(0), the free-energy difference ∆F̂i = F̂i − F̂i(0) in the classical limit is

lim
ẑi�1

∆F̂i = ∆Êi + kBT ln
(

ẑi
ẑi(0)

)
(52)

where the first term is the difference between potential energy minima

∆Êi = Êoi − Êoi(0) (53)

Equation (52) can be simplified

lim
ẑi�1

∆F̂i = ∆Êi −
kBT

2
ln

(
k̂i(0)

k̂i

)
= ∆Êi − T∆Ŝi (54)

where ∆Ŝi is the entropy variation, which is the only term depending on the local force
constants.

We further make the hypothesis that each atom oscillates independently (as in the
Einstein model). Therefore, for n amino acids, we have,

lim
ẑi�1

∆F̂ =
n

∑
i=1

∆Êi −
kBT

2

n

∑
i=1

ln

(
k̂i(0)

k̂i

)
=

n

∑
i=1

∆Êi −
kBT

2
ln

[
n

∏
i=1

k̂i(0)
k̂i

]
(55)

Thus, from Equation (55), we define the free energy ∆Flocal of a PG by

∆Flocal =
1
2

{
ε

n

∑
i=1

(di − di(0))− ln

[
n

∏
i=1

ki(0)
ki

]}
(56)

where the dimensionless parameter ε < 0 is unknown and controls the enthalpic (potential
energy) contribution to the graph free energy. The reference conformation can be the graph
examined in the previous section for which K is given by Equation (40) (completely un-
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folded chain) or any other reference, for example, the PG built from the native experimental
structure of the protein as in the numerical applications of Section 2.2.

Another formula for the free energy of a graph, ∆Fnonlocal , can be built similarly:

∆Fnonlocal =
1
2

{
ε

n

∑
i=1

(di − di(0))−
1
2

ln

[
n

∏
i=1

n

∏
j=1

Kij(0)
Kij

]}
(57)

and finally a coarse-grained expression, ∆Fglobal , is defined:

∆Fglobal =
1
2

{
ε

n

∑
i=1

(di − di(0))− ln
[

K(0)
K

]}
(58)

An important property of the local and nonlocal dimensionless graph free energies
of a PG is that the entropic contribution is dominated by the smallest force constants of
the graph. For a PG, ∆F is of course ∆F̂/kBT, but Equations (56)–(58) can be applied to
any graph where the temperature has no meaning, such as, for example, a communication
network.

An alternative to the Einstein model is the graph free energy built from the collective
modes of the chain (Equation (15)). Each mode is associated with a collective frequency ωl
(Equation (11)). According to Equation (51), the collective graph free energy is thus defined as:

∆Fcollective =
1
2

{
ε

n

∑
i=1

(di − di(0))− ln

[
n

∏
l=2

λl(0)
λl

]}
(59)

where λl(0) are the eigenvalues of the Laplacian of the reference conformation (Equation (13)).
For the PG of a completely unfolded chain, they are given by Equation (39). If we neglect the
degree term, given an ensemble of graphs with the same number of vertices, the one that has
the lowest free energy is the one with the smallest product of the eigenvalues of its Laplacian.

2.2. Topological Analysis of Folding/Unfolding MD Trajectory of Trp-Cage
2.2.1. Two-State Definition

We evaluate and investigate the application of graph force constants and free energies
presented in Section 2.1 to folding/unfolding. As a proof of concept, we present here
numerical applications for one MD trajectory of the mini-protein: Trp-cage [59]. The Trp-
cage is a well-known toy model to study protein folding. This 20-amino-acid peptide is a
C-terminal fragment of exendin-4. This construct folds within 4 microseconds in water at
physiological pH and exhibits a tightly folded tertiary structure in solution. It consists of a
short helix, a 3/10 helix, and a C-terminal poly-proline that packs against a Trp in the alpha
helix [59]. The MD trajectory is 500 ns in duration and consists of snapshots calculated
on every picosecond when the temperature is 380 K. More details of the MD trajectory
are given in Section 3. The strategy is to build the PG of each snapshot and compute the
parameters K and < l0 >. In this way, we capture the topological information of the protein
structures during the folding/unfolding dynamics.

A two-state (folded/unfolded) description of protein folding dynamics hides the
complexity of unfolded and misfolded microstates [18]. To decipher the complexity behind
these two macrostates, we need first to define them. Many usual global order parameters
can be used to partition protein structures in folded and unfolded ensembles. Here, we
use the fraction of the native contacts ξ(t) computed for each snapshot at time t in the
MD trajectories (see Section 3). At time t = 0 by construction, ξ(0) = 1 and fluctuates
below 1 at 380 K (above the unfolding temperature) in the MD trajectory of Trp-cage, as
shown in Figure 1. From this figure, we divide the snapshots into a folded state ξ ≥ 0.6
and an unfolded state ξ < 0.6. Based on this criterion, we identify an interesting region
100 ns < t < 400 ns where the behavior of descriptors obtained from graph representations
can be studied. It contains a folding transition in the first half and an unfolding transition
in the next half. It is important to note here that for a protein to function, apart from the
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kinetic criterion of it folding to its native structure, it should also populate its native state for
a significant fraction of time which can be mentioned as the thermodynamic criterion. Hence,
even if we can observe more instances where the fraction of native contacts is above 0.6, the
above-mentioned time interval becomes the most important since it pushes the structure to
situations where the thermodynamic criterion is favored.

Figure 1. MD trajectory of Trp-cage at 380 K. Time t in red (∀t) : ξ(t) > 0.6. The yellow curve is
computed for a moving mean with a window size of 1 ns.

2.2.2. Force Constants and Shortest Path Length

First, we computed the global force constant K of the PG as a function of time, as
shown in Figure 2.

Figure 2. Evolution of the global force constant K for the MD trajectory shown in Figure 1. The bold
green curve is computed for a moving mean with a window size of 1 ns.

A visual inspection of the curves shows that the global force constant is somehow
related to the fraction of native contacts, but as K is more fluctuating than ξ, the Pear-
son correlation coefficient is not large: 0.4684. As intuitively expected, the time average
value of the global force constant of folded structures (ξ ≥ 0.6) <K f olded> = 0.0882 is
significantly larger than its value for unfolded structures (ξ < 0.6), <Kun f olded> = 0.0631.
According to Equation (40), the smallest possible value for Trp-cage is K = 0.0150, and
the maximum hypothetical value is 1.0526 (Equation (45)). From Figure 2, the minimum
and maximum values observed in the MD trajectory are K = 0.0150 and K = 0.1940,
respectively. Although the folded protein is expected to be more rigid than an unfolded
polymer chain, disordered or misfolded structures are also expected to be rigid. For ex-
ample, in the time window 201 ns–208 ns, structures with ξ ≈ 0.4–0.5 have K ≈ 0.12
much larger than <K f olded> and twice the value of <Kun f olded>. Thus, the descriptor K
contains more information on the unfolded state than the global ξ order parameter. The
two-dimensional probability density function (PDF) of the (ξ, K) values computed from
the trajectory is represented in Figure 3a and revealed the existence of two unfolded sub-
states at (ξ ≈ 0.3, K ≈ 0.062) and (ξ ≈ 0.4, K ≈ 0.04) and two folded substates at
(ξ ≈ 0.8, K ≈ 0.052) and (ξ ≈ 0.8, K ≈ 0.100).

The time variation of
〈
l0〉 is shown in Figure 4, where it is compared to K. The

minimum and maximum values observed in the MD trajectory of
〈
l0〉 are 2.0263 and 7.0,

respectively. The maximum observed value corresponds to a completely unfolded chain, as
predicted by Equation (38). The means of

〈
l0〉 computed for folded (ξ ≥ 0.6) and unfolded

structures (ξ < 0.6) are 2.8465 and 3.2751, respectively. As expected, the paths in the
folded PG are shorter on average. As for K,

〈
l0〉 is not significantly correlated with the

nativeness characterized by ξ (shown in Figure 1), as the Pearson correlation coefficient is
only −0.3920. The variations of

〈
l0〉 thus provide additional information on the different

protein substates, as shown by the three local minima of the (ξ,
〈
l0〉) PDF in Figure 3b.
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(a) (b)

Figure 3. Panels (a,b) represent respectively the PDF of (ξ, K) values and (ξ,
〈
l0〉) computed from the

trajectory shown in Figure 1.

Figure 4. Comparison between the average shortest path length (blue) and global force constant
(green) for the MD trajectory shown in Figure 1. The bold green curve is computed for a moving
mean with a window size of 1 ns. Times t0, t1, t2, t3, t4, and t5 discussed in the text are indicated.

Figure 4 clearly shows that
〈
l0〉 ∝ 1/K as for a completely unfolded polymer chain

(Equation (44)) (Pearson correlation coefficient is −0.8398). However, except for extremal
values of

〈
l0〉, a given average shortest path length corresponds to a range of values for

K, as can be seen from Figure 5a. This can be explained because an intermediate protein
size corresponds to a large number of possible conformations with different K values. For
example, we show three selected structures s1, s2, and s3 (named by increasing K value)
with the same value

〈
l0〉 = 3 in Figures 5c–e, respectively. They correspond to graphs with

different robustness. In particular, the structures s1 and s2 have N-term and C-term which
remain flexible, unlike the s3 structure. The nonuniqueness of the relation between K and〈

l0〉 explains why the PDF of the (ξ,
〈
l0〉) values computed from the trajectory (Figure 3b)

shows only one substate in the unfolded region, whereas the PDF of (ξ, K) (Figure 3a) has
two substates.

(a) (b)

Figure 5. Cont.
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(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 5. Relationship between K and l computed for the MD trajectory in Figure 1. Panel (a) PDF of
(K,
〈
l0〉) (blue dots) and pairs of values (K,

〈
l0〉) for three selected snapshots named s1 (green dot), s2

(pink dot), and s3 (red dot) with the same value of
〈
l0〉 as discussed in the text. Red line is the result

of application of Equation (44). Black dots are the results of model chains with regular long distance
spring force constants of different lengths named (20, j = 1, 2, 3...) in the main text. Panel (b) PDF of
(K,
〈
l0〉) from all snapshots with ξ > 0.6 (blue). Red line and black dots are as in Panel (a). Orange

dots are the (K,
〈
l0〉) values of the experimental NMR models of Trp-cage (PDB ID: 12lY). Colors

dots correspond to the values computed for the snapshots at times t0 to t5 indicated at Figure 4.
Panels (c–k) are three-dimensional representations of the structures s1, s2, s3 in Panel (a) and of the
structures at times t0, t1, t2, t3, t4, t5, respectively. The spheres are the positions of the Cα atoms, and
the tube represents the backbone. The black lines are the contacts considered to build the PG.

A striking property of the (K,
〈
l0〉) plot is that the ensemble of points draws nearly

continuous lower and upper limits. These maximum and minimum values must be
degenerated for

〈
l0〉 = 7 which corresponds to a completely unfolded chain of n amino

acids according to Equation (38). Indeed, the value of K predicted by Equation (44), shown
by the black dot with label 1 in Figure 5a, agrees with the MD result. Although Equation (44)
was derived for an unfolded chain, we applied it to predict a value of K for each value of〈

l0〉 observed in the MD trajectory. Surprisingly, it predicts nearly perfectly the upper limit
of K for all the values of

〈
l0〉, as shown in Figure 5a. This unexpected result seems at first

glance in contradiction with the fact that for a chain of length n, Equation (44) predicts the
absolute possible minimum value of K as explained in Section 2.1.3.

This apparent contradiction is explained as follows. At each value of
〈
l0〉 of the PG

of Trp-cage (with n = 20 amino acids), we can associate the PG of a completely unfolded
shorter protein chain with n < 20 amino acids. For example, the value

〈
l0〉 = 3.66 is

the average shortest path length of the PG of an unfolded chain with n = 10 vertices
according to Equation (38). This unfolded shorter chain can be built from the unfolded
chain of n = 20 amino acids by eliminating every other amino acid and by connecting the
remaining ones by first nearest-neighbor contacts. Therefore, a good approximation of
this shorter chain (n = 10) by the PG of Trp-cage (n = 20) is a structure having contacts
only between second nearest-neighbor Cα atoms in addition to contacts representing the
peptide bonds between the first nearest-neighbor atoms. We name this model (20, 2). The
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value of K of (20, 2) should be close to the minimum value of K for a chain with n = 10
amino acids predicted by Equation (44). The value of K of the (20, 2) chain is shown by
the black dot 2 in the (K,

〈
l0〉) plot and is indeed very close to the analytical prediction.

We have built a series of models of completely unfolded chains (20, j) with contacts only
between the third (j = 3), fourth (j = 4), fifth (j = 5), etc., nearest neighbors represented
by the black dots numbered, 3, 4, 5, ..., respectively. These points follow the predictions
of Equation (44) perfectly confirming the reasoning. It can also be seen in Figure 5d that
the structure s3, close to the upper limit for the value

〈
l0〉 = 3, corresponds approximately

to a three-dimensional structure having third-neighbor contacts only. From a topological
point of view, the PG of s3 is equivalent to the PG of the (20, 3) structure having a value of
K close to a chain with n = 8. This reasoning explains the predictions of Equation (44) but
not why s3 is an upper limit for a chain of n = 20 for that value of

〈
l0〉 = 3. This can be

understood qualitatively because a PG where each vertex is connected similarly as in (20, j)
structures corresponds to a PG where there is no vertex with a low degree, i.e., no weak
local force constant which would significantly lower K as stated by Equation (30). On the
opposite end, as we can see in Figure 5c, the s1 structure with a low K has end amino acids
connected with only peptide bonds and thus has low local force constants. Although we
can figure out the reason for the lower bound in the (K,

〈
l0〉), at the time of writing, we

have not found an analytical formula to predict it.
It is worth comparing the (K,

〈
l0〉) plot extracted for the MD trajectory to the one

computed from the 38 experimental NMR models of Trp-cage (PDB code: 1L2Y), as shown
in Figure 5b. Surprisingly, the NMR data reveal two distinct groups separated by a gap
along the axis

〈
l0〉. The first and second groups are in the regions 2.5 <

〈
l0〉 < 2.75 and

3.05 <
〈
l0〉 < 3.38, respectively. The first group corresponds to more robust structures

with K ≈ 0.10–0.12, whereas the second group has softer structures with K ≈ 0.06–0.07.
The native NMR structure used as a reference in the present work (marked t0 for which
ξ = 1 and K = 0.0632) is in the second group. Averaging the values of K and of

〈
l0〉 of the

NMR models gives 0.075 and 3.06, respectively. This is in good agreement with the average
values of these quantities computed for folded snapshots (ξ ≥ 0.6 relative to the model
chosen at t0), which are, respectively, 0.0882 and 3.2751, as mentioned above. The existence
of two substates in the native state of Trp-cage was discussed above and are visible in the
PDF (K, ξ) (Figure 3a) with a major substate identified as the softest second experimental
group and a minor state as the first hardest one. The PDF (

〈
l0〉, ξ) (Figure 3b) also shows

the two groups but not with the correct weight as many unfolded structures populated the
region of the softer group. Indeed, we recall that the average value

〈
l0〉 computed from

unfolded snapshots (ξ < 0.6 relative to the model chosen at t0) is 2.8465.
The topological descriptors K and

〈
l0〉 are global properties of the different pro-

tein microstates represented by PGs. A more detailed topological description of these
microstates is the sequence of their local force constants ki. To illustrate how these se-
quences vary in the two folding/unfolding transitions (defined here by crossing the limit
ξ = 0.6 in Figure 1), we selected four representative snapshots in the MD trajectory at
t1 = 150 ns (ξ = 0.3333, K = 0.0422), t2 = 230 ns (ξ = 0.8333, K = 0.0967), t3 = 300 ns
(ξ = 0.9167, K = 0.1128), and t4 = 400 ns (ξ = 0.3333, K = 0.0380), as indicated in Figure 4.
The snapshots at different times are shown in Figure 5f–k. As we can see in Figure 5b, both
structures in the folded state at t2 and t3 are in the first experimental group (hardest struc-
tures). We also selected an unfolded structure at t5 = 204 ns (ξ = 0.4583) corresponding to
a snapshot with high rigidity, i.e., K = 0.1236.

A representation of sequences of ki is shown in Figure 6. The sequence of ki of the
folded structures at times t2 and t3 are similar. All ki at these times are larger or equal to the
values of ki at t0 (reference native state). However, this is not sufficient to explain why the
native structure has a global force constant nearly twice as small as these two. In fact, the
very low ki of PRO18, PRO19, and SER20 at t0 decrease K significantly (and thus increase
the entropy) more for the native structure than for the structures at t2 and t3. The sums of
inverse ki (Equation (30)) from ASN1 to PRO17 at times t0, t2, t3 give a value of K equal
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to 0.1267 [0.0632], 0.1518 [0.0967] and 0.1727 [0.1128] to compare with the values for the
complete chain recalled in brackets. The unfolded structures at t1 and t4 have nearly all
their ki smaller than the ones at t0, but their low K global force constant is mainly due to
the very low values of ki at the N-term and C-term regions. Indeed, calculations of the
sums of inverse ki of only ASN1, LEU2, TYR3, PRO17, PRO18, PRO19, and SER20 at times
t1 and t4 give values of K equal to 0.0620 [0.0422] and 0.0547 [0.0380] which are relatively
close to the K values of the complete chain recalled in brackets. Low ki at times t0 to t4
are due to vertices with a low degree, as shown in the representations of the snapshots
at different times in Figure 5. On the contrary, the structure at t5 has no small ki in the
N-term and C-term regions, which explains the strong rigidity of this unfolded state. As
can be seen in the representation in Figure 5k, the PG of this snapshot has no vertex with
a low degree. In addition, this PG is close to the model structure (20, 5) (Figure 3b) and
indeed has long-distance contacts. The contributions of residues at the C-term region
(PRO17, PRO18, PRO19, and SER20) to K explain the large difference of rigidity between
the structures at t0 and t5. Indeed, the calculation of K for ASN1 to ARG16 for t0 and t5
give similar global force constants: 0.1475 [0.0632] and 0.1481 [0.1236], respectively (values
for the complete chain are in brackets).

Figure 6. Distribution of the local force constants at times t0 (bold green), t1 (light blue), t2 (red), t3

(brown), t4 (dark blue) and t5 (orange) indicated in Figure 4 and discussed in the text. The gray area
limited by dashed lines represents the range of values observed in the MD trajectory.

Metastable states competing with the native structure can be related to residual frustra-
tion. Frustration in condensed matter physics means that the system cannot simultaneously
minimize the competing interactions between its different parts [60]. Proteins evolved in
order to minimize frustration, which shapes a funnel free-energy landscape [60]. Although
the study of the relations between residual frustration and topological descriptors (global,
local, and nonlocal force constants) is far beyond the scope of the present study, we can
make some qualitative observations. We computed the local residual frustration configura-
tional index of each amino acid for the native structure of Trp-cage (PDB ID: 1L2Y, model 1)
using the protein frustratometer 2 program [61]. The program predicts that amino acids
in the N-term (from 1 to 9) are about 20% highly frustrated. This might be qualitatively
related to the folded states at t2 and t3 for which contact between the N-term and C-term
stabilizes these non-native folded configurations, as can be seen in Figure 5e,f, respectively.
The difference between the sequence of ki of these two configurations with the one of the
native structure is also larger in the N-term, as shown in Figure 6.

2.2.3. Calculation of Free Energies Using the Einstein Model

In the graph free-energy formula derived from the Einstein model, the force constant
term is purely entropic (Equation (54)). This contribution is parameter free. The enthalpic
part (first term in Equation (56)) depends on an energy scale defined by the single parameter
ε. As we do not have information on ε, we treat it here as a variable. First, we compare the
entropic contribution (i.e., for ε = 0) of the local (Equation (56)), nonlocal (Equation (57)),
global (Equation (58)), and collective (Equation (59)) models of the graph free energy in
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Figure 7a. The local, nonlocal, and collective models agree remarkably with each other
with only a change in scale. The coarse-grained global model has the smallest scale and
is also very similar to the other models, with a high Pearson correlation coefficient of 0.97
compared to the local model for example. In all models, the entropy change is positive
in the folded parts of the MD trajectory, as expected, since the folding reduces possible
structural fluctuations. In unfolded parts of the trajectory, the entropy change is mostly
negative as expected. There are a few exceptions, for example, times around t5. The time
parts with positive entropy indicate unfolded very rigid structures. The calculation of
the entropic term is thus a means to identify misfolded structures in the trajectory. In
Figure 7b, we represent an enthalpic term for different values of ε. This term is positive in
the unfolded parts of the trajectory, as expected, as the unfolded structures have vertices
with a lower degree (fewer contacts), with the structures around t5 being an exception. The
enthalpic term is small in the folded parts, which indicates that folded structures are on
average as connected as the reference structure at t0. The enthalpic term is only roughly
anticorrelated with the entropic term (the Pearson correlation coefficient between the two
terms for the local model is −0.31). We observe structures with a positive entropy (rigid)
but with fewer contacts than in the reference folded structure at t0 (such as, for example, in
the region 80–90 ns). The examination of the enthalpic and entropic parts of the free-energy
models permits one to characterize the different rigid misfolded structures. The addition of
the two terms is represented for a value of ε = −5 in Figure 7c. With this value of ε, the
structures in time ranges where the folded structure is stable on average (marked red in
Figure 1) have zero or negative free energies. The metastable rigid structure at time t5 also
has negative free energy, whereas most of the unfolded structures have positive free energy.

(a)

(b)

(c)

Figure 7. Free-energy graph calculations for the trajectory of Figure 1. (a) Local (blue), nonlocal (green),
global (red), and collective (black) free energy with ε = 0. Horizontal dashed lines indicate the zero
baselines of the free energies with the corresponding colors. (b) Enthalpy term of the free-energy graph
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with ε = −1 (blue), ε = −3 (green), and ε = −5 (dark red). Horizontal dashed line indicates the
zero baseline. d(t) ≡ ∑i di(t) and d(0) ≡ ∑i di(0). (c) Local free energy with ε = 0 (blue) and ε = −5
(green). Folded regions are indicated by red vertical lines as in Figure 1. Horizontal dashed lines
indicate the zero baselines of the free energies with the corresponding colors.

3. Materials and Methods
3.1. Contacts and Protein Graph (PG)

Although a PG might be built from the all-atom protein structure, we focus here on a
coarse-grained representation of the protein main chain, which only has proven to be useful
in describing protein folding [18]. Namely, we represent the protein’s three-dimensional
structure by the sole positions of its Cα atoms. Each vertex of the PG thus represents the
Cα atom of an amino acid, and the vertices are ordered as in the amino-acid sequences
from i = 1 to n, where n is the number of amino acids. An edge between two vertices
is drawn if the distance between the two Cα atoms is a contact. A contact is defined as
usual for two Cα atoms belonging to nonadjacent amino acids in the protein sequence and
which are at a distance in the three-dimensional protein structure below a cut-off radius
R = 0.6 nm. This typical value includes the peak of the first nearest neighbors of the Cα

atoms in folded protein structures. In the present work, a PG is always connected because
we add an edge between two Cα atoms, which are nearest neighbors in the amino-acid
sequence. These additional edges represent the peptide bonds. The PG is simple, i.e., there
is no edge connecting a single vertex (graph loop) or multiple edges between two vertices.
We do not make any distinction between the different edges and assume their weight is
equal to 1. PG with no contact corresponds to the straight unfolded chain examined in
Section 2.1.3 and has the minimum number of edges, i.e., n− 1. We define also as usual the
native contacts as the contacts present in the experimental folded structure (PDB ID: 1L2Y,
model 1). Say ncnative(t), the number of native contacts in the structure of the snapshot at
time t in the MD trajectory, then we define the fraction of native contacts ξ(t) as follows:

ξ(t) =
ncnative(t)

nc∗native
. (60)

where nc∗native corresponds to the number of contacts in the experimental native structure.
In the MD trajectories studied here, it is also equal to ncnative(t = 0) because the initial
structure is the experimental one (see Section 3.2). We consider the fraction of native
contacts at time t to obtain a measure of the structure’s nativeness as a function of time (see
text Section 2.2).

3.2. Molecular Dynamics Trajectories

The MD trajectory of Trp-cage was generated in a previous unrelated work using
an all-atom force field in explicit water at 380 K (above the folding transition tempera-
ture) [62]. This MD trajectory was chosen as it clearly shows folding/unfolding events.
The MD trajectory is 500 ns in duration and consists of snapshots stored every picosecond
(500,000 structures/protein). The initial structure at time t = 0 in the MD trajectory is an
experimental native structure (PDB ID: 1L2Y, model 1). More details on the MD trajectory
can be found in the original paper [62].

3.3. Statistics

All statistical calculations (averages, probability densities, Pearson correlation coef-
ficients) were computed from raw data (not from moving average data). The number
of bins for both axes in the PDF calculations is 25 for Figure 3 and 100 for Figure 5.
The average shortest path length between two vertices was computed with the aver-
age_shortest_path_length function of the NetworkX Python library [63].
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4. Conclusions

We emphasize here the main conclusions of the present study and its further exten-
sions. We show that the (K, ξ), (

〈
l0〉, ξ) and (K,

〈
l0〉) plots are relevant representations to

characterize the diversity of unfolded and folded microstates. The study of ki and K as
functions of time in an MD trajectory permits the detection of misfolded rigid structures
among unfolded conformations. The application of these topological concepts is particu-
larly relevant to characterize the conformations of intrinsically disordered proteins, e.g.,
α-synuclein [33,64] and will be investigated elsewhere. Topological descriptors and graph
free-energy models introduced here permit the characterization of a single simulated or
experimental structure at a time. The entropic part is only governed by the force constants
computed for the PG associated with a single structure. However, the PG rigidity does
not represent of course the full mechanical response of proteins. As a PG is equivalent
to a linear chain, it misses the dihedral/rotational degrees of freedom of proteins, which
contribute to folding/unfolding transitions [48]. The effect of solvent [65] is also implicit in
PG analysis. These degrees of freedom are related to transitions between PGs. Moreover, in
protein folding, the stability of structures within a time window must also be considered,
i.e., an ensemble of the PGs. An extension of the present theory will include a study of
these PG ensembles, their transitions, and the fluctuations of topological descriptors in the
folded and unfolded states.
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53. Klein, D.J.; Randić, M. Resistance distance. J. Math. Chem. 1993, 12, 81–95. [CrossRef]
54. Scaramozzino, D.; Khade, P.M.; Jernigan, R.L.; Lacidogna, G.; Carpinteri, A. Structural compliance: A new metric for protein

flexibility. Proteins Struct. Funct. Bioinform. 2020, 88, 1482–1492. [CrossRef] [PubMed]
55. Hill, T. An Introduction to Statistical Thermodynamics; Dover Publications, Inc.: New York, NY, USA, 1986.
56. Sum of the Reciprocal of Sine Squared. Published: Mathematics Stack Exchange. Available online: https://math.stackexchange.

com/q/122933 (accessed on 5 August 2023 ).
57. Handscomb, D.C.; Mason, J.C. Chebyshev Polynomials; Chapman and Hall/CRC: New York, NY, USA, 2002. [CrossRef]
58. Dai, X.; Fu, W.; Chi, H.; Mesias, V.S.D.; Zhu, H.; Leung, C.W.; Liu, W.; Huang, J. Optical tweezers-controlled hotspot for sensitive

and reproducible surface-enhanced Raman spectroscopy characterization of native protein structures. Nat. Commun. 2021, 12, 1292.
[CrossRef] [PubMed]

59. Neidigh, J.W.; Fesinmeyer, R.M.; Andersen, N.H. Designing a 20-residue protein. Nat. Struct. Biol. 2002, 9, 425–430. [CrossRef] [PubMed]
60. Ferreiro, D.U.; Komives, E.A.; Wolynes, P.G. Frustration in biomolecules. Q. Rev. Biophys. 2014, 47, 285–363. [CrossRef] [PubMed]
61. Parra, R.G.; Schafer, N.P.; Radusky, L.G.; Tsai, M.Y.; Guzovsky, A.B.; Wolynes, P.G.; Ferreiro, D.U. Protein Frustratometer 2: A tool

to localize energetic frustration in protein molecules, now with electrostatics. Nucleic Acids Res. 2016, 44, W356–W360. [CrossRef]
[PubMed]

62. Nicolaï, A.; Delarue, P.; Senet, P. Intrinsic Localized Modes in Proteins. Sci. Rep. 2015, 5, 18128. [CrossRef]
63. Hagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring Network Structure, Dynamics, and Function using NetworkX. In Proceedings

of the 7th Python in Science Conference, Pasadena, CA, USA, 21 August 2008; Varoquaux, G., Vaught, T., Millman, J., Eds.; Los
Alamos National Lab. (LANL): Los Alamos, NM, USA, 2008; pp. 11–15.

64. Guzzo, A.; Delarue, P.; Rojas, A.; Nicolaï, A.; Maisuradze, G.G.; Senet, P. Wild-Type α-Synuclein and Variants Occur in Different
Disordered Dimers and Pre-Fibrillar Conformations in Early Stage of Aggregation. Front. Mol. Biosci. 2022, 9, 910104. [CrossRef]

65. Frauenfelder, H.; Fenimore, P.W.; Chen, G.; McMahon, B.H. Protein folding is slaved to solvent motions. Proc. Natl. Acad. Sci.
USA 2006, 103, 15469–15472. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevE.65.061910
http://dx.doi.org/10.1016/S0006-3495(04)74086-2
http://dx.doi.org/10.1016/j.physa.2004.08.046
http://dx.doi.org/10.1016/j.physa.2023.128603
http://dx.doi.org/10.1016/j.physa.2006.01.062
http://dx.doi.org/10.1002/prot.1081
http://www.ncbi.nlm.nih.gov/pubmed/11391777
http://dx.doi.org/10.1016/S0006-3495(01)76033-X
http://dx.doi.org/10.1073/pnas.062492699
http://www.ncbi.nlm.nih.gov/pubmed/11891336
http://dx.doi.org/10.1016/j.jmb.2004.06.063
http://dx.doi.org/10.1021/ct200806n
http://dx.doi.org/10.1016/j.bpj.2016.06.031
http://dx.doi.org/10.1126/science.288.5471.1604
http://www.ncbi.nlm.nih.gov/pubmed/10834833
http://dx.doi.org/10.1007/BF01164627
http://dx.doi.org/10.1002/prot.25968
http://www.ncbi.nlm.nih.gov/pubmed/32548853
https://math.stackexchange.com/q/122933
https://math.stackexchange.com/q/122933
http://dx.doi.org/10.1201 /9781420036114
http://dx.doi.org/10.1038/s41467-021-21543-3
http://www.ncbi.nlm.nih.gov/pubmed/33637710
http://dx.doi.org/10.1038/nsb798
http://www.ncbi.nlm.nih.gov/pubmed/11979279
http://dx.doi.org/10.1017/S0033583514000092
http://www.ncbi.nlm.nih.gov/pubmed/25225856
http://dx.doi.org/10.1093/nar/gkw304
http://www.ncbi.nlm.nih.gov/pubmed/27131359
http://dx.doi.org/10.1038/srep18128
http://dx.doi.org/10.3389/fmolb.2022.910104
http://dx.doi.org/10.1073/pnas.0607168103

	Introduction
	Results and Discussion
	Theory
	Mechanical Interpretation of a Simple, Connected, and Undirected Graph
	Thermostatistical Interpretation of Topological Descriptors of a Simple, Connected, and Undirected Graph
	Relation between the Global Force Constant and the Average Shortest Path Length: Analytical Results
	Einstein's Model of a Graph

	Topological Analysis of Folding/Unfolding MD Trajectory of Trp-Cage
	Two-State Definition
	Force Constants and Shortest Path Length
	Calculation of Free Energies Using the Einstein Model


	Materials and Methods
	Contacts and Protein Graph (PG)
	Molecular Dynamics Trajectories
	Statistics

	Conclusions
	References

