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Abstract: The genus Saussurea has been used in the preparation of therapies for a number of medical
problems, yet not much is known about the therapeutic high-molecular-weight compounds present
in extracts from these plants. Since polysaccharides are important in immune modulation, we
investigated the chemical composition and immunomodulatory activity of Saussurea salicifolia L. and
Saussurea frolovii Ledeb polysaccharides. Water-soluble polysaccharides from the aerial parts of these
plants were extracted using water at pHs of 2 and 6 and subsequently precipitated in ethanol to
obtain fractions SSP2 and SSP6 from S. salicifolia and fractions SSF2 and SSF6 from S. frolovii. The
molecular weights of fractions SSP2, SSP6, SFP2, and SFP6 were estimated to be 143.7, 113.2, 75.3,
and 64.3 kDa, respectively. The polysaccharides from S. frolovii contained xylose (67.1–71.7%) and
glucose (28.3–32.9%), whereas the polysaccharides from S. frolovii contained xylose (63.1–76.7%),
glucose (11.8–19.2%), galactose (4.7–8.3%), and rhamnose (6.8–9.4%). Fractions SSP2, SSP6, and SFP2
stimulated nitric oxide (NO) production by murine macrophages, and NO production induced by
SSP2, SSP6, and SFP2 was not inhibited by polymyxin B treatment of the fractions, whereaspolymyxin
B treatment diminished the effects of SFP6, suggesting that SFP6 could contain lipopolysaccharide
(LPS). The LPS-free fractions SSP2, SSP6, and SFP2 had potent immunomodulatory activity, induced
NO production, and activated transcription factors NF-κB/AP-1 in human monocytic THP-1 cells and
cytokine production by human MonoMac-6 monocytic cells, including interleukin (IL)-1α, IL-1β, IL-6,
granulocyte macrophage colony-stimulating factor (GM-CSF), interferon-γ, monocyte chemotactic
protein 1 (MCP-1), and tumor necrosis factor (TNF). These data suggest that at least part of the
beneficial therapeutic effects reported for water extracts of the Saussurea species are due to the
modulation of leukocyte functions by polysaccharides.

Keywords: plant polysaccharide; Saussurea; macrophage; nitric oxide; cytokine; polymyxin B;
xyloglucan

1. Introduction

The genus Saussurea DC (family Asteraceae) is represented by about 500 species,
which are widespread in Eurasia and North America and have long been used in folk
medicine in the form of single- and multi-component herbal preparations. More than
200 compounds have been isolated and identified from Saussurea genus members, includ-
ing phenylpropanoids, sesquiterpenoids, flavonoids, phytosterols, triterpenoids, lignans,
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coumarins, ceramides, and polysaccharides [1–3]. Extracts from Saussurea plants have
been reported to exhibit anti-inflammatory, antioxidant, anti-cancer, anti-arthritic, and
circulatory effects [4–6]. Among the putative therapeutic components of Saussurea species
are polysaccharides. For example, polysaccharides from S. involucrata have been reported
to have strong anti-melanogenic effects [7]. Likewise, polysaccharides from S. laniceps
demonstrated anti-hepatitis B activity [8]. Lastly, S. tridactyla Sch. Bip.-derived polysaccha-
rides were found to reduce cell apoptosis and protect cells from oxidative damage after
UVB irradiation [9]. However, little is known about the immunomodulatory effects of
Saussurea polysaccharides.

Botanical polysaccharides appear to modulate the immune system through their
effects on macrophage function (reviewed in [10]). Macrophages and neutrophils repre-
sent the first lines of cellular defense in the body and are responsible for phagocytosing
pathogens and killing tumor cells through the use of oxidative and nonoxidative killing
mechanisms [11,12]. Macrophages can also serve as antigen-presenting cells and modulate
acquired immune responses via antigen presentation to T cells [13]. Macrophages also
have several other important roles, including tissue remodeling during embryogenesis,
wound repair, and the clearance of apoptotic cells [14,15]. In efforts to enhance host de-
fense against infection, recent research has focused on the development of therapeutics to
enhance macrophage innate immune responses [16].

Since boiling in water is the most common mode for the preparation of herbal medici-
nal extracts, and the most common modes of administration are oral and local application,
we hypothesized that Saussurea polysaccharides may have immunomodulatory properties
and contribute to the therapeutic effects of extracts from this plant. To address this ques-
tion, we fractionated water-soluble polysaccharides from Saussurea and evaluated their
immunomodulatory activities in macrophage and monocytic cell assays.

2. Results and Discussion
2.1. Partial Characterization of Saussurea Polysaccharides

The maximum yield was observed with a pH 6 extraction (Table 1); however, the
highest hexose and uronic acid contents were found at a pH of 2. The content of the
O-acetyl groups and protein was significantly increased with an increased extraction pH
for S. salicifolia but did not change for S. frolovii. The significant difference in protein
content for the fractions SSP2 and SSP6 could be explained by the presence of different
functional groups in the protein molecules and their better solubility in neutral media. The
samples obtained by acid extraction were characterized by the highest molecular weight
(a significant difference was observed for the polysaccharide fractions from S. salicifolia).
This may be due to the extraction of different polysaccharides, since the pH of the medium
affects the solubility due to ionization of the molecules or the destruction of bonds with
metal ions. An example of the homogeneity and average molecular weight analysis of the
polysaccharide fractions is shown in Figure S1 (see Supplementary Material).

Table 1. Chemical characteristics of Saussurea polysaccharide fractions extracted at pH 2 and pH 6.

Fraction SSP2 SSP6 SFP2 SFP6

Yield (%) 1.13 ± 0.16 1.82 ± 0.10 * 1.50 ± 0.23 2.71 ± 0.11 *

Hexose (%) 44. 04 ± 3.53 33.88 ± 1.03 * 33.55 ± 5.77 23.98 ± 2.46

Uronic Acid (%) 7.71 ± 0.75 3.08 ± 0.42 * 4.76 ± 1.13 1.40 ± 0.27 *

O-acetyl group (µM/mL) 1.44 ± 0.05 2.30 ± 0.44 * 1.67 ± 0.24 1.61 ± 0.19

Protein (%) 6.51 ± 1.43 33.86 ± 6.78 * 13.65 ± 2.10 13.78 ± 1.54

M.W. (kDa) 143.66 ± 19.01 113.16 ± 16.64 75.29 ± 10.30 64.27 ± 6.55

* Significant differences (p < 0.05) vs. polysaccharide samples isolated at pH 2 from the same plant.
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The monosaccharide composition of the Saussurea polysaccharides differed between
the species and fractions (Table 2 and Supplementary Figure S2). The major monosaccharide,
regardless of pH and plant species, was xylose. Glucose content was significantly higher
in the polysaccharide fractions from S. frolovii. Galactose and rhamnose residues were
found in the polysaccharides from S. salicifolia but were not present in the samples from
S. frolovii. Arabinose and mannose were not found in any of the polysaccharide fractions.
Thus, polysaccharides isolated from S. frolovii may be relatively pure xyloglucans.

Table 2. Monosaccharide composition of Saussurea polysaccharide fractions.

Fraction SSP2 SSP6 SFP2 SFP6

Glu 11.8 ± 0.2 19.2 ± 0.4 * 32.9 ± 0.6 28.3 ± 0.5 *

Gal 4.7 ± 0.1 8.3 ± 0.1 * N.F. N.F.

Xyl 76.7 ± 0.9 63.1 ± 0.8 * 67.1 ± 0.7 71.7 ± 0.7 *

Rha 6.8 ± 0.1 9.4 ± 0.1 * N.F. N.F.

Ara N.F. N.F. N.F. N.F.

Man N.F. N.F. N.F. N.F.
Abbreviations: Glu, glucose; Gal, galactose; Xyl, xylose; Rha, rhamnose; Ara, arabinose; Man, mannose.
N.F., non-found. * Significant differences (p < 0.05) vs. polysaccharide samples isolated at pH 2 from the
same plant.

IR spectroscopy established that there was a wide intense absorption band in the
region of 3600–3200 cm−1 due to stretching vibrations of the O–H groups and absorption
bands around 2932–2924 cm−1 in all samples, which is characteristic of the stretching and
bending vibrations of C–H in carbohydrate rings. The spectra had similar absorption
profiles over the entire range of wavelengths under study, differing only in the values
of relative optical densities at wavelengths of 1725, 1601, 1160, and 1062 cm−1, which
are characteristic of the stretching vibrations of carboxyl groups and explained by the
differences in the relative uronic acid content of the fractions.

We next evaluated whether the Saussurea polysaccharides had helical structures using
a Congo red assay, as Congo red can complex only with polysaccharides that have helical
configurations [17,18]. When this complex is then treated with NaOH, the maximum
absorption wavelength is red-shifted due to a weakening of the H-bond between OH-
groups and the eventual destruction of the helix conformation. Therefore, this property
can be used to detect whether the polysaccharide has a helical structure [17,18]. We found
that in the spectra of Saussurea polysaccharides treated with Congo red, the maximum
absorption wavelength was blue-shifted and was similar to that of pure Congo red, which
decreased in tandem with increases in NaOH concentration. The one exception was fraction
SFP2, for which the maximum absorption wavelength was not changed (Supplementary
Figure S3). Thus, these data suggest that the conformation of Saussurea polysaccharides in
solution is not triple-helical.

The sugar composition of polysaccharides from S. involucrate has recently been re-
ported [19] and was mainly composed of arabinose, rhamnose, galactose, galacturonic
acid, and glucose, with a molecular weight of 237.6 kDa. Pectin polysaccharide SLP-4
from S. laniceps was composed of mannose, rhamnose, galacturonic acid, glucose, galactose,
xylose, and arabinose [8]. Thus, the sugar composition of polysaccharides from S. salicifolia
has some similarity to those previously isolated from S. involucrate and S. laniceps, although
fractions SFP2 and SFP6 did not contain rhamnose, and none of the fractions contained
mannose and arabinose.

2.2. Effects of Saussurea Polysaccharides on NO Production in Mouse Macrophages

To characterize effectiveness of the polysaccharide fractions in a primary macrophage
cell model, we evaluated their effects in mouse peritoneal macrophages. While untreated
macrophages (medium alone) did not produce NO, all the fractions (SSP2, SSP6, SFP2,
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and SFP6) stimulated significant levels of NO production at a concentration range of
2–60 µg/mL with similar activity as that induced by bacterial LPS (100 ng/mL) (Figure 1).
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Figure 1. Effect of the Saussurea polysaccharides on macrophage NO production. Mouse macrophages
were treated for 48 h with the indicated polysaccharide fractions, media alone (0; negative control), or
100 ng/mL LPS (positive control). NO production was quantified by measuring nitrite in the cell-free
supernatants. The data are presented as the mean ± S.D. of triplicate samples from one experiment
that is representative of two independent experiments. Statistically significant differences (* p < 0.01)
between cells treated with media alone (0) and cells treated with SSP2, SSP6, SFP2, SFP6, or LPS
are indicated.

To exclude possible effects of LPS or endotoxin contamination on the polysaccharide
fractions, we evaluated activity of the polysaccharide samples in the presence of polymyxin
B, which is an LPS inhibitor. As shown in Figure 2, NO production was not significantly
affected in macrophages stimulated with SSP2, SSP6, and SFP2 in the presence of 50 µg/mL
polymyxin B, indicating that these fractions were not contaminated with LPS. In contrast,
NO production was significantly reduced by polymyxin B in macrophages treated with
SFP6, as well as in the LPS control (Figure 2). Thus, fraction SFP6 was excluded from
subsequent biological testing because of possible LPS contamination. Note that it is also
possible that SFP6 contains structures similar to LPS, which would also be susceptible to
polymyxin B binding and inhibition.

2.3. Effects of Saussurea Polysaccharides on Arginase Activity in Mouse Macrophages

Arginase I is a double-stranded manganese metalloenzyme that helps L-arginine
break down into L-ornithine and urea [20]. Arginase activity is a marker of an M2 anti-
inflammatory phenotype in macrophages [21]. The incubation of mouse macrophages for
48 h with polysaccharide fractions SSP2, SSP6, and SFP2 significantly decreased arginase
activity compared to the negative control cells treated with media alone. The proinflam-
matory effect was comparable to that of LPS (100 ng/mL) for most of the polysaccharide
samples, and only SFP2 was significantly lower (Table 3).
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SSP6 (20 μg/mL) 39.55 ± 0.64 * 

SFP2 (20 μg/mL) 37.15 ± 0.64 *# 
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Figure 2. Effects of polymyxin B on NO production by polysaccharide-treated macrophages. Mouse
macrophages pretreated with media (w/o PMB) or with 50 µg/mL polymyxin B (PMB) for 48 h were
incubated with 20 µg/mL of the indicated polysaccharide fractions, media alone (negative control),
or 100 ng/mL LPS (positive control). NO production was quantified by measuring nitrite in the
cell-free supernatants. The data in each panel are presented as the mean ± S.D. of triplicate samples
from one experiment that is representative of two independent experiments. Statistically significant
differences (* p < 0.05) between samples treated with media and samples treated with polymyxin B
are indicated.

Table 3. Effects of Saussurea polysaccharides on arginase activity.

Test Sample Arginase Activity (E.U.)

SSP2 (20 µg/mL) 42.26 ± 0.43 *

SSP6 (20 µg/mL) 39.55 ± 0.64 *

SFP2 (20 µg/mL) 37.15 ± 0.64 *#

LPS (100 ng/mL) 45.67 ± 0.58 *

Control (media along) 53.94 ± 0.51

* Significant differences (p < 0.05) vs. negative (media alone) control. # Significant difference (p < 0.05) vs.
LPS control.

2.4. Effects of Saussurea Polysaccharides on AP-1/NF-κB Transcriptional Activity

To evaluate the activation of AP-1 and NF-κB transcription factors by Saussurea polysac-
charides, we utilized a transcription factor-based bioassay in human THP-1Blue monocytic
cells. As shown in Figure 3, all of the fractions dose-dependently stimulated AP-1/NF-κB
transcriptional activity over a concentration range of 0 to 62.5 µg/mL. The maximal effects
were comparable to those induced by 100 ng/mL of LPS (Figure 3).

2.5. Effects of Saussurea Polysaccharides on Cytokine Production

To quantify the dose-dependent effects of the Saussurea polysaccharide fractions on
cytokine production, the levels of monocyte interleukin-6 (IL-6) secretion were determined
by ELISA in supernatants from polysaccharide-treated human MonoMac-6 monocytic cells.
Incubation of MonoMac-6 cells with the polysaccharide fractions enhanced IL-6 production
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in a dose-dependent manner over a concentration range of 0.8 to 25 µg/mL (Figure 4),
which is consistent with the NF-κB transcriptional activity data.
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Figure 3. Effect of the Saussurea polysaccharides on AP-1/NF-κB activation. Human THP-1Blue
monocytes (105 cells/well) were incubated for 24 h with the indicated concentrations of polysaccha-
ride, media alone (0; negative control), or 100 ng/mL LPS (positive control). Alkaline phosphatase
activity was analyzed spectrophotometrically (absorbance at 655 nm) in the cell supernatants, as
described. Values are the mean ± S.D. of triplicate samples from one experiment, which is represen-
tative of three independent experiments. Statistically significant differences (* p < 0.01) between cells
treated with media alone (0) and cells treated with SSP2, SSP6, SFP2, or LPS are indicated.

As shown in Figures 1–4, Saussurea polysaccharides were highly active in stimulat-
ing macrophage/monocyte functional responses at concentrations > 10 µg/mL. Thus, to
determine whether the fractions induced the production of other pro-inflammatory me-
diators, conditioned media from polysaccharide-treated MonoMac-6 cells were analyzed
using a Multiplex Cytokine ELISA array. Seven cytokines were consistently induced in the
monocytic cells by 20 µg/mL of each polysaccharide fraction and compared to the control
cells (treated with medium alone). These included interleukin (IL)-1α, IL-1β, IL-6, tumor
necrosis factor (TNF), monocyte chemoattractant protein-1 (MCP-1), interferon-γ (IFN-γ),
and granulocyte–macrophage colony-stimulating factor (GM-CSF) (Figure 5). We selected
this concentration of the polysaccharides for the cytokine array analysis since the biological
assays above generally showed maximal effects at or near this concentration. Additionally,
the stimulatory effect was comparable to that induced by bacterial LPS (100 ng/mL).

The functional assays reported above suggest that the Saussurea polysaccharides were
relatively non-toxic. Nevertheless, we evaluated the cytotoxic activity of our polysaccharide
fractions to confirm that the biological results observed were not due to cytotoxicity. We
found that none of the Saussurea polysaccharide fractions were cytotoxic, as indicated by
the absence of any effect on macrophage viability when tested over a concentration range
of 2−60 µg/mL. Thus, we confirmed that Saussurea polysaccharides are not cytotoxic for
macrophages (see Supplementary Table S1).
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Figure 5. Effect of Saussurea polysaccharides on cytokine production by human MonoMac-6 cells.
MonoMac-6 cells were incubated for 24 h with 20 µg/mL of the indicated polysaccharide fractions or
100 ng/mL of LPS (positive control), and production of cytokines in the supernatants was evaluated
using a Multiplex Human Cytokine ELISA kit. The data are presented as mean ± SD of duplicate
samples from one experiment that is representative of two independent experiments. Statistically
significant differences (* p < 0.01) between cells treated with media alone and cells treated with the
polysaccharide fractions or LPS are indicated.
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Previously, the anti-inflammatory and immunomodulatory effects of Saussurea sp.
extracts and bioactive molecules isolated from these plants have been described [22–25],
whereas the immunomodulatory activities of high-molecular-weight polysaccharide frac-
tions from these species are unknown. In the present work, we isolated two polysaccharide
fractions from S. salicifolia (SSP2 and SSP6) and two fractions from S. frolovii (SFP2 and
SFP6) and provided structural and pharmacological characterization. We found that the
polysaccharides SSP2 and SSP6 from S. salicifolia had higher (113.2–143.7 kDa) molecular
weights compared to SFP2 and SFP6 from S. frolovii (64.3–75.3 kDa). SSP2, SSP6, and
SFP2 were free of endotoxin contamination and had potent immunomodulatory activity,
as demonstrated by their ability to induce NO production in mouse macrophages and
cytokines by monocytic MonoMac-6 cells.

The polysaccharides isolated from S. frolovii (SFP2 and SFP6) were mainly composed
of glucose and xylose and seemed to be typical xyloglucans. Indeed, plant-derived xyloglu-
cans have been previously reported to exhibit macrophage-mediated immunostimulatory
activity [26,27]. Interestingly, we found that the extraction pH affected sugar composition
of the fractions isolated from the same plant (see Table 2). Similarly, the effect of the extrac-
tion pH on structural properties was also reported for other plant polysaccharides (e.g.,
polysaccharides isolated from red pitaya (Hylocereus polyrhizus) stems [28]).

Although fraction SFP6 was excluded from biological testing because of possible
endotoxin contamination, the other polysaccharides isolated from S. frolovii (SFP2) exhibited
dose-dependent responses in all biological tests and had the most potent activity for
stimulating NO production by murine macrophages as well as AP-1/NF-κB activation
and IL-6 production by human monocytic cells. SFP2 contained the highest amount of
glucose (32.9% vs. 11.8 and 19.2% in SSP2 and SSP6, respectively), but had the lowest
molecular weight (75.3 kDa vs. 143.7 and 113.2 kDa for SSP2 and SSP6, respectively). Since
LPS is a potent activator of monocyte and macrophages [29], we were not able to make any
conclusions regarding the active components of SFP6.

We show here that Saussurea polysaccharides were able to activate NF-κB/AP-1 in
THP-1Blue human monocytes. This is an important finding and provides additional evi-
dence that Saussurea polysaccharides exhibit monocyte/macrophage immunomodulatory
effects, since NF-κB activation is important in the regulation of a number of the effector
molecules involved in inflammation, including proinflammatory cytokines, chemokines,
inflammatory enzymes, adhesion molecules, and receptors in innate immune cells [30]. In-
deed, several other plant polysaccharide preparations have been shown to regulate NF-κB.
For example, high-molecular-weight polysaccharides from Aloe barbadensis and Opuntia
polyacantha have been reported to increase NF-κB expression and activity [31,32]. Likewise,
polysaccharides from Spirulina platensis, Aphanizomenon flos-aquae, and Chlorella pyrenoidosa
were reported to activate NF-κB, leading to increased cytokine message levels [33]. Thus,
the ability of Saussurea polysaccharides to stimulate monocyte/macrophage IL-6 and NO
production and activate NF-κB is consistent with the known immunomodulatory activity
of various plant polysaccharides.

The evaluation of arginase activity in mouse macrophages revealed that Saussurea
polysaccharides could induce a phenotypic switch from M2 to M1 macrophages. This
was also supported by our data demonstrating the activation of NO synthase and secre-
tion of pro-inflammatory cytokines by the polysaccharides in macrophages/monocytes
treated with the polysaccharide fractions SSP2, SSP6, and SFP2. A similar reversal of the
macrophage phenotype was described after macrophage treatment with plant polysaccha-
rides isolated from Moringa oleifera [34]. In future studies, it will be interesting to determine
whether Saussurea polysaccharides can enhance the production of proinflammatory media-
tors through the activation of Toll-like receptor 4 (TLR4).

Note that the Saussurea polysaccharides had a relatively high protein content (from
6.5 to 33.9%). However, their biological activity was approximately the same in all tests,
which indicates that the protein portion of these molecules was not the main component
responsible for immunomodulatory activity. Due to complexity of the chemical structure
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of polysaccharides and the lack of accurate data on the relationship between their structure
and activity, it is impossible to assess the exact contribution of the monosaccharide compo-
sition. However, there are data reported on some of the most important monosaccharide
residues associated with macrophage stimulation. For example, Yin et al. [35] suggested
that Ara, Man, Xyl, and Gal are the four most important monosaccharide components
contributing to macrophage-stimulating activity. This conclusion was also supported by
Wang et al. [36], who analyzed the monosaccharide composition and bioactivity of polysac-
charides extracted from mushrooms. Likewise, we found that all active polysaccharide
fractions had very high levels of Xyl, suggesting that the presence of this sugar may be
important for monocyte/macrophage immunomodulatory activity. This conclusion is
supported by the results observed with SFP2 treatment, as SFP2 contained only Xyl (~72%)
and Glu (~28%). Considering the similar dose-dependent responses observed for SSP2,
SSP6, and SFP2, we suggest that Xyl is likely the major structural contributor to the ob-
served immunomodulatory activity since the Glu levels ranged from ~12 to 33% in these
polysaccharide fractions and did not correlate well with the activities measured.

3. Materials and Methods
3.1. Plant Material

Plant material was collected from wild populations during the flowering period in
July 2020 in the Republic of Khakassia, Russia (N 54.4669527, E 89.445091). Plant collection
and botanical identification were performed by botanist Professor Margarita N. Shurupova
from the Herbarium at Tomsk State University (Tomsk, Russia). The plant material was
air-dried for 7–10 days at room temperature away from direct sunlight.

3.2. Extraction and Fractionation of Saussurea Polysaccharides

The plant material was extracted with distilled H2O at pH 2 and 6 for 3 h at 60 ◦C
and a volume ratio of 1/50 material/water [37,38]. The pH of the dispersion was adjusted
using HCl or NaOH, as reported previously [39]. The volume of the extract was reduced
by evaporation under vacuum. A four-fold volume of ethanol was added to each extract
to precipitate the polysaccharides overnight at 4 ◦C. The precipitates were pelleted via
centrifugation, dissolved in distilled H2O, and centrifuged at 2600× g for 15 min. After cen-
trifugation, the polysaccharide solution was filtered through a 0.2 µm filter and lyophilized
to obtain a dry substance.

3.3. Characterization of Saussurea Polysaccharide Fractions

The hexose content was determined using the phenol–H2SO4 method [40]. For the
determination of uronic acid content, the samples were heat-treated in the presence of
concentrated sulfuric acid. After cooling to room temperature, a 3,5-dimethylphenol
solution was added, and 10–15 min later, the absorbance was read at 400 and 450 nm.
The appropriate glucuronic acid standards were used to develop a standard curve [41].
The Lowry method was used to quantify protein content, with albumin as the protein
standard [42]. The vibration of C–O in the O-acetyl groups was measured using the peak at
1260 cm−1 [43]. IR spectra were recorded on an analytical Fourier spectrometer FSM 2201
(LLC Infraspec, St. Petersburg, Russia) with KBr pellets.

The homogeneity and average molecular weight of the polysaccharide fractions were
determined by high-performance size-exclusion chromatography (HP-SEC) using an Ul-
timate 3000 and Ultrahydrogel 250 column (7.8 mm × 300 mm, 250 Å (Waters, Milford,
MA, USA)) eluted with water containing 10 mM sodium nitrate and 0.01% NaN3 at a flow
rate of 0.5 mL/min at 30 ◦C. Peaks were detected using a refractive index detector RI-101
(Dionex, Thermo, Dreieich, Germany). The average molecular weights of the polysac-
charide fractions were estimated through comparison with retention times of pullulan
standards (Pulkitsa-10 Mp 342-708000 Da, PSS GmbH, Mainz, Germany).

The monosaccharide composition was determined using gas chromatography. Then,
10 mg of polysaccharide was hydrolyzed using 2 M trifluoroacetic acid (TFA) for 4 h. The
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TFA was removed, and the samples were treated with trimethylchlorosilane (TMCS) and
imidazole (3:1; total volume 100 µL) as derivatizing agents and pyridine (200 µL) as a
solvent at 75 ◦C for 25 min [44]. TMCS-derivatized samples were twice extracted with
hexane and analyzed using an Agilent 7890 (Agilent Technologies, Santa Clara, CA, USA)
with an Agilent DB-5 GC column (30 m × 0.25 mm) and flame ionization detection (FID).
The GC oven temperature was kept at 175 ◦C for 1 min, then increased to 250 ◦C at a rate
of 3 ◦C/min.

The Congo red assay was used to determine the triple-helix structures of polysaccha-
rides [17]. Briefly, 1 mL Congo red (80 µM/L) solution and 1 mL polysaccharide sample
solution (1 mg/mL) were mixed, then NaOH solution and water were added to achieve a
total volume of 4 mL while adjusting the NaOH final concentration from 0 to 0.5 M. After
reaction for 10 min at room temperature, the solutions were analyzed at a wavelength of
400–600 nm with an SF-2000 spectrophotometer (OKB Spectr, St. Petersburg, Russia).

3.4. Cell Culture

Macrophages were isolated from C57BL/6 mice (age 8–10 weeks) obtained from the
Department of Experimental Biological Models of E.D. Goldberg Institute of Pharmacol-
ogy and Regenerative Medicine. We performed this research according to EU Directive
2010/63/EU concerning the protection of animals used for scientific purposes, and it was
approved by the Animal Care and Use Committee of the Goldberg Research Institute
of Pharmacology and Regenerative Medicine, Tomsk NRMC (Protocol No. 171052020
from 05.18.20).

Macrophages were isolated from peritoneal exudate using an EasySep™Biotin Pos-
itive Selection Kit and Anti-Mouse F4/80 Antibody (both from StemCell Technologies,
Vancouver, BC, Canada). The macrophages were cultured in RPMI 1640 (Sigma-Aldrich,
St. Louis, MO, USA) and supplemented with 10% (v/v) heat-inactivated, endotoxin-free
fetal bovine serum (FBS) (Hyclone, GB), 20 mM HEPES (Sigma-Aldrich, St. Louis, MO,
USA), 50 mM mercaptoethanol (Sigma-Aldrich, St. Louis, MO, USA), 2 mM L-glutamine
(Sigma-Aldrich, St. Louis, MO, USA), and 50 µg/mL gentamycin.

THP-1Blue cells obtained from InvivoGen (San Diego, CA, USA) [45] and human
monocyte–macrophage MonoMac-6 cells (Deutsche Sammlung von Mikroorganismen und
Zellkulturen GmbH, Braunschweig, Germany) [46] were cultured at 37 ◦C in a humidified
atmosphere containing 5% CO2, as reported previously.

3.5. Analysis of Macrophage Nitric Oxide (NO) Production

Macrophages (4 × 105 cells/well) were plated in a final volume of 200 µL in 96-well
flat-bottom tissue culture plates. The cells were incubated in control medium alone or
in medium containing various concentrations of polysaccharide fractions or bacterial
lipopolysaccharide (LPS; Escherichia coli K-235 serotype O111:B4 from Sigma-Aldrich, St.
Louis, MO, USA) as a positive control. The macrophages were incubated at 37 ◦C and 5%
CO2 for 48 h. After 48 h, 100 µL of the culture supernatants were removed and analyzed
for nitrite with NaNO2 as the standard. Briefly, supernatants were mixed with an equal
volume of Griess reagent (Sigma-Aldrich). After 20 min, absorbance was measured at 540
nm using a Titertek Multiskan® MCC (Labsystems, Vantaa, Finland).

3.6. Arginase Assay

The analysis of arginase activity was performed by measuring urea concentration in
the cell lysate from 4 × 105 cells using the Urea-450 colorimetric assay (Bio-LA-Test, Erba
Lachema, Brno, Czech Republic). One unit of arginase enzymatic activity (E.U.) catalyzes
the formation of 1 µM of urea per minute.

3.7. Analysis of AP-1/NF-κB Activation

The activation of AP-1/NF-κB was determined using an alkaline phosphatase reporter
gene assay in THP1Blue cells, as reported previously [45].
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3.8. Cytokine Analysis

A human IL-6 ELISA kit (BD Biosciences, San Jose, CA, USA) was used to measure
MonoMac-6 IL-6 production, as reported previously [47]. A multiplex human cytokine
ELISA kit from Anogen (Mississauga, ON, Canada) was also used to evaluate interleukin
(IL)-1α, IL-1β, IL-6, the tumor necrosis factor (TNF), monocyte chemoattractant protein-1
(MCP-1), interferon-γ (IFN-γ), and the granulocyte–macrophage colony-stimulating factor
(GM-CSF) in MonoMac-6 cell supernatants, as reported previously [47].

3.9. Cell Viability Assay

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric as-
say was performed to determine cell viability. Macrophages were plated at 4 × 105 cells/well
in a 96-well plate and incubated for a 48 h with different concentrations of the plant polysac-
charides, followed by the addition of 200 µg/mL of MTT reagent (Sigma-Aldrich, St. Louis,
MO, USA). After a 4 h incubation, the supernatant was removed, and 100 µL of dimethyl
sulfoxide was added to the cell pellet. The relative viable cell number was determined by
reading the plates at a 490 nm wavelength using a Titertek Multiskan MCC (Labsystems,
Vantaa, Finland).

3.10. Statistical Analysis

Statistical analysis was performed with Statistica 13.3 software. The compliance of the
sample with a normal distribution was evaluated using Shapiro–Wilk’s W test, ANOVA,
and Dunnett’s test. Values were considered statistically significant at p < 0.05.

4. Conclusions

The genus Saussurea has been used in the preparation of therapies for several medical
problems, yet not much is known about the therapeutic compounds present in extracts from
these plants. Since polysaccharides are important in immune modulation, we investigated
the chemical composition and immunomodulatory activity of Saussurea salicifolia L. and
Saussurea frolovii Ledeb polysaccharides. The data reported here demonstrate that Saussurea
polysaccharides have potent monocyte/macrophage immunomodulatory properties, in-
cluding activation of NO and cytokine production via the activation of the NF-κB/AP-1
transcriptional pathway. Thus, it appears that Saussurea polysaccharide may be able to
enhance macrophage/monocyte host defense responses.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28186655/s1, Figure S1: High-performance size-exclusion
chromatography (HP-SEC) analysis of homogeneity and average molecular weight of the polysac-
charide fractions isolated from Saussurea salicifolia L. and Saussurea frolovii Ledeb. Polysaccharide
fractions SSP2, SSP6, SFP2, and SFP6 were analyzed through HP-SEC and monitored with a refractive
index detector, as described under Material and Methods. The arrows show peak retention times
of the indicated pullulan standards used for calibration [P-200 (200 kDa), P-100 (11.3 kDa), P-50
(48.8 kDa), P-20 (23.0 kDa), and P-10 (9.9 kDa)]; Figure S2: Chromatograms of derivatized monosac-
charides in the polysaccharide samples isolated from S. salicifolia (SSP2 and SSP6) and S. frolovii
(SSF2 and SSF6) analyzed by gas chromatography/flame ionization detector (GC/FID). The retention
times values of standards were 13.68, 14.38, 14.66, and 14.92 min for rhamnose, xylose, glucose, and
galactose, respectively; Figure S3: Congo red analysis of the polysaccharide fractions; Table S1: Effect
of Saussurea polysaccharide fractions on macrophage viability.
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