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Abstract: Volatile methyl siloxanes (VMS), which are considered to be the most troublesome im-
purities in current biogas-cleaning technologies, need to be removed. In this study, we fabricated
a series of Fe3O4–urea-modified reduced graphene-oxide aerogels (Fe3O4–urea–rGOAs) by using
industrial-grade graphene oxide as the raw material. A fixed-bed dynamic adsorption setup was
built, and the adsorption properties of the Fe3O4–urea–rGOAs for hexamethyldisiloxane (L2, as a
VMS model pollutant) were studied. The properties of the as-prepared samples were investigated by
employing various characterization techniques (SEM, TEM, FTIR, XRD, Raman spectroscopy, and N2

adsorption/desorption techniques). The results showed that the Fe3O4–urea–rGOA–0.4 had a high
specific surface area (188 m2 g−1), large porous texture (0.77 cm3 g−1), and the theoretical maximum
adsorption capacity for L2 (146.5 mg g−1). The adsorption capacity considerably increased with a de-
crease in the bed temperature of the adsorbents, as well as with an increase in the inlet concentration
of L2. More importantly, the spent Fe3O4–urea–rGOA adsorbent could be readily regenerated and
showed an excellent adsorption performance. Thus, the proposed Fe3O4–urea–rGOAs are promising
adsorbents for removing the VMS in biogas.

Keywords: adsorption; hexamethyldisiloxane; reduced graphene oxide aerogel; Fe3O4-modified;
hydrothermo–chemical reduction method

1. Introduction

Biogas produced via the anaerobic digestion of organic matter in landfill and sewage
plants is a promising alternative to fossil-fuel-based energy [1]. The primary components
of biogas are 50–70% CH4 and 30–50% CO2, and the minor components consist of NH3,
H2S, halogenated compounds, and volatile methyl siloxanes (VMS) [2–4]; in particular,
VMSs are considered to be the most troublesome in current biogas-cleaning and -upgrading
technologies [5]. In recent years, however, VMSs have become widespread in different
types of biogas due to the extensive use of polydimethicone in the formulation of personal
care products, industrial lubricants, glues, paints, and detergents [6]. The presence of VMSs
will decrease the practical applicability of biogas; this occurs because they will be converted
into microcrystalline silica during combustion, thus damaging engine devices (i.e., pistons,
cylinders, and valves) and inhibiting heat conduction as well as lubrication [6,7]. Thus, the
VMS must be removed from biogas prior to use.

Cryogenic condensation, biological technology, catalytic processes, membrane sepa-
ration, absorption, and adsorption are the most common approaches used to remove the
VMS from biogas [6–14]. Among the reported methods for the removal of VMS, adsorption
has been found to be one of the most effective due to its high efficiency, facile operation,
and strong economic feasibility [15,16]. Several adsorbents have been commercially used or
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explored under development, including activated carbons, silica gels, alumina, molecular
sieves, and polymer resins, etc. [12,17–22]. While these adsorbents have many attractive
properties, such as being simple to use, a high adsorption capacity, and a low cost, their
poor cycle performances have limited their commercial applications [23]. Therefore, the
exploration of novel material materials as VMS adsorbents with a high adsorption potential
and excellent recycling performance is quite necessary.

A reduced graphene oxide aerogel (rGOA) with a three-dimensional porous network
structure is formed by the cross-linked stacking of graphene sheets. Zheng et al. [24,25]
prepared a series of micro/narrow mesoporous reduced graphene oxide aerogels un-
der hydrothermal conditions by using VC and amine as reducing agents. These aero-
gels exhibited a good adsorption performance for L2, as well as an excellent cycling
stability [24,25]; however, the increase in the specific surface area of the rGOA and the
regulation of the pore size were restricted. Therefore, finding new ways of improving the
texture properties of rGOAs has continued to attract attention. Recently, many researchers
have revealed that a metal oxide-modified rGOA can exhibit good texture features (such
as porosity and specific surface area) due to the synergistic effect between the intercon-
nected three-dimensional pores of the rGOA and the rich porous structure of the metal
oxide [26,27]. Fe3O4 has become an ideal metal oxide for the preparation of a modified
rGOA due to its advantages of being widely sourced, environmentally friendly, and low
cost [28]. Li et al. [29] prepared Fe3O4–rGOA via a one-step chemical reduction method,
making the microwave absorption performance of the composite material significantly
higher than that of Fe3O4 and reduced graphene alone. Vinoshkumar et al. [30] prepared
Fe3O4–rGOA via a hydrothermal method, which is an effective photocatalytic material
and has good degradation activity for methylene blue dyes. As of now, the aerogels
based on reduced graphene oxide reported in the literature are applied in many fields,
such as catalysis [31], conduction [32], gas purification [33,34], electromagnetic wave
absorbing [35–37], and the adsorption of dyes in water [29,30]. Remarkably, we provide
a new aerogel modification method for the removal of VMS. Based on the urea reduced
graphene oxide aerogel prepared by Zheng et al. [24], we introduced Fe3O4 in order to
obtain a larger specific surface area and more suitable pore structure for L2 adsorption.
According to the structure–activity relationship, the adsorption mechanism was further
explored.

To identify the good adsorption performance of Fe3O4–urea–rGOA for VMS, a series
of Fe3O4–urea–rGOAs was produced with industrial-grade graphene oxide (IGGO) as the
raw material, Fe(NO3)3·9H2O as the metal oxide precursor, and urea as the reducing agent
via a one-step hydrothermal method. The synthesized samples were evaluated through
dynamic breakthrough experiments with highly volatile hexamethyldisiloxane (L2) as a
model pollutant. Based on SEM, TEM, XRD, BET, FTIR, and Raman characterization, the
relationship between the structure and adsorption properties of the Fe3O4–urea–rGOA was
revealed, and the mechanism of the self-assembly of the graphene sheets/Fe3O4 induced
by Fe3+ was clarified. Furthermore, the influential factors on the adsorption capacity were
investigated, and adsorption–desorption tests were also carried out on the best Fe3O4–urea–
rGOA adsorbent. The fabricated Fe3O4–urea–rGOAs showed high hydrophobicity and
textural properties, indicating that they have great potential for VMS removal.

2. Results and Discussion
2.1. Effects of Modifier Fe(NO3)3·9H2O on Texture Properties

Digital photos of the Fe3O4–urea–reduced graphene oxide hydrogels (Fe3O4–urea–
rGOHs) are shown in Figure S1. It can be seen that the Fe3O4–urea–rGOHs all show an
overall macroscopic shape, which suggests that, under the action of reduction-induced self-
assembly, the formation of hydrogels was promoted [38]. The N2 adsorption–desorption
isotherms of IGGO and the Fe3O4–urea–rGOAs are shown in Figure 1. According to the
IUPAC classification method [39], the adsorption and desorption isotherms of N2 on the
six samples were type I and type IV, respectively, and the adsorption of the monolayer in
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the low-relative-pressure region reflected the phenomenon of micropore filling. With an
increase in the relative pressure, multilayer adsorption appeared, and adsorption hysteresis
appeared above a relative pressure of 0.4, reflecting mesoporous capillary condensation.
Moreover, from a shape analysis of the hysteresis loops, the Fe3O4–urea–rGOAs were
H3-type hysteresis loops, and the shapes of their holes were slit and crack holes, which
were speculated to be formed due to the collaborative self-assembly process of Fe3O4 and
graphene sheets [26]. According to IUPAC rules, IGGO showed type III isotherms and
did not have hysteresis loops, from which it can be inferred that IGGO has a relatively
non-porous/macroporous structure. As shown in Table 1, the pore structure parameters
of IGGO and the Fe3O4–urea–rGOAs are listed. The BET specific surface areas of the
IGGO, Fe3O4–urea–rGOA–0.12, Fe3O4–urea–rGOA–0.24, Fe3O4–urea–rGOA–0.4, Fe3O4–
urea–rGOA–0.8, and Fe3O4–urea–rGOA–1 samples were found to be 7, 124, 160, 188, 177,
and 162 m2 g−1, respectively. With an increase in Fe3+ loading, Fe3O4–urea–rGOA provided
a large number of effective channels, making the BET specific surface area and total pore
volume gradually increase, reaching 188 m2 g−1 and 0.77 cm3 g−1, respectively; however,
with a continuous increase in Fe3+, the number of micropores in the complex Fe3O4–urea–
rGOAs reduced, resulting in a decrease in the BET specific surface area and total pore
volume [40,41]. In addition, it can be determined from the pore size distribution that the
pore size was mainly in the range from 2 to 5 nm, which is a micro/narrow mesoporous
range that is most suitable for L2 removal and is the main contribution to increasing the
specific surface area.
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Table 1. Texture properties of samples.

Samples SBET
(m2 g−1)

V tot
(cm3 g−1)

Vmicro
(cm3 g−1)

Vmeso
(cm3 g−1) a

Daver
(nm)

IGGO 7 0.23 0.01 0.22 13.18
Fe3O4–urea–rGOA–0.12 124 0.59 0.06 0.53 5.02
Fe3O4–urea–rGOA–0.24 160 0.67 0.11 0.56 4.95
Fe3O4–urea–rGOA–0.4 188 0.77 0.19 0.58 3.94
Fe3O4–urea–rGOA–0.8 178 0.74 0.16 0.58 4.88
Fe3O4–urea–rGOA–1 162 0.68 0.12 0.56 4.95

a Vmeso = Vtot − Vmicro.

2.2. Characterization of Adsorbents

Figure 2a–d show the SEM and TEM images of IGGO and Fe3O4–urea–rGOA–0.4.
Compared to IGGO, Fe3O4–urea–rGOA–0.4 exhibited an abundant three–dimensional
network structure and more fissured pores. Moreover, it can be seen that the Fe3O4
spherical small particles were evenly distributed in the graphene lamellar structure, which
may have increased the roughness of the graphene aerogel surface and thus enlarged
the specific surface area of the graphene aerogel [40]. The XRD testing results of IGGO
and Fe3O4–urea–rGOA–0.4 are shown in Figure 2e. After hydrothermal reduction, the
graphene (002) diffraction peak can be seen at 24.5◦, and the diffraction peaks of Fe3O4–
urea–rGOA–0.4 appeared at 30.6◦, 35.9◦, 43.4◦, 52.1◦, 57.3◦, and 62.9◦, corresponding to the
crystal planes (200), (311), (400), (422), (511), and (400) of Fe3O4, respectively. This being the
case, the above-mentioned results suggest that the Fe3O4 nanoparticles were successfully
combined with graphene sheets [42]. The FTIR spectrum of IGGO showed a number of
absorption peaks (Figure 2f). The significant broad peaks were located at 3441 cm−1 for
the stretching vibration of O–H in the adsorbed–state H2O, C–OH groups, and –COOH
groups [43]. The absorption peak at 2927 cm−1 was attributed to the –C–H stretching
vibration, [44] and that at 1727 cm−1 was due to the C=O stretching vibration in carboxyl.
The peaks appearing at 1443 and 1623 cm−1 were attributed to the C=C vibration of the
graphene skeleton [45]. There was a strong absorption peak at 1050 cm−1, which belonged
to the stretching vibration of the epoxy group C–O–C [45]. After hydrothermal reduction,
in the FTIR spectrum of Fe3O4–rGOA–0.4, the disappearance of the 1727 cm−1 peak and the
appearance of the 3750 cm−1 peak were partly due to the possible decarboxylation reaction
of the carboxyl group at 800 ◦C and partly due to C=O being reduced to C–OH moieties
that were free [24]. The C=C stretching frequency intensity at 1623 cm−1 was decreased
and the C–O–C stretching frequency intensity at 1050 cm−1 was weakened. Moreover, two
new peaks that appeared at 1580 and 1115 cm−1 were attributed to the C=N and C–N–C
stretching vibrations, respectively [46]. The appearance of another peak in the region of
1670 cm−1 can be attributed to the formation of an amide bond via the reaction of urea with
the –COOH groups [47]. The above results reveal that the oxygen–containing groups were
reduced, epoxy rings were opened via the addition of –NH–CO–NH2, with subsequent
tautomerization to –N=C–OH–NH2, and that some N atoms were doped into the graphene
sheet [24,46]. Furthermore, the shoulder between 1580 cm−1 and 1623 cm−1, as well as the
band at 585 cm−1, could be due to the Fe–O stretching vibration in Fe3O4, indicating that
Fe3O4 was successfully anchored on the graphene sheet, which is consistent with the XRD
results [42]. In Figure 2f, the Raman spectra of the IGGO and Fe3O4–rGOA–0.4 samples
are given. The ratio of the intensities of the D and G peaks (ID/IG) was in the order of
IGGO (0.86) < Fe3O4–rGOA–0.4 (1.20), indicating that the defects of Fe3O4–rGOA–0.4 were
relatively high, which is presumed to be due to a large number of sp3 hybrid carbon atom
defects caused by the urea hydrothermal reduction process [45]. Moreover, a small peak at
588 cm−1 could be due to the Raman spectrum of Fe3O4 [27]. This indicates that Fe3O4 and
rGOA were successfully combined, which is consistent with the results of previous studies.
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Raman spectra of IGGO and Fe3O4–urea–rGOA–0.4 (g).

According to the above experimental results, we propose a possible working mecha-
nism, as shown in Figure 3. Based on the synergic self-assembly effect induced by Fe3+,
the two assembly processes of Fe3O4 and urea reduction were carried out simultaneously
and promoted each other. The Fe3O4 nanoparticles were successfully anchored on the
layer of reduced graphene oxide. Meanwhile, the N atoms were successfully doped into
the graphene structure, resulting in defects on the graphene sheets, and urea also acted
as a crosslinker and reducing agent. According to the literature [48,49], all of the above
synergies are beneficial to the formation of a large specific surface area and micro/narrow
mesoporous pores, which are the most suitable for L2 removal.
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2.3. Comparison of Dynamic Adsorption Performances

The breakthrough adsorption curves (represented by the Cout,t/Cin~t relationship curve),
obtained by using the Yoon–Nelson model for IGGO and Fe3O4–urea–rGOAs, are shown in
Figure 4. The experimental conditions were as follows: T = 25 ◦C, Cin = 14.62 mg L−1, and
Vg = 50 mL min−1. The calculated model parameters and adsorption experiment results are
summarized in Table 2. The results demonstrated the following: (1) The L2 breakthrough
curves for IGGO and the Fe3O4–urea–rGOAs were S–shaped, and experienced three stages
of plateau–penetration–equilibrium with an extension in time, which is in line with the
typical characteristics of gas–solid adsorption behavior. (2) These dynamic adsorption
data can be well described with the Yoon–Nelson model equation (correlation coefficient
R2 > 0.99). Therefore, in our later discussions, we chose the theoretical parameter values
(tB,th, QB,th, and Qm,th) via this model to analyze the adsorption performances of the
Fe3O4–urea–rGOAs. (3) With an increase in the mass of Fe(NO3)3·9H2O, the adsorption
performance of the Fe3O4–urea–rGOAs to L2 first increased and then decreased. The order
of the adsorption properties of the Fe3O4–urea–rGOAs for L2 was as follows: Fe3O4–urea–
rGOA–0.4 > Fe3O4–urea–rGOA–0.24 > Fe3O4–urea–rGOA–0.8 > Fe3O4–urea–rGOA–1 >
Fe3O4–urea–rGOA–0.12 > IGGO. Among them, the tB,th, QB,th, and Qm,th values of Fe3O4–
urea–rGOA–0.4 were 13.88 min, 101.5 mg g−1, and 112.4 mg g−1, respectively, exhibiting
the best adsorption capacity of L2. (4) In order to reveal the structure–activity relationship
between the texture and adsorption properties of the Fe3O4–urea–rGOAs, correlational
analyses for QB,th with each of the SBET, Vmeso, Vtot, and Vmicro separately were performed
for the Fe3O4–urea–rGOAs, and a linear simulation was performed using the y = a + bx
equation, as shown in Figure 5a–d. The relevant parameters simulated by the equation
are shown in Table 3. The R2 of the QB,th–SBET, QB,th–Vmeso, QB,th–Vtot, and QB,th–Vmicro
linear fitting were 0.9838, 0.9913, 0.9626, and 0.9386, respectively. Therefore, the specific
surface area and pore volume were the main influencing factors of L2 adsorption, and,
moreover, the correlation between Vmeso and QB,th was slightly greater than that of Vmicro.
It has been reported that the molecular kinetic diameter of L2 is 1.044 nm [17], and when
the pore size is two to four times that of the adsorbent molecule diameter, it is favorable for
adsorption [17]. According to the experimental results, the prepared aerogels had a pore
size ranging from 2 nm to 5 nm, which is the most suitable pore structure for absorbing
L2. Therefore, the adsorption of L2 is mainly microporous and mesoporous. It can thus
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be inferred that capillary condensation and micropore filling were the main adsorption
mechanisms of L2 on the Fe3O4–urea–rGOA–0.4 [14,24,41], and the schematic diagram of
the adsorption mechanism is as shown in Figure S2.
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Table 3. The statistical parameters of curves between QB,th–SBET, QB,th–Vmeso, QB,th–Vtot, and QB,th–
Vmicro for the Fe3O4–urea–rGOAs.

Statistical Parameters QB,th–SBET QB,th–Vmeso QB,th–V tot QB,th–Vmicro

Number of Points 5 5 5 5
Equation y = a + bx

Residual Sum of Squares 14.6870 7.8656 33.8747 55.5914
Standard Deviation 1.9162 1.4023 2.9101 3.7280

R-Square 0.9838 0.9913 0.9626 0.9386

Intercept Value −27.6825 −455.2833 −87.0625 45.3823
Standard Error 7.4994 25.4242 17.2712 5.7807

Slope Value 0.7141 961.8600 253.7942 341.0927
Standard Error 0.04575 44.9644 24.8926 43.2595

2.4. Effect of Process Conditions on Adsorption

There were many factors affecting the adsorption process [50,51]. Therefore, it is
interesting to explore the influence of different Fe3O4–urea–rGOA–0.4 bed temperatures (T)
and L2 inlet concentrations (Cin) on the adsorption. The change curve of QB,th with Cin is
shown in Figure 6a. In a low-concentration range, QB,th increased with a greater Cin. When
Cin reached a certain concentration, QB,th maintained equilibrium. It has been reported
that when the adsorption force of an L2 molecule and the coverage of an adsorption site
reach equilibrium, the adsorption capacity reaches a stable value under the corresponding
conditions [52,53]. Therefore, it is appropriate to control the inlet concentration of L2
in the range from 25 mg L−1 to 40 mg L−1. Figure 6b shows the breakthrough curve
of the adsorption of L2 with Fe3O4–urea–rGOA–0.4 fitted by the Yoon–Nelson model at
various bed temperatures (0–55 ◦C). In addition, the calculated model parameters and
theoretical metrics (tB,th, QB,th, and Qm,th) based on the experimental data are listed in
Table 4. When Cin was 14.62 mg L−1 and Vg was 50 mL min−1 at 0 ◦C, the maximum
penetration adsorption capacity of L2 on Fe3O4–urea–rGOA–0.4 was 146.5 mg g−1. It can
be seen that, with an increase in bed temperature, tB,th, QB,th, and Qm,th all decreased,
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indicating that the L2 adsorption process in the Fe3O4–urea–rGOA–0.4-filled bed was
exothermic, which could further support the idea that the primary adsorption mechanisms
of L2 are capillary condensation and micropore filling [14,24,41].
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Table 4. Influence of the temperature on the adsorption of L2 over Fe3O4–urea–rGOA–0.4 a.

Term Value tB,th/
min

QB,th/
mg g−1

Qm,th/
mg g−1 KYN

τ/
min R2

T/◦C

0 18.08 132.2 146.5 1.1431 20.66 0.9982
10 16.28 119.0 131.8 1.1901 18.75 0.9979
15 14.97 109.4 121.3 1.1705 17.49 0.9989
25 13.88 101.5 112.4 1.2814 16.18 0.9963
35 12.95 94.7 105.0 2.0786 14.37 0.9981

a Cin = 14.62 mg L−1, m = 0.10 g, and Vg = 50 mL min−1.

2.5. Recycling Performance of Fe3O4–Urea–rGOA–0.4

The recovery performance of adsorbents is an important factor with which to evaluate
their practical application. Therefore, Fe3O4–urea–rGOA–0.4, after the adsorption of L2,
was regenerated after being treated in an 80 ◦C water bath for 30 min, and repeated for five
adsorption–desorption cycles. Thus, the experimental results of these five cycles are shown
in Figure 7. As can be shown, the adsorption breakthrough curves of Fe3O4–urea–rGOA–0.4
on L2 basically coincided after five cycles of adsorption/regeneration treatment, indicating
that Fe3O4–urea–rGOA–0.4 had a good recycling performance, which has prospects for
industrial application. As can be seen from Table S1, although the adsorption properties
were slightly lower than those of other porous carbon materials [41,54–56], Fe3O4–urea–
rGOA–0.4 could be regenerated under a normal pressure and lower heating temperature
with a more than 99% regeneration efficiency.Molecules 2023, 27, x FOR PEER REVIEW 11 of 16 
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3. Materials and Methods
3.1. Materials and Chemicals

IGGO powder in the range from 10 to 50 µm was purchased from Suzhou Hengqiu
Technology Co. (Suzhou, China). Fe(NO3)3·9H2O (analytical grade, Aladdin Industrial
Corporation, Shanghai, China), urea (CH4N2O, analytical grade, Tianjin Yongda Chemical
Reagent Co., Ltd., Tianjin, China), and deionized (DI) water were used for the preparation
of the Fe3O4–urea–rGOAs. Hydrochloric acid (HCl, 99%) was purchased from Beijing
Chemical Reagent Co. (Beijing, China). Hexamethyldisiloxane (L2; 99%, Aladdin Co., Ltd.,
Shanghai, China) was used as a representative model polluting gas of siloxane impurities
in biogas.

3.2. Preparation of Fe3O4–Urea–rGOAs

The schematic construction procedures of the Fe3O4–urea–rGOAs are described in
Figure 8. The method used to acquire the Fe3O4–urea–rGOAs was generally divided into
four steps, as described below:

Step 1: The preparation of IGGO dispersion. An amount of 0.24 g of IGGO was
dispersed in 60 mL of deionized water via ultrasonic treatment for 30 min to obtain an
IGGO suspension (4 mg mL−1).

Step 2: Hydrogel preparation. The dispersion solution was added to with a certain
mass of Fe(NO3)3·9H2O and 0.20 g of urea (molar ratios of 0.09, 0.18, 0.30, 0.60, and 0.74),
and then ultrasonic treatment was performed. After 60 min of ultrasound, the dispersion
solution was transferred to a 100 mL reactor for a hydrothermal reaction at 180 ◦C for 8 h,
acquiring the Fe3O4–urea-modified reduced graphene oxide hydrogel.

Step 3: Lyophilization and carbonization. The Fe3O4–urea–rGOHs were immersed
in a solvent of ethanol for 12 h. Next, the Fe3O4–urea–rGOHs were cooled at −18 ◦C for
12 h, and then freeze–dried at −46 ◦C for 24 h. Finally, the Fe3O4–urea–rGOA sample was
achieved via heating in a tube furnace at 800 ◦C in a N2 atmosphere for 2 h.

Step 4: Concentration adjustment. The same method was used to synthesize five
different IGGO/Fe(NO3)3·9H2O mass ratios (1:0.12, 1:0.24, 1:0.4, 1:0.8, and 1:1) and denoted
as Fe3O4–urea–rGOA–0.12, Fe3O4–urea–rGOA–0.24, Fe3O4–urea–rGOA–0.4, Fe3O4–urea–
rGOA–0.8, and Fe3O4–urea–rGOA–1.
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3.3. Adsorption Experiments of L2 Gas

The removal performances of IGGO and the Fe3O4–urea–rGOAs for an L2 gas stream
were measured using a fixed-bed dynamic adsorption setup. The full experimental setup
and related details of the methods are described in the published literature [24,25]. For
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each test, 0.10 g of Fe3O4–urea–rGOA was used and the experimental parameters were
T = 25 ◦C, an L2 inlet concentration of 14.62 mg L−1, and Vg = 50 mL min−1. The continuous
adsorption of L2 on the IGGO and Fe3O4–urea–rGOA packed-bed column was studied
in terms of the breakthrough curves, which were expressed by plotting Cout,t/Cin vs.
adsorption time. We employed the following three metrics to evaluate the adsorbent
performance: the breakthrough time (tB, defined as the time when Cout,t/Cin ≈ 0.05, min);
the breakthrough adsorption capacity (QB, representing the adsorption capacity at time tB,
mg g−1); and the saturated adsorption capacity (Qm, defined as the adsorption capacity
when Cout, t/Cin ≈ 1, mg g−1). The QB and Qm values for an independent adsorption test
were found using Equation (1):

Qt =
VgCin

m

∫ t

0
(1–

Cout, t

Cin
)dt (1)

In addition to the physical quantities mentioned above, m is the mass of the adsorbent
(g) and Vg is the flow rate of the L2 gas (L min−1).

3.4. Model for the Breakthrough Curves

The measured dynamic data of the L2 gas can be predicted via the Yoon–Nelson model,
which is a semi-empirical model. The Yoon–Nelson model is represented via Equation (2):

Cout, t

Cin
=

1
1 + exp[KYN(τ–t)]

×100 (2)

where KYN is the Yoon–Nelson constant and τ is the time required for retaining 50% of the
initial adsorbate.

3.5. Regeneration of the Spent Fe3O4–Urea–rGOAs

When the adsorption of the adsorbents was saturated, it was necessary to regenerate
it to achieve the cyclic adsorption of the spent Fe3O4–urea–rGOA. The adsorption tubes
were placed in a water bath (80 ◦C) and blown with 100 mL min−1 of N2 for 30 min. Five
consecutive adsorption/desorption cycles were repeated in the same manner.

3.6. Characterization

The SEM images were performed using a field emission scanning electron microscope
(SEM, Hitachi S4800, Chiyoda City, Japan) at an accelerating voltage of 15 kV. Photos
were taken of different samples using a field emission transmission electron microscope
(TEM, H-7650, Hitachi, Tokyo, Japan) at 150 kV. The structures were characterized by using
a D8 Advance X-ray diffractometer equipped with Cu Kα radiation (XRD, λ = 0.154 nm,
Bruker, Bremen, Germany). FTIR spectroscopy was performed by using an FTIR spectrom-
eter (IR Tracer–100, Shimadzu, Nagoya, Japan) in the region of 4000~500 cm−1. The Raman
spectroscopy measurements were carried out using a Raman spectrometer (XploRA PLUS,
Horiba, Japan) with a 514 nm laser. The nitrogen (N2) adsorption–desorption isotherms
of IGGO and the Fe3O4–urea–rGOAs were collected at 77 K on a Kubo × 1000 surface
area and pore size analyzer (Beijing Builder, Beijing, China). The BET surface area (SBET)
was determined through the Brunauer–Emmett–Teller (BET) theory, and the pore volumes
were processed through Barrett–Joyner–Halenda (BJH) models. The concentration of L2 in
the gas stream was analyzed using a Fuli Analytical Instrument 9790 gas chromatograph
equipped with a flame ionization detector (GC–FID, Chengde, China).

4. Conclusions

A series of Fe3O4–urea–rGOAs was prepared by controlling the amount of Fe3O4
precursor and urea, through which the dynamic adsorption behaviors of the hexamethyl-
disiloxane (L2) impurity gas in biogas were investigated. The synergistic effect between
the rich porous structure of Fe3O4 and the interconnected three-dimensional pores of
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the rGOA greatly enlarged the specific surface area and pore volume of the rGOA. Thus,
Fe3O4–urea–rGOA–0.4 exhibited the highest SBET (188 m2 g−1), Vmicro (0.19 cm3 g−1), Vmeso
(0.58 cm3 g−1), and Vtot (0.77 cm3 g−1). QB,th showed an excellent linear relationship with
SBET (R2 = 0.9838) and Vmeso (R2 = 0.9931), indicating that both SBET and Vmeso were impor-
tant parameters influencing the adsorption of L2 and that the main adsorption mechanisms
were capillary condensation and micropore filling. Moreover, it turned out that a lower
temperature and higher inlet concentration could improve the siloxane adsorption level
of Fe3O4–urea–rGOA–0.4. Regeneration could be achieved by heating in a water bath at
80 °C for 30 min, and after five cycles, the recycling efficiency was 99%. As expected, a
high adsorption capacity and excellent cycling properties made Fe3O4–urea–rGOA–0.4 a
promising adsorbent for VMS removal in industrial applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28186622/s1, Figure S1: Photographs of the Fe3O4–
urea–rGOHs. Figure S2: The schematic diagram of the adsorption mechanism of L2 on the Fe3O4–
urea–rGOAs. Table S1: Adsorption and regeneration capacities of different porous carbon materials
for VMS.
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