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Abstract: Materials made of graphyne, graphyne oxide, and graphyne quantum dots have drawn a
lot of interest due to their potential uses in medicinal nanotechnology. Their remarkable physical,
chemical, and mechanical qualities, which make them very desirable for a variety of prospective
purposes in this area, are mostly to blame for this. In the subject of mathematical chemistry, molecular
topology deals with the algebraic characterization of molecules. Molecular descriptors can examine a
compound’s properties and describe its molecular topology. By evaluating these indices, researchers
can predict a molecule’s behavior including its reactivity, solubility, and toxicity. Amidst the capti-
vating realm of carbon allotropes, γ-graphyne has emerged as a mesmerizing tool, with exquisite
attention due to its extraordinary electronic, optical, and mechanical attributes. Research into its
possible applications across numerous scientific and technological fields has increased due to this
motivated attention. The exploration of molecular descriptors for characterizing γ-graphyne is very
attractive. As a result, it is crucial to investigate and predict γ-graphyne’s molecular topology in order
to comprehend its physicochemical characteristics fully. In this regard, various characterizations of γ-
graphyne and zigzag γ-graphyne nanoribbons, by computing and comparing distance-degree-based
topological indices, leap Zagreb indices, hyper leap Zagreb indices, leap gourava indices, and hyper
leap gourava indices, are investigated.

Keywords: pharmaceutical materials; molecular descriptors; distance-degree-based molecular
descriptors; molecular symmetry; graphyne nanoribbon structures.

1. Introduction

When neighboring carbon atoms undergo hybridization at different levels such as sp3,
sp2, or sp, they give rise to a multitude of allotropes. These allotropes are characterized by
the formation of single, double, or even triple bonds between the carbon atoms. Graphite
and diamond are two of the most renowned carbon allotropes [1]. The unique pairing
and arrangement of different types of bonds in carbon allotropes give rise to their distinc-
tive physical characteristics. These bonds have different lengths, strengths, geometries,
and electrical characteristics, which add to the diversity of these allotropes. Graphite is
renowned for being opaque and velvety. The creation of unique carbon allotropes has been
the subject of extensive investigation, yielding amazing findings. One notable example is
fullerene [2], a molecule composed of carbon atoms arranged in a hollow sphere or cage-like
structure. Another breakthrough came with the discovery of carbon nanotubes [3], which
are cylindrical structures formed by rolling up graphene sheets. Graphene [4], a single
layer of carbon atoms arranged in a two-dimensional honeycomb lattice, revolutionized
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the scientific community due to its exceptional electrical conductivity, mechanical strength,
and flexibility. This finding has cleared the door for developments in a variety of disci-
plines, including energy storage and electronics. Moreover, a chain of biphenylene [5] and
carbon [6], also known as carbyne has gained attention as the strongest known material
with remarkable properties such as high electrical conductivity and exceptional mechanical
strength. Its potential uses in a variety of fields, including nanoelectronics and aerospace
engineering are being investigated by researchers.

In the fields of materials science and quantum technology, graphene, “a single layer
of carbon atoms”, sparked a revolution. Graphene’s remarkable properties, such as high
electrical conductivity [7], exceptional strength [8], and unique electronic behavior opened
up new avenues for research and technological advancements. There are strong prospects
for use in a variety of fields, including electronics, photonics, catalysis, and energy storage
because of graphene’s diverse shapes and characteristics. Two-dimensional (2D) carbon
allotropes known as graphynes have emerged as fascinating materials. The carbon atoms
of graphynes are organized in a lattice structure similar to that of graphene but with
more carbon–carbon bonds. These extra bonds provide graphynes with special electrical
and structural characteristics that make them desirable for a variety of applications. The
study of graphynes and other 2D materials continues to drive innovation in the field of
quantum technology and lays the foundation for the development of future-generation
devices and materials.

For over a decade, researchers have been dedicating their efforts to synthesizing a
novel form of carbon called graphene, but their attempts have been unsuccessful. However,
a team of scientists recently made a remarkable advancement that overcame this obstacle,
marking an important turning point in the study of carbon materials. This innovation has
resolved a long-standing issue and has led to the successful creation of Carbon’s elusive
allotrope [9]. This recently created substance has exceptional qualities and was meticulously
designed to rival the conductivity of graphene [10] while providing greater control. This
achievement has opened up exciting new avenues for research in the semiconductor,
electronics, and optics fields. The discovery has prompted a resurgence of interest and
hastened research projects examining the special qualities and prospective uses of this novel
carbon allotrope. Given the importance of these networks’ uses, it is critical to conduct
research on their molecular topology.

The structure of γ-graphyne [9] is shown in Figure 1.
In this article, we focus on molecular graphs, which are graphical representations of

chemical molecules. These molecular graphs consist of vertices that represent atoms
and edges that represent the bonds connecting those atoms. Topological indices are
quantitative measurements that are derived from the molecular graph’s network and
are acquired using an isomorphic graph-invariant method. In studies involving the
Quantitative Structure–Property Relationship/Quantitative Structure–Activity Relation-
ship (QSPR/QSAR) [11,12], they found extensive uses and offer insights into the topology
of molecular structures. Researchers can glean important knowledge about the connection
and arrangement of the molecular structure by using topological indices. These indices
serve as quantitative measures that aid in understanding various chemical properties and
behaviors of molecules. Overall, in chemical research and studies including QSPR/QSAR,
the use of topological indices and other graph invariants provides a potent toolkit for
examining the molecular structure and understanding its consequences.

Mathematics, spanning various concepts and tools, plays a crucial role in chemistry by
regulating the properties of elements without the need for quantum physics. These math-
ematical techniques offer insights into molecular features that might not be immediately
obvious when combined with an examination of molecular symmetry. Among the various
types of topological indices, distance-degree-based indices hold particular significance.
These indices are correlated with numerical values that reflect the physical, chemical, and
biological aspects of molecules as well as their structural traits. In conclusion, topological
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indices in chemistry provide an effective mathematical framework for analyzing molecule
structures and making a wide range of predictions about their characteristics and behaviors.

Figure 1. Structure of γ-graphyne.

The first Zagreb index, denoted as M1(G), and the second Zagreb index, denoted
as M2(G), were initially introduced by Gutman [13] in 1972. These indices act as crucial
graph invariants that provide significant details about the topology and structural char-
acteristics of a particular graph. In a subsequent study by Rafiullah [14], there has been
notable research conducted on Zagreb indices for double graphs. Rafiullah’s work ex-
pands the use of Zagreb indices to a wider class of graphs, concentrating on double graphs
and their distinctive properties. Wiener [15] proposed the first topological index which
is distance-based, while exploring paraffin breaking point in 1947, whereas Platt [16]
proposed the degree-based topological index while researching alkanes to anticipate their
physical properties.

The Zagreb index has served as the basis for the development of various other con-
nectivity indices in graph theory. It has proven to be a flexible method for investigating a
variety of molecular characteristics, such as chirality, chemical complexity, ZE-isomerism,
and heterosystems, among others. For further information on Zagreb indices and the Platt
index, one can refer to [17]. In [18], Awais conducted calculations of sixteen irregularity
indices for some benzenoid structures. The degree of irregularity or divergence from a
regular structure in the examined benzenoid systems is quantified using these irregularity
indices. Nazren et al. [19] provide the exact relationship for the first Zagreb index, second
Zagreb index, and hyper Zagreb index, as well as the first Zagreb polynomial and second
Zagreb polynomial for several systems. In [20], Gao et al. calculated the exact formula for
the Zagreb index and hyper Zagreb index of Carbon Nanocones CNCk[n] and defined the
second hyper Zagreb index, which was a degree-based topological index.

In [21], Ghani characterizes some chemical network entropies by using k-banhatii
topological indices. In [22], Jiao Shi has worked on graphene sheets. In [23], Gutman listed
26 topological indices. In the same publication, he introduced a sombor index. In [24], Dalal
Awadh proposed the Gutman connection index of graphs. K. C. Das et al. [25] obtained
some mathematical properties, such as lower and upper bonds, as a result of Gutman’s
work. Some of the chemical application of the sombor index was obtained in [26]. In [27],
Khalid Mahmood worked on the inverse problem for some topological indices.
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Naji et al. introduced distance-degree-based topological indices in [28]. Naji et al.
proposed the leap Zagreb indices of graph G, which are topological indices based on
distance degree in [29]. They observed a substantial relationship between these indices and
the physical properties of chemical substances, such as boiling point, DHVAP-standard
enthalpy of vaporization, HVAP-enthalpy of vaporization, entropy, and eccentric factor. For
more information, please see [30,31]. The proposal of a distance degree has been applied in
many other applicable settings. In [32], Sohan Lal has worked on k-distance-degree-based
topological indices, which include a leap somber index, hyper leap forgotten index, leap Y
index, and leap Y coindex.

In [33], Abdul Hakeem calculated some important topological indices for γ-graphyne.
In this paper, we compute distance-degree-based topological indices, the leap Zagreb
indices, hyper leap Zagreb indices, leap gourava indices, and hyper leap gourava indices to
characterize γ-graphyne and zigzag graphyne nanoribbon. Furthermore, their numerical
computations and verifications are carried out.

2. Basic Aspects of Molecular Descriptors

In this section, we focused on some essential and novel concepts connected to k-
distance-degree-based topological indices.

Consider a molecular graph Γ with V(Γ) as the vertex set and E(Γ) as the edge set.
The degree of a vertex is the number of vertices adjacent to it that have an edge. The
k-neighborhood of a vertex δ1 is defined as Nk(δ1) = {δ2 ∈ V(Γ) : d(δ1, δ2) = k, k ∈ N},
where d(δ1, δ2) denotes the shortest path joining δ1 and δ2. The k-degree of a vertex δ1 in
Γ is the number of k-neighbors of vertex δ1 and is denoted by degk(δ1). In this paper, we
compute topological indices based on k-distance degree for k = 2.

V.R. Kulli [34] presented the first leap Zagreb index, which is defined as:

LM1(Γ) = ∑
δ1δ2∈E(Γ)

[deg2(δ1) + deg2(δ2)] (1)

Naji et al. [29] presented the second leap Zagreb index, which is defined as:

LM2(Γ) = ∑
δ1δ2∈E(Γ)

[deg2(δ1) · deg2(δ2)] (2)

V.R. Kulli [34] presented the hyper leap Zagreb indices, which are defined as:

HLM1(Γ) = ∑
δ1δ2∈E(Γ)

[deg2(δ1) + deg2(δ2)]
2 (3)

HLM2(Γ) = ∑
δ1δ2∈E(Γ)

[deg2(δ1) · deg2(δ2)]
2 (4)

V.R. Kulli [35] presented the leap gourava and hyper leap gourava indices, which are
defined as:

LGO1(Γ) = ∑
δ1δ2∈E(Γ)

[(deg2(δ1) + deg2(δ2)) + (deg2(δ1) · deg2(δ2))] (5)

LGO2(Γ) = ∑
δ1δ2∈E(Γ)

[(deg2(δ1) + deg2(δ2)) · (deg2(δ1) · deg2(δ2))] (6)

HLGO1(Γ) = ∑
δ1δ2∈E(Γ)

[(deg2(δ1) + deg2(δ2)) + (deg2(δ1) · deg2(δ2))]
2 (7)

HLGO2(Γ) = ∑
δ1δ2∈E(Γ)

[(deg2(δ1) + deg2(δ2)) · (deg2(δ1) · deg2(δ2))]
2 (8)
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V.R. Kulli [35] presented the sum connectivity leap gourava index and product con-
nectivity leap gourava index, which are defined as:

SLGO(Γ) = ∑
δ1δ2∈E(Γ)

1√
[(deg2(δ1) + deg2(δ2)) + (deg2(δ1) · deg2(δ2))]

(9)

PLGO(Γ) = ∑
δ1δ2∈E(Γ)

1√
[(deg2(δ1) + deg2(δ2)) · (deg2(δ1) · deg2(δ2))]

(10)

3. Molecular Descriptors of γ-Graphyne Nanoribbon Structures

This section contains some results relating to previously defined topological indices
based on a two-distance degree, such as the first leap Zagreb index, second leap Zagreb
index, first hyper leap Zagreb index, second hyper leap Zagreb index, first leap gourava in-
dex, second leap gourava index, first hyper leap gourava index, second hyper leap gourava
index, sum connectivity leap gourava index, and product connectivity leap gourava index
for γ-graphyne and zigzag graphyne nanoribbon.

3.1. γ-Graphyne

In this particular section, we provide an extensive examination of the structure, edge
partition technique, and the novel computational results and findings associated with
them. Our focus lies on measuring the distance-degree-based topological indices of the
γ-graphyne. The detailed structure of γ-graphyne [9,33] is shown in Figures 2 and 3.
In each row, the number of vertices is 24mn + 12m + 12n− 6 and the number of edges
is 36mn + 12m + 12n − 6. The degree of a vertex δ1 by a distance of two is denoted by
deg2(δ1), which is the number of vertices that are adjacent to δ1 by the distance of two. The
edge partition is shown below:

E2,3 = {δ1δ2 ∈ E(Γ)|deg2(δ1) = 2, deg2(δ2) = 3}, |E2,3| = 8m + 8n− 4

E3,5 = {δ1δ2 ∈ E(Γ)|deg2(δ1) = 3, deg2(δ2) = 5}, |E3,5| = 8m + 8n− 4

E5,5 = {δ1δ2 ∈ E(Γ)|deg2(δ1) = 5, deg2(δ2) = 5}, |E5,5| = 2m + 2n + 2

E5,6 = {δ1δ2 ∈ E(Γ)|deg2(δ1) = 5, deg2(δ2) = 6}, |E5,6| = 12m + 12n− 12

E6,6 = {δ1δ2 ∈ E(Γ)|deg2(δ1) = 6, deg2(δ2) = 6}, |E6,6| = 36mn− 18m− 18n + 12

Figure 2. Structure of γ-graphyne.
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Figure 3. Structure of γ-graphyne nanoribbon with m, n ≥ 1.

Theorem 1. Let Γ be a molecular graph of γ-graphyne nanoribbon and m, n ≥ 1. Then,

(i) LM1(Γ) = 432mn + 40m + 40n− 20
(ii) LM2(Γ) = 1296mn− 70m− 70n + 38
(iii) HLM1(Γ) = 5184mn− 228m− 228n + 120
(iv) HLM2(Γ) = 46656mn− 9190m− 9190n + 4958

Proof.

(i) First Leap Zagreb Index

LM1(Γ) = ∑
δ1δ2∈E(Γ)

[deg2(δ1) + deg2(δ2)]

= (2 + 3)(8m + 8n− 4) + (3 + 5)(8m + 8n− 4) + (5 + 5)(2m + 2n + 2)

+(5 + 6)(12m + 12n− 12) + (6 + 6)(36mn− 18m− 18n + 12)

= 40m + 40n− 20 + 64m + 64n− 32 + 20m + 20n + 20 + 132m + 132n

−132 + 432mn− 216m− 216n + 144

= 432mn + 40m + 40n− 20

(ii) Second Leap Zagreb Index

LM2(Γ) = ∑
δ1δ2∈E(Γ)

[deg2(δ1) · deg2(δ2)]

= (2 · 3)(8m + 8n− 4) + (3 · 5)(8m + 8n− 4) + (5 · 5)(2m + 2n + 2)

+(5 · 6)(12m + 12n− 12) + (6 · 6)(36mn− 18m− 18n + 12)

= 48m + 48n− 24 + 120m + 120n− 60 + 50m + 50n + 50 + 360m + 360n

−360 + 1296mn− 648m− 648n + 432

= 1296mn− 70m− 70n + 38

(iii) First Hyper Leap Zagreb Index
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HLM1(Γ) = ∑
δ1δ2∈E(Γ)

[deg2(δ1) + deg2(δ2)]
2

= (2 + 3)2(8m + 8n− 4) + (3 + 5)2(8m + 8n− 4) + (5 + 5)2(2m + 2n + 2)

+(5 + 6)2(12m + 12n− 12) + (6 + 6)2(36mn− 18m− 18n + 12)

= 200m + 200n− 100 + 512m + 512n− 256 + 200m + 200n + 200 + 1452m

+1452n− 1452 + 5184mn− 2592m− 2592n + 1728

= 5184mn− 228m− 228n + 120

(iv) Second Hyper Leap Zagreb Index

HLM2(Γ) = ∑
δ1δ2∈E(Γ)

[deg2(δ1) · deg2(δ2)]
2

= (2 · 3)2(8m + 8n− 4) + (3 · 5)2(8m + 8n− 4) + (5 · 5)2(2m + 2n + 2)

+(5 · 6)2(12m + 12n− 12) + (6 · 6)2(36mn− 18m− 18n + 12)

= 288m + 288n− 144 + 1800m + 1800n− 900 + 1250m + 1250n + 1250

+10800m + 10800n− 10800 + 46656mn− 23328m− 23328n + 15552

= 46656mn− 9190m− 9190n + 4958

Now, we will calculate leap gourava indices for γ-graphyne nanoribbon.

Theorem 2. Let Γ be a molecular graph of γ-graphyne and m, n ≥ 1. Then,

(i) LGO1(Γ) = 1728mn− 30(m + n) + 18
(ii) LGO2(Γ) = 15552mn− 2116(m + n) + 1124
(iii) HLGO1(Γ) = 82944mn− 13650(m + n) + 7326
(iv) HLGO2(Γ) = 6718464mn− 1805032(m + n) + 996488

(v) SLGO(Γ) = 36√
48

mn +
(

8√
11

+ 8√
23

+ 2√
35

+ 12√
41
− 18√

48

)
(m + n)

−
(

4√
11

+ 4√
23
− 2√

35
+ 12√

41
− 12√

48

)
(vi) PLGO(Γ) = 36√

432
mn +

(
8√
30

+ 8√
120

+ 2√
250

+ 12√
330
− 18√

432

)
(m + n)

−
(

4√
30

+ 4√
120
− 2√

250
+ 12√

330
− 12√

432

)
Proof.

(i) First Leap Gourava Index
LGO1(Γ) = ∑

δ1δ2∈E(Γ)
[(deg2(δ1) + deg2(δ2)) + (deg2(δ1) · deg2(δ2))]

= (5 + 6)(8m + 8n− 4) + (8 + 15)(8m + 8n− 4) + (10 + 25)(2m + 2n + 2)

+(11 + 30)(12m + 12n− 12) + (12 + 36)(36mn− 18m− 18n + 12)

= 88m + 88n− 44 + 184m− 184n− 92 + 70m + 70n + 70 + 492m + 492n

−492 + 1728mn− 864m− 864n + 576

= 1728mn− 30(m + n) + 18

(ii) Second Leap Gourava Index
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LGO2(Γ) = ∑
δ1δ2∈E(Γ)

[(deg2(δ1) + deg2(δ2)) · (deg2(δ1) · deg2(δ2))]

= (5 · 6)(8m + 8n− 4) + (8 · 15)(8m + 8n− 4) + (10 · 25)(2m + 2n + 2)

+(11 · 30)(12m + 12n− 12) + (12 · 36)(36mn− 18m− 18n + 12)

= 240m + 240n− 120 + 960m + 960n− 480 + 500m + 500n + 500 + 3960m

+3960n− 3960 + 15552mn− 7776m− 7776n + 5184

= 15552mn− 2116(m + n) + 1124

(iii) First Hyper Leap Gourava Index

HLGO1(Γ) = ∑
δ1δ2∈E(Γ)

[(deg2(δ1) + deg2(δ2)) + (deg2(δ1) · deg2(δ2))]
2

= (5 + 6)2(8m + 8n− 4) + (8 + 15)2(8m + 8n− 4)

+(10 + 25)2(2m + 2n + 2) + (11 + 30)2(12m + 12n− 12)

+(12 + 36)2(36mn− 18m− 18n + 12)

= 968m + 968n− 484 + 4232m + 4232n− 2116 + 2450m + 2450n + 2450

+20172m + 20172n− 20172 + 82944mn− 41472m− 41472n + 27648

= 82944mn− 13650(m + n) + 7326

(iv) Second Hyper Leap Gourava Index

HLGO2(Γ) = ∑
δ1δ2∈E(Γ)

[(deg2(δ1) + deg2(δ2)) · (deg2(δ1) · deg2(δ2))]
2

= (5 · 6)2(8m + 8n− 4) + (8 · 15)2(8m + 8n− 4) + (10 · 25)2(2m + 2n + 2)

+(11 · 30)2(12m + 12n− 12) + (12 · 36)2(36mn− 18m− 18n + 12)

= 7200m + 7200n− 3600 + 115200m + 115200n− 57600 + 125000m

+125000n + 125000 + 1306800m + 1306800n− 1306800 + 6718464mn

−3359232(m + n) + 2239488

= 6718464mn− 1805032(m + n) + 996488

(v) Sum Connectivity Leap Gourava Index

SLGO(Γ) = ∑
δ1δ2∈E(Γ)

1√
[(deg2(δ1) + deg2(δ2)) + (deg2(δ1) · deg2(δ2))]

=
1√

5 + 6
(8m + 8n− 4) +

1√
8 + 15

(8m + 8n− 4) +
1√

10 + 25
(2m + 2n + 2)

+
1√

11 + 30
(12m + 12n− 12) +

1√
12 + 36

(36mn− 18m− 18n + 12)

=
36√
48

mn +

(
8√
11

+
8√
23

+
2√
35

+
12√
41
− 18√

48

)
(m + n)

−
(

4√
11

+
4√
23
− 2√

35
+

12√
41
− 12√

48

)
(vi) Product Connectivity Leap Gourava Index
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PLGO(Γ) = ∑
δ1δ2∈E(Γ)

1√
[(deg2(δ1) + deg2(δ2)) · (deg2(δ1) · deg2(δ2))]

=
1√
5 · 6

(8m + 8n− 4) +
1√

8 · 15
(8m + 8n− 4) +

1√
10 · 25

(2m + 2n + 2)

+
1√

11 · 30
(12m + 12n− 12) +

1
12 · 36

(36mn− 18m− 18n + 12)

=
36√
432

mn +

(
8√
30

+
8√
120

+
2√
250

+
12√
330
− 18√

432

)
(m + n)

−
(

4√
30

+
4√
120
− 2√

250
+

12√
330
− 12√

432

)

3.2. Zigzag γ-Graphyne Nanoribbon

In this particular section, we examine the structure, the edge partition approach, and
the innovative computational results and insights linked with it in depth. The zigzag
γ-graphyne’s distance-degree-based topological indices are the subject of our research.
The detailed structure of zigzag γ-graphyne [9,33] is shown in Figure 4. In each row, the
number of vertices is 6n + 12 and the number of edges is 8n + 13. The degree of a vertex
δ1 by a distance of two is denoted by deg2(δ1), which is the number of vertices that are
adjacent to δ1 by the distance of two. The edge partition of the zigzag γ-graphyne for n > 2
is shown below:

E2,2 = {δ1δ2 ∈ E(Γ)|deg2(δ1) = 2, deg2(δ2) = 2}, |E2,2| = 2

E2,3 = {δ1δ2 ∈ E(Γ)|deg2(δ1) = 2, deg2(δ2) = 3}, |E2,3| = 8

E3,3 = {δ1δ2 ∈ E(Γ)|deg2(δ1) = 3, deg2(δ2) = 3}, |E3,3| = n− 2

E3,5 = {δ1δ2 ∈ E(Γ)|deg2(δ1) = 3, deg2(δ2) = 5}, |E3,5| = 2n + 4

E5,5 = {δ1δ2 ∈ E(Γ)|deg2(δ1) = 5, deg2(δ2) = 5}, |E5,5| = n + 4

E5,6 = {δ1δ2 ∈ E(Γ)|deg2(δ1) = 5, deg2(δ2) = 6}, |E5,6| = 2n

E6,6 = {δ1δ2 ∈ E(Γ)|deg2(δ1) = 6, deg2(δ2) = 6}, |E6,6| = 2n− 3

Figure 4. Zigzag γ-graphyne nanoribbon with n > 2.
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Theorem 3. Let Γ be a molecular graph of zigzag γ-graphyne nanoribbon and n > 2. Then,

(i) LM1(Γ) = 78n + 72
(ii) LM2(Γ) = 196n + 90
(iii) HLM1(Γ) = 794n + 640
(iv) HLM2(Γ) = 5548n− 330

Proof.

(i) First Leap Zagreb Index

LM1(Γ) = ∑
δ1δ2∈E(Γ)

[deg2(δ1) + deg2(δ2)]

= (2 + 2)(2) + (2 + 3)(8) + (3 + 3)(n− 2) + (3 + 5)(2n + 4) + (5 + 5)(n + 4)

+(5 + 6)(2n) + (6 + 6)(2n− 3)

= 8 + 40 + 6n− 12 + 16n + 32 + 10n + 40 + 22n + 24n− 36

= 78n + 72

(ii) Second Leap Zagreb Index

LM2(Γ) = ∑
δ1δ2∈E(Γ)

[deg2(δ1) · deg2(δ2)]

= (2 · 2)(2) + (2 · 3)(8) + (3 · 3)(n− 2) + (3 · 5)(2n + 4) + (5 · 5)(n + 4)

+(5 · 6)(2n) + (6 · 6)(2n− 3)

= 8 + 48 + 9n− 18 + 30n + 60 + 25n + 100 + 60n + 72− 108

= 196n + 90

(iii) First Hyper Leap Zagreb Index

HLM1(Γ) = ∑
δ1δ2∈E(Γ)

[deg2(δ1) + deg2(δ2)]
2

= (2 + 2)2(2) + (2 + 3)2(8) + (3 + 3)2(n− 2) + (3 + 5)2(2n + 4)

+(5 + 5)2(n + 4) + (5 + 6)2(2n) + (6 + 6)2(2n− 3)

= 32 + 200 + 36n− 72 + 128n + 512 + 100n + 400 + 242n + 288n− 432

= 794n + 640

(iv) Second Hyper Leap Zagreb Index

HLM2(Γ) = ∑
δ1δ2∈E(Γ)

[deg2(δ1) · deg2(δ2)]
2

= (2 · 2)2(2) + (2 · 3)2(8) + (3 · 3)2(n− 2) + (3 · 5)2(2n + 4)

+(5 · 5)2(n + 4) + (5 · 6)2(2n) + (6 · 6)2(2n− 3)

= 32 + 288 + 81n− 162 + 450n + 900 + 625n + 2500 + 1800n

+2592n− 3888

= 5548n− 330

Now, we will calculate leap gourava indices for zigzag γ-graphyne nanoribbon.

Theorem 4. Let Γ be a molecular graph of zigzag γ-graphyne nanoribbon and n > 2. Then,

(i) LGO1(Γ) = 272n + 162
(ii) LGO2(Γ) = 2064n + 348
(iii) HLGO1(Γ) = 10478n + 750
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(iv) HLGO2(Γ) = 685264n− 250392

(v) SLGO(Γ) =
(

1√
15

+ 2√
23

+ 1√
35

+ 2√
41

+ 2√
48

)
n +(

2√
8
+ 8√

11
− 2√

15
+ 4√

23
+ 4√

35
− 3√

48

)
(vi) PLGO(Γ) =

(
1

50 + 1√
30

+ 1√
54

+ 2√
330

+ 2√
432

)
n +

(
29
50 + 10√

30
− 2√

54
− 3√

432

)
Proof.

(i) First Leap Gourava Index
LGO1(Γ) = ∑

δ1δ2∈E(Γ)
[(deg2(δ1) + deg2(δ2)) + (deg2(δ1) · deg2(δ2))]

= (4 + 4)(2) + (5 + 6)(8) + (6 + 9)(n− 2) + (8 + 15)(2n + 4)

+(10 + 25)(n + 4) + (11 + 30)(2n) + (12 + 36)(2n− 3)

= 16 + 88 + 15n− 30 + 46n + 92 + 35n + 140 + 82n + 96n− 144

= 272n + 162

(ii) Second Leap Gourava Index

LGO2(Γ) = ∑
δ1δ2∈E(Γ)

[(deg2(δ1) + deg2(δ2)) · (deg2(δ1) · deg2(δ2))]

= (4 · 4)(2) + (5 · 6)(8) + (6 · 9)(n− 2) + (8 · 15)(2n + 4) + (10 · 25)(n + 4)

+(11 · 30)(2n) + (12 · 36)(2n− 3)

= 32 + 240 + 54n− 108 + 240n + 480 + 250n + 1000 + 660n + 864n− 1296

= 2064n + 348

(iii) First Hyper Leap Gourava Index

HLGO1(Γ) = ∑
δ1δ2∈E(Γ)

[(deg2(δ1) + deg2(δ2)) + (deg2(δ1) · deg2(δ2))]
2

= (4 + 4)2(2) + (5 + 6)2(8) + (6 + 9)2(n− 2) + (8 + 15)2(2n + 4)

+(10 + 25)2(n + 4) + (11 + 30)2(2n) + (12 + 36)2(2n− 3)

= 1096 + 225n− 450 + 1058n + 2116 + 1225n + 4900 + 3362n

+4608n− 6912

= 10478n + 750

(iv) Second Hyper Leap Gourava Index

HLGO2(Γ) = ∑
δ1δ2∈E(Γ)

[(deg2(δ1) + deg2(δ2)) · (deg2(δ1) · deg2(δ2))]
2

= (4 · 4)2(2) + (5 · 6)2(8) + (6 · 9)2(n− 2) + (8 · 15)2(2n + 4)

+(10 · 25)2(n + 4) + (11 · 30)2(2n) + (12 · 36)2(2n− 3)

= 7712 + 2916n− 5832 + 28800n + 57600 + 62500n + 250000 + 217800n

+373248n− 559872

= 685264n− 250392

(v) Sum Connectivity Leap Gourava Index
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SLGO(Γ) = ∑
δ1δ2∈E(Γ)

1√
[(deg2(δ1) + deg2(δ2)) + (deg2(δ1) · deg2(δ2))]

=
1√
8
(2) +

1√
11

(8) +
1√
15

(n− 2) +
1√
23

(2n + 4) +
1√
35

(n + 4)

+
1√
41

(2n) +
1√
48

(2n− 3)

=

(
1√
15

+
2√
23

+
1√
35

+
2√
41

+
2√
48

)
n

+

(
2√
8
+

8√
11
− 2√

15
+

4√
23

+
4√
35
− 3√

48

)
(vi) Product Connectivity Leap Gourava Index

PLGO(Γ) = ∑
δ1δ2∈E(Γ)

1√
[(deg2(δ1) + deg2(δ2)) · (deg2(δ1) · deg2(δ2))]

=
1√
16

(2) +
1√
30

(8) +
1√
54

(n− 2) +
1√
120

(2n + 4) +
1√
250

(n + 4)

+
1√
330

(2n) +
1√
432

(2n− 3)

=

(
1
50

+
1√
30

+
1√
54

+
2√
330

+
2√
432

)
n +

(
29
50

+
10√
30
− 2√

54
− 3√

432

)

4. Numerical Results and Discussion

In this section, we unveil a captivating array of numerical findings, delving into the
profound realm of distance-degree-based topological indices applied to both γ-graphyne
nanoribbon and zigzag γ-graphyne nanoribbon. The graphical representation of the leap
Zagreb indices is shown in Figure 5, the hyper leap Zagreb indices are shown in Figure 6,
the leap gourava indices are shown in Figure 7, and the hyper leap gourava indices are
shown in Figure 8 for γ-graphyne nanoribbon.
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Figure 5. Graphical representation of leap Zagreb indices LM1(Γ) and LM2(Γ).
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Figure 6. Graphical representation of hyper leap Zagreb indices HLM1(Γ) and HLM2(Γ).
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Figure 7. Graphical representation of leap gourava indices LGO1(Γ) and LGO2(Γ).
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Figure 8. Graphical representation of hyper leap gourava indices HLGO1(Γ) and HLGO2(Γ).

In this study, we perform calculations to generate tables with numbers that represent
different distance-degree-based indices. These indices include the leap Zagreb indices, hyper
leap Zagreb indices, leap gourava indices, and hyper leap gourava indices. We vary the values
of m and n to explore how these indices change. The results for γ-graphyne nanoribbon are
organized in Tables 1 and 2, and, for zigzag γ-graphyne nanoribbon, they are organized in
Tables 3 and 4. Furthermore, we create graphs in Figures 9 and 10 for γ-graphyne nanoribbon
and in Figures 11 and 12 for zigzag γ-graphyne nanoribbon to visually analyze the patterns
and trends of these topological indices. By selecting specific values of m and n, we can
better understand how these indices behave and potentially discover interesting relationships
between them.



Molecules 2023, 28, 6597 14 of 18

Table 1. Numerical computations of leap Zagreb indices for γ-graphyne nanoribbon.

(m,n) LM1(Γ) LM2(Γ) HLM1(Γ) HLM2(Γ)

(1, 1) 492 1194 4848 33,234
(2, 2) 1868 4942 19,944 154,822
(3, 3) 4108 11,282 45,408 369,722
(4, 4) 7212 20,214 81,240 677,934
(5, 5) 11,180 31,738 127,440 1,079,458
(6, 6) 16,012 45,854 184,008 1,574,294
(7, 7) 21,708 62,562 250,944 2,162,442
(8, 8) 28,268 81,862 328,248 2,843,902

Table 2. Numerical computations of leap gourava indices for γ-graphyne nanoribbon.

(m,n) LGO1(Γ) LGO2(Γ) HLGO1(Γ) HLGO2(Γ)

(1, 1) 1686 12,444 62,790 4,104,888
(2, 2) 6810 54,868 284,502 20,650,216
(3, 3) 15,390 128,396 671,922 50,632,472
(4, 4) 27,426 233,028 1,225,230 94,051,656
(5, 5) 42,918 368,764 1,944,426 150,907,768
(6, 6) 61,866 535,604 2,829,510 221,200,808
(7, 7) 84,270 733,548 3,880,482 304,930,776
(8, 8) 110,130 962,596 5,097,342 402,092,672

Table 3. Numerical computations of leap Zagreb indices for zigzag γ-graphyne nanoribbon.

[n] LM1(Γ) LM2(Γ) HLM1(Γ) HLM2(Γ)

3 306 678 3022 16,314
4 384 874 3816 21,862
5 462 1070 4610 27,410
6 540 1266 5404 32,958
7 618 1462 6198 38,506
8 696 1658 6992 44,054
9 774 1854 7786 49,602

Table 4. Numerical computations of leap gourava indices for zigzag γ-graphyne nanoribbon.

[n] LGO1(Γ) LGO2(Γ) HLGO1(Γ) HLGO2(Γ)

3 978 6540 32,184 1,805,402
4 1250 8604 42,662 2,490,666
5 1522 10,668 53,140 3,175,930
6 1794 12,732 63,618 3,861,194
7 2066 14,796 74,096 4,546,458
8 2338 16,860 84,574 5,231,722
9 2610 18,924 95,052 5,916,986

A comparative analysis of the figures shows that the hyper leap Zagreb index and
hyper leap gourava index both attain the highest values as compared to the others for
both the γ-graphyne nanoribbon and zigzag γ-graphyne nanoribbon . Molecular topology
and connectivity are linked to the characteristics of molecules that are associated with the
hyper leap Zagreb index and hyper leap gourava index. The hyper leap Zagreb index
is used to describe the degree of branching and connectivity in a molecular structure.
It provides information about the complexity and branching pattern of the molecular
structure. A molecule’s connection and branching pattern are considered while using the
hyper leap gourava Index. It provides information about the distribution of branching
within the molecule and the spatial arrangement of atoms.
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Figure 9. Logarithmic values of leap Zagreb indices for γ-graphyne nanoribbon.

Figure 10. Logarithmic values of leap gourava indices for γ-graphyne nanoribbon.
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Figure 11. Logarithmic values of leap Zagreb indices for zigzag γ-graphyne nanoribbon.

Figure 12. Logarithmic values of leap gourava indices for zigzag γ-graphyne nanoribbon.

5. Conclusions and Future Work

In conclusion, this study proves that topological indices can be used to pinpoint the
physicochemical properties of chemical substances. The edge partition technique was
employed in this study to obtain results related to distance-degree-based topological in-
dices including leap Zagreb indices, hyper leap Zagreb indices, leap gourava indices,
and hyper leap gourava indices. The γ-graphyne nanoribbon and zigzag γ-graphyne



Molecules 2023, 28, 6597 17 of 18

nanoribbon were the subject of investigation. By employing the edge partition technique,
numerical results for these indices were obtained. The γ-graphyne nanoribbon and zigzag
γ-graphyne nanoribbon both exhibit the largest values for the hyper leap Zagreb index and
the hyper leap gourava index when compared to other indices, according to the calculated
indices. The greatest hyper leap Zagreb index value suggests a highly linked and branched
structure, which implies that the bonding patterns of the γ-graphyne nanoribbon and
zigzag γ-graphyne nanoribbon are detailed and complex. For the γ-graphyne nanorib-
bon and zigzag γ-graphyne nanoribbon, the maximum value of the hyper leap gourava
index suggests a diverse degree distribution paired with diverse vertex eccentricities, in-
dicating a structurally rich and complex topology. These findings highlight the potential
of topological indices and the edge partition technique in exploring and understanding
the physicochemical properties of these structures. The outcomes of this research will
contribute to the exploration of structure–property relationships in the studied materials.
These findings will aid in understanding how the molecular structure of these materials
influences their properties, thus paving the way for further investigations and applications
in various fields.

In future research, we can calculate multiplicative distance-degree-based topolog-
ical indices, entropy, M-polynomial indices to characterize the molecular structure of
γ-graphyne nanoribbon and zigzag γ-graphyne nanoribbon. Conducting such an analysis
will yield a further understanding of the properties and behavior of these materials, thereby
potentially expanding their range of applications across various fields.
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