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Abstract: The assessment of cardiotoxicity is a persistent problem in medicinal chemistry. Quantitative
structure—-activity relationships (QSAR) are one possible way to build up models for cardiotoxicity. Here,
we describe the results obtained with the Monte Carlo technique to develop hybrid optimal descriptors
correlated with cardiotoxicity. The predictive potential of the cardiotoxicity models (pIC50, Ki in nM) of
piperidine derivatives obtained using this approach provided quite good determination coefficients for
the external validation set, in the range of 0.90-0.94. The results were best when applying the so-called
correlation intensity index, which improves the predictive potential of a model.

Keywords: cardiotoxicity; Monte Carlo method; computational chemistry; correlation intensity index;
CORAL software

1. Introduction

The risk of developing cardiotoxicity against the background of treating carcinogenic
pathologies is one of the most urgent problems of modern oncology and cardiology. Piperi-
dine derivatives are of exceptional interest due to their potential biological activity, such as
antiviral, antibacterial, antitumor, and many others [1].

Current anticancer therapy includes many drugs with various mechanisms and a
spectrum of actions. One of the most important groups in this number of drugs are
antibiotics with antitumor activity, which play a massive role in the chemotherapy of
various oncological diseases [2]. Their effectiveness has been clinically proven. However,
despite the favorable course of the disease, when using this group of drugs, patients
experience a number of undesirable side effects from various organs and systems that can
develop not only during therapy but also after its completion. One of the main side effects
is cardiotoxicity. This term includes various adverse events from the cardiovascular system
against the background of drug therapy for oncological diseases. Such manifestations of
cardiotoxicity as pain in the heart, blood pressure, heart rhythm disturbances, myocarditis,
pericarditis, and heart attacks reduce a patient’s quality of life. Still, sometimes they become
serious reasons for discontinuing or not prescribing the drug. For some medicines in this
group, for example, alkylating agents, cardiotoxicity is a limiting factor.

Antibiotics with antitumor activity currently occupy a leading place in the treatment
of oncological diseases [3]; as a result, the correction of their side effects, particularly
cardiotoxicity, remains one of the most urgent problems for oncologists, cardiologists, and
general practitioners. The frequency of development of various dysfunctions of the heart
reaches greater values. At the same time, both reversible and irreversible consequences
are quite dangerous. Prevention and treatment of cardiotoxicity remain mandatory, but
complicated clinical tasks for a doctor due to the irreversibility and progressive nature of
the disease changes most in the functioning of the cardiovascular system. Cardiotoxicity
complications significantly impair patients” quality of life and reduce the duration of life,
and mortality from cardiovascular diseases still globally ranks first [4].
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In addition, psychopharmacology and psychopharmacotherapy of depressive states
are dynamically developing areas, and antidepressants are the second most prescribed
drugs among all psychotropic drugs [5]. Such a high rating of these psychotropic drugs is
because about 5% of the world’s population suffers from depression (according to WHO).
However, high doses and long-term use of medications in this group lead to cardiotoxic
effects. The cardiotoxicity of tricyclic antidepressants is manifested with conduction dis-
turbances in the atrioventricular node and ventricles of the heart (quinine-like action),
arrhythmias, and a decrease in myocardial contractility. Doxepin and amoxapine have
the least cardiotoxicity. Treatment of patients with cardiovascular pathology with tricyclic
antidepressants should be carefully monitored, and high doses should not be used.

Cardiovascular diseases such as coronary artery disease, valvular heart disease, ar-
rhythmias, and heart failure are serious health risks and often require lifelong treatment.
Much attention is paid to the psychological consequences of life for people with cardiac
diseases [6]. Anxiety symptoms are common among patients with cardiovascular diseases
and may worsen the prognosis for these patients. Symptoms of anxiety and depression can
prevent lifestyle changes and adherence to therapy, as well as reduce the effectiveness of
cardiac rehabilitation.

There is increasing evidence of the widespread use of psychotropic drugs in cardiac
patients for comorbid psychiatric disorders [7]. The side effects of psychotropic medications
on the part of the cardiovascular system include disturbances in the rhythm and conduction
of the heart. For example, recent studies have shown that antidepressants were associated
with increased mortality and an altered beta-blocker effect in patients with heart failure.
In addition, the use of antipsychotic drugs in patients after acute myocardial infarction is
necessary [6,7].

An increase in morbidity and mortality under the influence of depression in patients
with cardiovascular diseases dictates the imperative need for preliminary analysis of both
drugs’ therapeutic efficacy and cardiotoxic potential [8]. In other words, when developing
a treatment plan for a depressed patient with heart disease, one should carefully weigh
any intervention’s risk/benefit ratio. However, the choice of antidepressants is compli-
cated because many can cause cardiovascular side effects, such as orthostatic hypotension,
hypertension, and impaired cardiac conduction. In addition, clinically significant drug
interactions should be considered when choosing treatment. Unfortunately, the number of
clinical studies explicitly investigating the safety of antidepressants in patients with cardio-
vascular disease is limited, and the studies that are conducted have generally included a
small number of patients.

The human ether-a-go-go-related gene (hERG) potassium channel plays a pivotal
role in cardiac rhythm regulation, and the cardiotoxicity data associated with hERG in-
hibition using drugs and environmental chemicals provides important information for
medicinal chemistry [9,10]. As stated above, cardiac problems are among the most complex
in medicine [11], and there is a clear trend toward them becoming more important [12].
Identifying potential human ether-a-go-go-related gene (hERG) potassium channel blockers
is an important part of drug discovery and checking up on drug safety processes in phar-
maceutical industries and academic drug discovery centers [10]. The most popular idea at
present is considered to begin the corresponding searches with the choice of idealization
(a certain success), that is a molecule that absorbs the preferred qualities in the complete
form. In order to prioritize molecules during the early drug discovery phase and to reduce
the risk of the necessity of an additional preliminary checking-up of pharmaceutical agents,
computational approaches have been developed to predict the potential of hERG blockage
of new drug candidates. In other words, estimating the cardiac toxicity of organic hRERG
blockers is an important theoretical and practical task of medicinal chemistry. Potential
hERG inhibitors must be identified for drug discovery and safety [13]; however, the experi-
mental analysis of all potential hERG inhibitors is impossible because there are so many of
them.
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Computational models for the cardiac toxicity of organic hERG blockers are an at-
tractive alternative to real experiments [14]. Quantitative structure—activity relationships
(QSAR) are common computational approaches [15]. Such models can be obtained using
machine learning based on graph theory, support vector machine, random forest, artificial
neural networks, and other approaches [16,17].

CORAL software (http://www.insilico.eu/coral, accessed on 1 September 2023) is a tool
for building up QSAR models for various endpoints with the Monte Carlo method [18-27]. The
CORAL software was recently updated with what is called the index of ideality of correlation
(IC) [28] and the correlation intensity index (CII) [29]. IIC and CII are indicators of the predictive
potential of QSAR.

IIC differs from other criteria of the statistical quality of linear regression models with
a unique ability since it is a measure that is sensitive both to the value of the correlation
coefficient and to the value of the mean absolute error (MAE).

In principle, CII has some analogy with the known cross-validation measures, but
this analogy is partial. While the traditional cross-validated test is based on averaging the
difference between the correlation coefficient before and after the “removing” of molecules
from the set (training, calibration, or testing), the CII considers the average value of the
difference observed removing only molecules which reduce the correlation coefficient in
the set.

Here, the ability to improve the predictive potential of cardiotoxicity models using the
IIC and ClI is studied.

2. Results
2.1. QSAR Models Based on TF;

The Monte Carlo optimization with the target function TF; for three random splits
(#1, #2, and #3) provides the following models:

pIC50 = 3.456(+0.058) + 0.0632(:0.0019) x DCW(1, 15) 1)
pIC50 = 4.082(+0.019) + 0.1498(+0.0025) x DCW(1, 15) )
pIC50 = 2.618(40.140) + 0.1654(+0.0090) x DCW(1, 35) @)

Table 1 provides the statistical quality of these models.

Table 1. The statistical quality of the QSAR model for cardiotoxicity was obtained with Monte Carlo
optimization with target function TF;.

n R? cce 1IC cIi Q? Q% Q%5 Q%53 RMSE MAE F

A* 28 05552 0.7140 0.5588 0.7844 0.4940 0.424 0.371 32
P 28 0.6911 0.7400 0.6525 0.8394 0.6454 0.438 0.373 58
C 29 0.9101 0.9524 0.9536 0.9436 0.8955 0.9083 0.8998 0.9424 0.160 0.129 273
\Y% 28 0.9146 - - - - - - - - 0.20 0.15
A 29 0.8548 0.9217 0.8629 0.9300 0.8306 0.241 0.201 159
P 28 0.8893 0.8958 0.3877 0.9303 0.8740 0.284 0.222 209
C 28 0.8680 0.9261 0.8836 0.9273 0.8451 0.8346 0.8340 0.8658 0.242 0.194 171
\Y% 28 0.8959 - - - - - - - - 0.27 0.24
A 28 0.5347 0.6968 0.7312 0.7836 0.4239 0.436 0.379 30
P 28 0.5607 0.7087 0.4930 0.7714 0.4976 0.451 0.387 33
C 28 0.8374 0.9124 0.9150 0.8940 0.8173 0.8201 0.8192 0.8808 0.228 0.179 134
\4 29 0.9181 - - - - - - - - 0.21 0.16

* A = active training set; P = passive training set; C = calibration set; V = validation set.
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2.2. QSAR Models Based on TF,

The Monte Carlo optimization with the target function TF; for three random splits
(#1, #2, and #3) provides the following models:

pIC50 = 3.202(£0.068) + 0.0867 (£0.0027) x DCW(1, 15) (4)
pIC50 = 3.036 (£0.084) + 0.0730 (£0.0028) x DCW(1, 15) ®)
pIC50 = 3.490(£0.077) + 0.0803 (£0.0035) x DCW(1, 15) (6)

Table 2 provides the statistical quality of these models. The average value of the
coefficient of determination for these models is about 0.6 (for the set as a whole). However,
there is a paradox described earlier [28]. The influence of the IICc leads to an improvement
in the coefficient of determination for the calibration and the validation sets but not to the
detriment of training sets, where the coefficient of determination is lower.

Figure 1 compares models calculated with the target functions TF; and TF,. Models
calculated using TF, are preferred since Figure 2 confirms that the average determination
coefficient values of TF,-models are larger than those of TF;-models for all three random
splits.
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Figure 1. Examples of models calculated using target functions TF; and TFj.
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Figure 2. The comparison of determination coefficients for the active training and the validation sets
using TF; and TF; for splits 1-3.

Table 2. The statistical quality of the QSAR model for cardiotoxicity was obtained with Monte Carlo
optimization with target function TF,.

n R2 ccc 11C cI Q? Q%  Q’ Q% RMSE MAE F
A 28 05067 0.6726 07118 0.7752  0.4439 0446 0386 27
P 28 0.6341  0.6605 06043 0.8438  0.5801 0481 0436 45
C 29 09143 09556 09562 09494 09011 09206 09132 09501  0.149  0.123 288
\% 28 0.9347 - - - - - - - - 0.19 0.15
A 29 05253  0.6887 0.6764 0.7989  0.4496 0436 0387 30
P 28 06806 07591 0.8009 0.8318  0.6362 0395  0.354 55
C 28 09494 09717 09741 09742 09396 09475 09473 09574 0136  0.105 488
\% 28 0.9292 - - - - - - - - 0.19 0.16
A 28 05870 07398 07662 0.7886  0.5004 0410  0.361 37
P 28 06347 07708 05116 07931  0.5878 0412 0341 45
C 28 0.8773 09322 09366 09231 08587 0.8548 0.8540 09038 0205  0.174 186
\% 29 0.9255 - - - - - - - - 0.22 0.18

Williams plots for all considered models indicated that there are practically no outliers
for both TF1-models and TF,-models (Figure 3).
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Figure 3. Williams plots of models calculated using target functions TF; and TF, for splits 1-3. The
training set is the union of the active and passive training sets together with the calibration set; the
compounds of the external test set are indicated in red.

3. Discussion

The models” advantage is their user-friendliness since their implementation requires
only SMILES and numerical data for an endpoint without any other descriptors. There are
special rules to define the mechanistic interpretation as well as the applicability domain. The
described approach provides models following OECD principles [30,31]. The main essence
of the above document concentrated on the well-known five OECD principles [26,30-32] is
descripted below:

A defined endpoint;

An unambiguous algorithm;

A defined applicability domain;

Appropriate measures of goodness-of-fit, robustness, and predictivity;
A mechanistic interpretation, if possible.

Table 3 lists the molecular features of statistically stable promoters of an increase or
decrease of the pIC50. These data are selected according to the following:

(i) Molecular features extracted from SMILES or HSG with significant prevalence in
the training and calibration sets;

(ii) Molecular features which have positive correlation weights (CW) for all three runs
of the Monte Carlo optimization;

(iii) Molecular features with negative CW for all three runs of the Monte Carlo opti-
mization.



Molecules 2023, 28, 6587 7 of 13

Table 3. Promoters of an increase or decrease of cardiotoxicity (pIC50) that were observed for
computational experiments with split-1.

ID SAk CWsRunl CWsRun2 CWs Run3 NA * NP NC dk
Promoters of increase
1 (coeveveenn 0.1947 0.7446 0.5440 28 28 29 0.0000
2 | S 0.7284 0.4211 0.3577 28 28 29 0.0000
3 O...(euee 0.3798 0.9650 0.5790 28 28 29 0.0000
4 Coverrerenes 0.1359 0.7877 0.3057 28 28 29 0.0000
5 c..lo 0.6071 0.0798 0.1767 28 27 28 0.0009
6 CeeiCrrueee 0.6871 0.6369 0.6244 28 28 29 0.0000
7 C.1... 0.2662 0.3189 0.4394 25 23 28 0.0038
8 To(oenene 1.5716 0.9427 0.9525 24 19 26 0.0063
9 N...Coeeee 0.5049 0.6520 0.3610 24 20 23 0.0043
10 2o 0.3701 0.3364 0.3724 20 20 16 0.0058
11 F.(oen 0.4099 0.3220 0.1576 17 24 18 0.0085
12 c.F... 0.2340 0.7688 0.0176 13 14 9 0.0105
13 Moo 0.4261 0.7984 0.6231 12 10 12 0.0042
14 C.=e 1.2645 0.4920 0.8643 11 5 6 0.0195
15 E.1.... 0.0991 0.3553 0.9094 11 11 9 0.0053
Promoters of decrease

1 G —0.0788 —0.0409 —0.0820 28 28 29 0.0000
2 = —0.6876 —0.8715 —0.2888 26 26 28 0.0009
3 O..=ee. —1.0322 —0.3332 —0.3444 26 26 28 0.0009
4 O..C....... —0.4151 —0.2547 —0.0993 17 12 19 0.0094
5 c..C...... —1.3073 —0.8511 —0.1159 17 16 15 0.0037

* NA, NP, and NC are the frequencies of a molecular feature in the active training, passive training, and calibration
sets, respectively.

There are stable promoters of the pIC50 increase related to all distributions. For
instance, the promoters of an increase of pIC50 are the presence of nitrogen connected
with carbon when Morgan extended connectivity of carbon atoms is equal to 5, 6, and 7
or Morgan extended connectivity of nitrogen atoms equals 4. In contrast, promoters of
decrease of pIC50 are vertex degrees of carbon atoms equal to 2 or 3 and degrees of nitrogen
atoms equal to 2. Some other features become promoters of an increase or decrease of
cardiotoxicity (Table 3).

Figure 4 contains examples of influence promoters of increase (C...=....... ) and
decrease (C...........) to the calculated cardiotoxicity values.

The comparison of the statistical quality of the models using the target functions
TF, and TF; presented in Tables 1 and 2 indicates that TF, provides better results.

Table 4 contains the comparison of models for cardiotoxicity suggested in the literature.

The best model is observed for TF; (split-1); however, the results for the other two splits
in the case of the TF;-model are worse, and the variance of the coefficient of determination
for the validation set is significant. In contrast, the average value of the coefficient of
determination for the validation set in the case of the TF,-model is more significant, and
the variance is less than those in the case of the TFi-model. Thus, despite the excellent
result for split-1 with the TF1-model, on the whole, TF,-model is the preferable model.
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Figure 4. The influence of presence/absence of promoters on the calculated cardiotoxicity.
Table 4. The comparison of QSAR models for cardiotoxicity as suggested in the literature.
N Train R? Train Q? Train RMSE Train N Valid R? Valid RMSE Valid Reference
0.6576 0.6341
113 0.6264 0.5801 - - - - [91 MOE-models
0.6872 0.6516
0.6600 0.6272
113 0.6896 0.6565 - - - - [9] MACCS-models
0.7498 0.7118
623 0.29 - 0.630 345 0.41 0.550 [30]
309 0.911 - 0.264 112 0.860 0.301 [33]
4081 0.46 - 0.59 - - - [34]
Split-1
85 0.6774 0.6641 0.358 28 0.9146 0.203 Split-2
85 0.8463 0.8379 0.253 28 0.8959 0.275 Sgli 3
84 0.6169 0.5991 0.380 29 0.9181 0.210 (In this work, TF;)
Split-1
85 0.6348 0.6201 0.382 28 0.9347 0.189 Split-2
85 0.7056 0.6931 0.346 28 0.9292 0.186 Spli 3
84 0.6746 0.6596 0.352 29 0.9255 0.221 P

(In this work, TF3)

The above-mentioned information allows us to state that the proposed models corre-
spond to the five generally mentioned recognized principles of constructing a QSPR/QSAR
model. However, it seems appropriate to dwell on a number of features of the considered
method.

A very useful feature of the approach under consideration is its significant heuristic
potential due to the possibility of approximately formulating statistical hypotheses as
follows:

- Whether (and if so, how much) the considered endpoint depends on the representation
of molecules using SMILES;

- Whether (and if so, to what extent) the considered endpoint depends on the represen-
tation of molecules using graphs;

- Whether the representation of the molecular features extracted from SMILES and the
graph provide a synergetic effect (i.e., improving the predictive potential of a model
in the comparison of the separate cases considering the SMILES-based model and
graph-based model);
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- Whether IIC improves the predictive potential of models based on SMILES-based
representation of molecules;

- Whether IIC improves the predictive potential of models based on a graph-based
representation of molecules;

- Whether CII improves the predictive potential of models based on SMILES-based
representation of molecules;

- Whether CII improves the predictive potential of models based on a graph-based
representation of molecules;

- Whether the combined use of IIC and CII has a synergistic effect, that is, whether
observed improvement of the predictive potential of models occurs if applying IIC
and CII together compared to the cases of using IIC and CII separately.

In principle, the list of similar hypotheses that can be formulated and, accordingly,
tested within the framework of the approach under consideration, can also be expanded.
However, it seems more appropriate to consider the mentioned possibilities, providing
them with brief explanations.

In fact, only a part of the hypotheses listed above is considered here. The results can
be formulated as follows:

1. The combined use of correlation weighting of SMILES attributes and graph in-
variants improves the predictive potential of the hERG inhibition model expressed as
pIC50;

2. For the considered compounds, the use of CII provides a better predictive potential
than that of models built using IIC;

3. The observed statistical results for the three random splits of the available connec-
tions in the training and control sets are in good agreement with each other.

Are there valuable models? If there are “valuable” models, then there must be models
that are not “valuable”. How to distinguish valuable models from not very valuable ones?
It has been stated that “All models are wrong, but some are useful” [35]. Thus, how to
distinguish useful models from a set of wrong ones? The reproducibility of results and
their clarity (graphical representation [36]) are most likely the main features of the utility
model. In this paper, for this purpose, attempts were made to build several models using
different splits. The development of criteria for the predictive potential of models is also
part of the research designed to identify useful models. In this paper, for this purpose,
attempts were made to compare two new criteria for the predictive potential of the model,
the IIC (TF;) and the CII (TF).

One can extract two basic components in the total large variety of QSAR studies:
(i) “applicative” studies and (ii) “theoretical” studies. “Applicative” studies aim to integrate
the results of applying current approaches to solve practical tasks. “Theoretical” studies
aim to attempt to develop new conceptions of the QSPR/QSAR analysis. This study
contains both applicative and theoreatical parts. On the one hand, here, the Monte Carlo
optimization technique described in the literature is aimed to build up (almost) standard
models (applicative part). On the other hand, new criteria of the predictive potential are
studied (theoretical part).

Thus, the epistemological aspect of the provided QSAR research, here, is presented
in the form of confirmation of two statements. First, all QSAR models are random events
if they are built using random distributions in training and validation sets. Second, the
usefulness of random QSAR models can be stated if the variance in the values of statistical
characteristics is acceptably small.

The Supplementary Materials section contains the technical details related to the
described approach.

4. Methods
4.1. Data

The numerical data on 113 piperidine derivatives (pyridine-substituted piperidines, ter-
tiary alcohol-bearing piperidines, spirocyclic piperidines, and isoxazole-containing piperidines)
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were taken from the literature [9]. The activity is expressed as —logIC50 or pIC50 [9]. The set of
compounds is split into (i) active training (~25%), (ii) passive training (~25%), (iii) calibration
(~225%), and (iv) validation sets (=25%). Each set has a defined task. The active training set
is used to build the model; molecular features extracted from the simplified molecular-input
line-entry system (SMILES—which represents the structure) [28,29,37], of the active training
set are involved in the Monte Carlo optimization to provide correlation weights for the above
features, which provide the largest target function value on the active training set. The passive
training checks whether the model for the active training set is satisfactory for SMILES that
were not involved in the active training set. The calibration set should detect when overtraining
(overfitting) starts. The validation set provides the possibility to assess the predictive potential
of a model since the data from the validation set is unknown while building up a model. Our
experience with CORAL shows that equal distribution over the four sets mentioned is likely
the most rational strategy.

At the beginning of the optimization, the correlation coefficients between the experi-
mental values of the endpoint and the descriptor simultaneously increase for all sets, but
the correlation coefficient for the calibration set reaches a maximum; this is the start of
overtraining, and further optimization leads to a decrease of the correlation coefficient
for the calibration set. Optimization should be stopped when overtraining starts. After
stopping the Monte Carlo optimization procedure, the validation set is needed to assess
the model’s predictive potential.

4.2. Optimal Descriptor

The optimal descriptor, calculated with the representation of the molecular structure
using the SMILES, 37serves as the basis of a model for cardiotoxicity. The optimal descriptor
for the predictive model of the endpoint is calculated with Equation (7):

pICso = Co+ C1 X DCW(T, N) (7)
NA NA-1
DCW(T,N) =Y _ CW(Sy)+ Y, CW(SSk) 8)
k=1 k=1

where T is an integer that separates molecular features extracted from SMILES into rare
and non-rare ones. The non-rare features serve to build up the model. The rare features
are not used to build up the model. N is the number of epochs in the optimization of the
correlation weights. Sk is a SMILES atom, i.e., one SMILES line symbol (e.g., '=’, ‘O’) or a
group of symbols that cannot be examined separately (e.g., ‘Cu’, “%11"). SSk is a couple of
SMILES atoms. CW(Sy) and CW(SSy) are the correlation weights of the SMILES attributes
(SAk). NA is the number of non-rare SMILES attributes.

The Supplementary Materials (Table S1) contains an example of the DCW(1, 15)

calculation.

4.3. Monte Carlo Optimization

Equation (2) needs the numerical data on the above correlation weights. Monte Carlo
optimization is employed to calculate the correlation weights. Here, two target functions
for the Monte Carlo optimization are examined:

TFy = rar +rpr — |[rar —rpr| X 0.1 )

TF, = TFy+ IICc x 0.5 (10)

TF, = TF, + Cllc X 0.5 (11)
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Equation (3) is defined empirically during the development of many different models.
Variables r 41 and rpr are correlation coefficients between the observed and predicted
values of the endpoint for the active training set and passive training set, respectively. IICc
is the index of ideality of correlation [28]. IICc is calculated with data on the calibration set

as follows:
min(~MAE., TMAE )

IICc = 12
c=re max(~MAE-, TMAE) (12)
) _[xifx<y
min(x,y) = {y,otherwise 13
_xifx>y
max(x,y) = {y,otherwise (14)
"MAE: = % Z\Ak|, TN is the number of A, <0 (15)
TMAE. = % Y |Akl, TN is the number of A >0 (16)
Ny = observedy — calculated) (17)

The corresponding values of the endpoint are observed and calculated.

The correlation intensity index (CII), similar to the IIC, was developed to improve
the quality of the Monte Carlo optimization used to build up QSPR/QSAR models. CII is
calculated as follows:

Cllc =1— Y Protest; (18)

R2_-R2?, ifRZ—R%2>0
Protestk:{ k if Ry

) (19)
0, otherwise

where R? is the correlation coefficient for a set that contains n substances. R?j is the
correlation coefficient for n — 1 substances of a set after removing the k-th substance. If (R*
— R?) is larger than zero, the k-th substance is an “opponent” for the correlation between
the experimental and predicted values of the set. A small sum of “protests” means a more
“intense” correlation.

4.4. Applicability Domain
The described models” applicability domain defines the “statistical defects” of molecu-

lar features extracted from SMILES or HSG. These are calculated as follows:
_ [P(AR) = Pr(Ag)| | [P(Ax) = P"(Ap)| | [Pr(Ax) — P"(Ay)]
N(Ap) + Nr(Ax) — N(Ap) +N"(Ax) - NI(Ag) + N"(Ag)

dy (20)

where P(Ag), P'(Ax), and P"(Ay) are the probability of Ay in the active training, passive
training, and calibration sets, respectively; N(Ay), N'(Ax), and N”(Ay) are frequencies of
Ay in the active training, passive training, and calibration sets, respectively. The statistical
SMILES defects (D;) are calculated as follows:

NA
Dj= Zkzl dx (21)

where NA is the number of non-blocked SMILES attributes in the SMILES.
A SMILES falls in the applicability domain if

Dj < 2D (22)

where D is the average statistical defect on all compounds.
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5. Conclusions

The suggested approach provides reliable cardiotoxicity models since their predictive
potential is confirmed for three random splits into training and validation sets. The Monte
Carlo optimization with the target function TF; calculated with the correlation intensity
index (Equation (11)) is more accurate and more reliable than optimization with the index
of ideality of correlation, i.e., the target function TF; (Equation (10)). Figure 4 illustrates
the simplicity of applying the model for comparison of the potential biological activity of
different molecules. In fact, such analysis can be a tool for the preliminary assessment of
biological activity only on the basis of a set of Monte Carlo computation experiments with
different distributions of available data in the training and validation (test) sets.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28186587/s1, Supplementary Materials section contains
an example of the DCW(1, 15) calculation with Equation (1) for the TF;-model (split-1, Table S1) and
details on the TFy-model calculated with Equation (4) (split-1, Table S2).
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