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Abstract: No drug on the market, as a single entity, participates in different pathways involved in the
pathology of Alzheimer’s disease. The current study is aimed at the exploration of multifunctional
chalcone derivatives which can act on multiple targets involved in Alzheimer’s disease. A series of
novel aminoethyl-substituted chalcones have been developed using in silico approaches (scaffold
morphing, molecular docking, and ADME) and reported synthetic methods. The synthesized analogs
were characterized and evaluated biologically using different in vitro assays against AChE, AGEs,
and radical formation. Among all compounds, compound PS-10 was found to have potent AChE
inhibitory activity (IC50 = 15.3 nM), even more than the standard drug (IC50 = 15.68 nM). Further,
the in vivo evaluation of PS-10 against STZ-induced dementia in rats showed memory improvement
(Morris Water Maze test) in rats. Also, PS-10 inhibited STZ-induced brain AChE activity and oxidative
stress, further strengthening the observed in vitro effects. Further, the molecular dynamic simulation
studies displayed the stability of the PS-10 and AChE complex. The novel aminoethyl-substituted
chalcones might be considered potential multifunctional anti-Alzheimer’s molecules.

Keywords: chalcone; Alzheimer’s disease; AChE; antioxidant; dementia; AGEs

1. Introduction

Chalcone, a naturally occurring compound, is the precursor of flavonoids and isoflavonoids
and an important constituent of various natural products [1,2]. Chalcone-based derivatives
exhibit diverse biological effects, including anti-inflammatory [3–5] anticancer [6–11], antimalar-
ial [12,13], antidiabetic [14–16], antioxidant [17,18], and antimicrobial [19,20]. They are also
known for their actions on CNS such as acetylcholinesterase (AChE) and butyrylcholinestrase
(BuChE), lipid peroxidation reduction, GABA modulation, and monoamine oxidase inhibi-
tion [21–25]. Due to this multi-functional potential, chalcone-based compounds have the ability
to manage various complex brain diseases, including Alzheimer’s disease (AD).

AD involves the cascade of anomalies including Aβ aggregates, tau protein hyper-
phosphorylation associated with cellular microtubules, and the generation of neurofibrillary
tangles (NFTs). Consequently, these anomalies are responsible for several physiological
problems such as synaptic damage and increased radical generation and inflammation.
Apart from this, the central cholinergic neurons are also severely affected, leading to
decreased acetylcholine levels. As a result, a number of physiological activities are affected,
such as cognition, thinking ability, language, dependency, and memory functions [26,27].
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Moreover, there is evidence proving the effect of oxidative impairment on the endorsement
of amyloid aggregates and NFT formation in AD [28]. The large amounts of Fe2+ and Cu2+

in the brain hasten ROS formation, which further causes Aβ neurotoxicity. Also, the high
levels of receptive carbonyls and oxygen radicals lead to AGEs, which cross-link and cause
glycation of the tau and Aβ or proteins, ultimately inducing neuron cell death [29].

Although a number of potential targets leading to AD have been identified, only AChE
inhibitors (AChEIs) could pave their way into clinics for managing AD. However, these
drugs are effective symptomatically, but unable to avert the disease movement [30,31].
Aducanumab, a monoclonal-antibody-based medication that targets the oligomers as well
as insoluble fibrils of Aβ plaques, was recently approved by the FDA. It is indicated
for patients with mild cognitive impairment [32]. Despite the known multi-etiologies
associated with AD, it has been observed that the majority of research is focused on
developing molecules that could target one aspect of AD [33–36]. Such drugs that are
single-target-oriented only enable a palliative treatment rather than curing or preventing
neurodegenerative multifactorial AD. This could be one of the reasons for the limited
success of AChEIs in clinical practice.

Thus, the development of molecules that have the ability to modulate different key
targets of AD simultaneously seems to be the appropriate tool to tackle AD. Further, the
compounds having multifunctional potential may have a higher value in terms of their
potency due to synergism or limited side effects. This encouraged us to design and develop
molecules that could act on different key areas of AD. The research on the development of
chalcone-based multifunctional molecules having varied substituents in different positions
has been accelerated in recent years (Figure 1) [21–26,37–39].
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Various substitutions on the chalcone skeleton reflect the anti-Alzheimer’s potential
in terms of AChE inhibition, MAO-B inhibition, amyloid aggregation inhibition, and
antioxidant properties [20,22]. Therefore, chalcone-based novel analogs could be used and
taken as a lead for the management of AD. From comprehensive literature analysis, it
has been found that no chalcone-based multi-functional molecule is available in clinical
practice to manage AD.
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The current study involves the design, synthesis, and biological evaluation of chalcone
or 1,3-diaryl-2-propen-1-one substituted with varied tertiary amines at ring-B via two
carbon spacers. A novel series of aminoethyl-O-chalcone by-products were developed
using Claisen Schmidt condensation [40,41] and employed for AChE, AGEs, and free
radical inhibitory potential in vitro. The most potent developed molecule was further
tested in vivo using an STZ-induced rat model of dementia. Also, brain biochemical
estimations were performed to delineate the mechanism of action.

2. Results and Discussion
2.1. Scaffold-Morphing-Based Bioisosteric Replacement

The bioisosteric replacement of chalcone was performed by manual design as well as
with a web server (MolOpt) to generate corresponding analogs with their pharmacokinetics
and pharmacodynamics. The manual design was based on certain substitutions like the
presence of alkoxy groups essential for BBB permeation, and the incorporation of tertiary
amines and chain elongation is beneficial for inhibiting AChE. As a result, five potential
bioisosteric replacement sites were produced. A total of 826 molecules were generated
by the bioisosteric replacement at these five sites (Figure 2). On the basis of synthetic
accessibility, the top 40 analogs were used in the pharmacokinetic studies.

Molecules 2023, 28, x FOR PEER REVIEW 3 of 24 
 

 

Various substitutions on the chalcone skeleton reflect the anti-Alzheimer’s potential 
in terms of AChE inhibition, MAO-B inhibition, amyloid aggregation inhibition, and an-
tioxidant properties [20,22]. Therefore, chalcone-based novel analogs could be used and 
taken as a lead for the management of AD. From comprehensive literature analysis, it has 
been found that no chalcone-based multi-functional molecule is available in clinical 
practice to manage AD. 

The current study involves the design, synthesis, and biological evaluation of chal-
cone or 1,3-diaryl-2-propen-1-one substituted with varied tertiary amines at ring-B via 
two carbon spacers. A novel series of aminoethyl-O-chalcone by-products were devel-
oped using Claisen Schmidt condensation [40,41] and employed for AChE, AGEs, and 
free radical inhibitory potential in vitro. The most potent developed molecule was further 
tested in vivo using an STZ-induced rat model of dementia. Also, brain biochemical es-
timations were performed to delineate the mechanism of action.  

2. Results and Discussion 
2.1. Scaffold-Morphing-Based Bioisosteric Replacement 

The bioisosteric replacement of chalcone was performed by manual design as well as 
with a web server (MolOpt) to generate corresponding analogs with their pharmacoki-
netics and pharmacodynamics. The manual design was based on certain substitutions 
like the presence of alkoxy groups essential for BBB permeation, and the incorporation of 
tertiary amines and chain elongation is beneficial for inhibiting AChE. As a result, five 
potential bioisosteric replacement sites were produced. A total of 826 molecules were 
generated by the bioisosteric replacement at these five sites (Figure 2). On the basis of 
synthetic accessibility, the top 40 analogs were used in the pharmacokinetic studies. 

 
Figure 2. Five bioisosteric sites and the corresponding bioisosteres. 

2.2. ADME Studies 
The ADME studies of the top 40 molecules were carried out using SwissADME 

software (http://www.swissadme.ch/, accessed on 3 January 2021). The leading novel 
chalcone molecules were identified on the basis of their drug-like properties. All the 
screened molecules were drug-like molecules as per Lipinski’s rule of five (HB donor ≤ 5, 
HB acceptor ≤ 10, logPo/w < 5, MW < 500). These drug-like properties are critical for BBB 
(blood–brain barrier) permeability and, subsequently, the activity of CNS. These mole-
cules displayed a crucial ADME profile with rationalized physicochemical and pharma-
cokinetic properties (Table 1). The parameters including TPSA, Log P consensus, and Log 
S ESOL indicated the polarity, lipophilicity, and solubility of the analogs. Further, all 
molecules exhibited high gastrointestinal absorption, ensuring their significant bioa-
vailability. The anticipated ADME (Absorption, Distribution, Metabolism, and Excretion) 
profile indicated that all of the highest-ranking molecules possessed drug-like character-
istics. 

  

Figure 2. Five bioisosteric sites and the corresponding bioisosteres.

2.2. ADME Studies

The ADME studies of the top 40 molecules were carried out using SwissADME
software (http://www.swissadme.ch/, accessed on 3 January 2021). The leading novel
chalcone molecules were identified on the basis of their drug-like properties. All the
screened molecules were drug-like molecules as per Lipinski’s rule of five (HB donor ≤ 5,
HB acceptor ≤ 10, logPo/w < 5, MW < 500). These drug-like properties are critical for BBB
(blood–brain barrier) permeability and, subsequently, the activity of CNS. These molecules
displayed a crucial ADME profile with rationalized physicochemical and pharmacokinetic
properties (Table 1). The parameters including TPSA, Log P consensus, and Log S ESOL
indicated the polarity, lipophilicity, and solubility of the analogs. Further, all molecules
exhibited high gastrointestinal absorption, ensuring their significant bioavailability. The
anticipated ADME (Absorption, Distribution, Metabolism, and Excretion) profile indicated
that all of the highest-ranking molecules possessed drug-like characteristics.

Table 1. ADME profile and the physicochemical parameters of the aminoethyl-O-chalcone derivatives.

S.
No. Compound Mol.Wt. HB Acc HB Don TPSA Consensus

Log P Ali Log S Rule of
Five

Brain
Permeant

GI
Absorption

1 PS-2 295.38 3 0 29.54 3.37 −3.38 0 Yes High

2 PS-3 323.43 3 0 29.54 4.02 −4.14 0 Yes High

3 PS-4 371.47 3 0 29.54 4.7 −5.56 0 Yes High

4 PS-5 335.44 3 0 29.54 4.1 −4.88 0 Yes High

5 PS-6 336.43 4 1 41.57 2.9 −3.58 0 Yes High

6 PS-7 337.41 4 0 38.77 3.19 −3.82 0 Yes High

7 PS-8 321.41 3 0 29.54 3.79 −4.52 0 Yes High

8 PS-9 318.37 3 0 44.12 3.22 −4.24 0 Yes High

http://www.swissadme.ch/
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Table 1. Cont.

S.
No. Compound Mol.Wt. HB Acc HB Don TPSA Consensus

Log P Ali Log S Rule of
Five

Brain
Permeant

GI
Absorption

9 PS-10 350.45 4 0 32.78 3.15 −3.88 0 Yes High

10 PS-11 364.48 4 0 32.78 3.48 −4.26 0 Yes High

11 PS-12 349.47 3 0 29.54 4.39 −5.26 0 Yes High

12 PS-13 378.51 4 0 32.78 3.8 −4.62 0 Yes High

13 PS-14 363.49 3 0 29.54 4.72 −5.63 0 Yes High

14 PS-15 392.53 4 0 32.78 4.13 −4.99 0 Yes High

15 PS-16 377.52 3 0 29.54 5.03 −6 0 Yes High

16 PS-17 406.56 4 0 32.78 4.45 −5.37 0 Yes High

17 PS-18 391.55 3 0 29.54 5.35 −6.37 0 Yes High

18 PS-19 380.48 5 0 42.01 3.18 −4.04 0 Yes High

19 PS-20 410.51 6 0 51.24 3.14 −4.21 0 Yes High

20 PS-21 440.53 7 0 60.47 3.13 −4.37 0 Yes High

21 PS-22 325.4 4 0 38.77 3.48 −4.17 0 Yes High

22 PS-23 351.44 4 0 38.77 3.77 −4.68 0 Yes High

23 PS-24 365.47 4 0 38.77 4.06 −5.06 0 Yes High

24 PS-25 366.45 5 1 50.8 2.86 −3.74 0 Yes High

25 PS-26 380.48 5 0 42.01 3.18 −4.04 0 Yes High

26 PS-27 295.38 3 0 29.54 3.37 −3.38 0 Yes High

27 PS-28 353.45 4 0 38.77 4.1 −4.91 0 Yes High

28 PS-29 379.49 4 0 38.77 4.37 −5.42 0 Yes High

29 PS-30 339.43 4 0 38.77 3.78 −4.55 0 Yes High

30 PS-31 379.49 4 0 38.77 4.43 −5.42 0 Yes High

31 PS-32 353.45 4 0 38.77 4.14 −4.93 0 Yes High

32 PS-33 367.44 5 0 48 3.2 −3.98 0 Yes High

33 PS-34 339.43 4 0 38.77 3.8 −4.56 0 Yes High

34 PS-35 387.47 3 0 38.77 4.68 −6.02 0 Yes High

35 PS-36 367.48 4 0 38.77 4.42 −5.3 0 Yes High

36 PS-37 379.49 4 0 38.77 4.3 −5.5 0 Yes High

37 PS-38 381.46 5 0 48 3.52 −4.35 0 Yes High

38 PS-39 353.45 4 0 38.77 4.1 −4.92 0 Yes High

39 PS-40 337.41 4 0 38.77 3.71 −4.79 0 Yes High

40 PS-41 353.45 4 0 38.77 4.16 −5.1 0 Yes High

2.3. Molecular Docking Studies

AChE is composed of a long channel split into two parts: the peripheral anionic site
(PAS) and the catalytic anionic site (CAS). Within the PAS, the amino acids Trp279, Arg289,
and Phe330 play critical roles. Meanwhile, the CAS features the catalytic triad consisting of
Ser200, Glu327, and His440, along with other significant amino acids like Trp84, Gly119,
and Tyr121 [42]. Docking analysis for the screened chalcone molecules was carried out to
investigate their interaction with the active gorge of the AChE. The PS1 was also subjected
to docking analysis in order to analyze the interactions of the common moiety with the
AChE protein. All the molecules had good binding energies and crucial interactions with
the amino acids at both sites (CAS and PAS) of the AChE enzyme. Interestingly, all the
analogs have good docking scores as compared to the standard drug (−51.89 Kcal/mol).
All of the molecules showed interactions with the His440 and Ser200 residues of the
catalytic triad via Pi-alkyl interactions, C-H bond formation, or Van der Waals interactions,
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including key interactions with Trp84, Gly119, and Tyr121. These molecules also interacted
via Phe330, Tyr130, Trp279, and Arg289 of PAS. However, PS1 lags in terms of binding
affinity (−31.90 Kcal/mol) toward the binding site, possibly due to the absence of amine
groups and thus relatively smaller size. The binding energies of PS4, PS5, and PS (8–10)
(−52.28 to −63.75 Kcal/mol) were better than the donepezil. Although PS3, PS6, and
PS7 showed similar binding energy levels (−51.01 to −51.43 Kcal/mol) as donepezil, they
interacted with more of the key amino acids. The designed analogs showed significant
interactions at both active subsites of AChE, namely PAS (Phe330, Tyr130, Trp279, and
Arg289) and CAS (Trp84, Gly119, Tyr121). The docking analysis suggests that the presence
of varied amines alters the compounds’ binding affinity with enzymes. The dimethyl-
substituted analog (PS2) exerted the least binding energy (−49.39 Kcal/mol) compared to
the other amine-substituted analogs. The leading analogs with isosteric replacements were
identified (Table 2) and were subjected to synthesis and biological evaluations.

Table 2. The docking scores with their interactions with enzyme 4.

Compound ID Structure Docking Score
(Kcal/mol) Interactions

PS1
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Ser200, Trp279, Phe330 

−56.92 Trp84, Phe330, Trp279, Arg289,
Tyr130, His440, Ser200, Gly119

PS5
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Table 2. Cont.

Compound ID Structure Docking Score
(Kcal/mol) Interactions
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2.4. Binding Mode and Interactions of PS5 and PS10 with AChE

The interactions of the most potent in vitro AChE inhibitors (PS5 and PS10) with the
crucial residues are displayed in Figure 3. The binding of compound PS5 extended from
CAS to PAS in the active site gorge. The carbonylic oxygen formed an H-bond with Arg
289. The quaternary nitrogen of piperidine moiety displayed π–cationic interactions with
Trp84, Phe330, and Asp72. The π–alkyl interaction was formed between the carbon atom
of piperidine and His440. It additionally created a single hydrogen bond with Arg289 via
carbonyl oxygen.

The compound PS10 underwent pi–pi stacking interactions of both phenyl rings
with Trp279 in the acyl binding pocket and Phe334 residue in the PAS, respectively. It
formed an H-bond with Phe288 via carbonyl oxygen. Both quaternary nitrogen atoms
of 4-methylipiperazine moiety displayed π–cationic interactions with Trp84, Asp72, and
Glu199. The docking results revealed the binding capacity of selected molecules with the
CAS and PAS residues through the formation of H-bonds; π–π (aromatic), π–cationic, and
hydrophobic interactions; and the attractive charges with the AChE active gorge.

2.5. Chemistry

The synthetic methodologies employed to synthesize intermediate (1) and final com-
pounds PS(1–10) are given in Scheme 1. The compound PS1 was synthesized accord-
ing to the well-established Claisen Schmidt condensation reaction with slight modifica-
tions. Further, the prime intermediate (1) was synthesized by alkylation of PS1 with
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1,2-dibromoethane in acetonitrile. The incorporation of various secondary amines into in-
termediate (1) in the presence of K2CO3 in acetonitrile afforded target compounds PS(2–10).
The reaction was monitored with TLC plates.
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2.6. Biological Activity
2.6.1. In Vitro AChE Inhibition Studies

The ability of target compounds PS(1–10) to inhibit AChE was evaluated by the
slightly modified Ellman’s method [43]. The objective of attaching different amines to the
1,3-diphenylprop-2-enone skeleton via an ethoxy spacer was to enhance the interaction of
the designed synthesized chalcones with both the PAS and CAS of AChE. Interestingly,
most of the tested compounds PS(1–10) had significant AChE inhibitory activity (Table 3).
The compounds PS10 and PS5, which had 4-methylpiperazine and piperidine amines
attached to chalcone moiety, were found to be the most effective AChE inhibitors with IC50
values of 15.3 and 19.71 nM, respectively.

Table 3. The AChE inhibition, AGE formation inhibition, and radical scavenging activities.
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2.6.4. In Vivo Activity 
The STZ model (i.c.v., 3 mg/kg) is commonly used to study AD in animals [44–46]. 

The intracerebroventricular injection of STZ, at two sub-diabetogenic doses, induces a 
range of symptoms including impaired cognition, metabolic and molecular changes, and 
neuropathological symptoms in rodents which are often found in AD subjects. STZ has 
been found to disrupt cellular energy metabolism and induce mitochondrial changes, 
resulting in the generation of ROS [47]. The ROS produced can cause damage to the my-
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C. No. -NR1R2
AChE Inhibitory Activity

(Mean n ± SD, nM)
AGE Inhibitory Activity

(Mean n ± SD, µM)
Radical Scavenging Activity

(Mean n ± SD, nM)

PS1 - 36.47 ± 0.42 43.6 ± 0.08 22.41 ± 0.4

PS2 Dimethylamino 52.51 ± 0.20 68.6 ± 0.23 49.85 ± 0.11

PS3 Diethylamino 47.5 ± 0.21 67.3 ± 0.33 49.41 ± 0.22

PS4 N-benzyl(methyl)amino 48.8 ± 0.04 69.39 ± 0.2 49.48 ± 0.21

PS5 Piperidine 19.71 ± 0.3 55.3 ± 0.2 34.38 ± 0.4

PS6 Piperazine 21.4 ± 0.8 64.51 ± 0.2 46.7 ± 0.24

PS7 Morpholine 22.72 ± 0.13 51.2 ± 0.8 37.65 ± 0.24

PS8 Pyrrolidine 32.72 ± 0.12 65.41 ± 0.36 48.64 ± 0.18

PS9 Imidazole 26.3 ± 0.3 65.7 ± 0.17 48.58 ± 0.42

PS10 4-Methylpiperazine 15.3 ± 0.72 49.85 ± 0.13 22.83 ± 0.2

Std. Donepezil 15.68 ± 0.26 -- --

Std. Ascorbic acid -- -- 21.7 ± 0.08

Std. Aminoguanidine (AG) -- 44.3 ± 0.12 --

n = 3.

The resulting data showed that the terminal amino group significantly influenced the
AChE inhibition. The six-membered cyclic amine-substituted derivatives PS5, PS6, PS7,
and PS10 (IC50 = 15.3–22.72 nM) showed better AChE activity than the five-membered
cyclic amines PS8 and PS9 (IC50 = 32.72; 26.3 nM). Further, the aliphatic amine-substituted
compounds PS2, PS3, and PS4 showed moderate inhibition with IC50 values of 52.51, 47.5,
and 48.8 nM. This may be due to improper fitting of the five-membered ring systems as
well as the aliphatic amines inside the enzyme.

Particularly, the 4-methylpiperazine derivative (PS10) was the most potent AChE
inhibitor, with IC50 = 15.3 nM, comparable to donepezil (IC50 = 15.68 nM) and more
potent than the unsubstituted piperazine derivative (PS6, IC50 = 21.4 nM). The aliphatic
amine-based derivatives were less effective across the series.

2.6.2. AGE Formation Inhibitory Activity

The synthesized compounds markedly inhibited AGE formations in vitro (Table 3).
The compound PS1 (IC50 = 43.6 µM) was the most active among all and showed comparable
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inhibition to the positive control (IC50 = 44.3 µM), while the compounds PS(2–4), PS6, and
PS(8–9) (IC50 = 64.51–69.39 µM) were inferior inhibitors compared to the positive control.
The compound PS10 with 4-methylpiperazine had better anti-glycating effects compared
to the unsubstituted piperazine compound (PS6). The six-membered cyclic amines (PS5,
PS6, PS7, and PS10) were more active than five-membered (PS8 and PS9). The compounds
with dimethyl amine (PS2), diethyl amine (PS3), and N-benzylmethylamine moiety (PS4)
exhibited lower activity ranging from IC50 = 67.3 to 69.39 µM.

2.6.3. In Vitro Antioxidant Activity

The antioxidant activity showed that all synthesized compounds exhibited significant
radical scavenging activity owing to the presence of an α,β-unsaturated carbonyl system
that extended the resonance effect from one ring to another (Table 3). PS10 was reported
as the most potent (EC50 = 22.83 nM) and comparable to the standard (EC50 = 21.7 nM).
Further, PS1 also exerted comparable free radical scavenging activity (EC50 = 22.41 nM)
due to the added antioxidant property of the hydroxy group. The compounds PS5 and
PS7 also showed good radical scavenging activity with EC50 values of 34.38 and 37.65 nM,
respectively. The free –NH groups enhanced the free radical scavenging along with an
α,β-unsaturated carbonyl system due to its electron-rich environment. The rest of the
compounds exhibited moderate radical scavenging activity (EC50 = 46.7–49.85 nM).

2.6.4. In Vivo Activity

The STZ model (i.c.v., 3 mg/kg) is commonly used to study AD in animals [44–46].
The intracerebroventricular injection of STZ, at two sub-diabetogenic doses, induces a
range of symptoms including impaired cognition, metabolic and molecular changes, and
neuropathological symptoms in rodents which are often found in AD subjects. STZ has
been found to disrupt cellular energy metabolism and induce mitochondrial changes,
resulting in the generation of ROS [47]. The ROS produced can cause damage to the myelin
sheath and acetyl coenzyme-A in the hippocampus. As a result, there is an increase in
AChE activity, leading to behavioral disturbances, as in Alzheimer’s disease [48–51]. Thus,
this model is frequently used for AD interventions.

MWM is the most commonly used method to measure learning and spatial memory in
rats [52,53]. MWM utilizes the natural swimming ability of rats [53,54]. As a result, during
the retrieval phase, there is no induced stress that could affect the results. The MWM model
is commonly used to test drugs that enhance memory and provide neuroprotection. Thus,
it has been used to understand the effect of PS10 on the memory of animals with induced
cognitive impairment by means of restoring the ELT.

Previous studies have shown that STZ (i.c.v) administration impairs cognitive function
in rodents [55]. Consistent with these findings, our study also found declined memory and
learning ability in the STZ group than the control animals, which was significantly reversed
by treatment with PS10. This beneficial effect of PS10 may be attributed to the structural
aspects of chalcone-based compounds, which have been reported as memory enhancers.
The administration of PS10 significantly decreased STZ-induced cognitive impairment by
means of restoring the ELT (Figure 4) and TSTQ (Figure 5).

The central cholinergic system is critical for cognitive function, and AD patients often
suffer from cholinergic hypofunction due to increased AChE activity and the degeneration
of cholinergic neurons [55]. Animal studies have shown that the administration of STZ
(i.c.v) increases brain AChE activity, which leads to cognitive impairment and memory
deficits [56]. Similarly, in the current study, STZ-administered rats showed higher cerebral
AChE activity, which was restored in PS10-treated groups (Figure 6). Flavonoids have been
shown to inhibit AChE activity by binding strongly to the enzyme’s active sites through
interactions with crucial amino acids of AChE, given in Table 2 [57–60]. Possibly, due
to these interactions between PS10 and amino acids of AChE, PS10 was able to inhibit
AChE activity.



Molecules 2023, 28, 6579 10 of 22

Another crucial factor that contributes to the progression of AD is oxidative stress [61,62].
The brain is more vulnerable to oxidative damage compared to other organs due to its high
energy demand, relatively lower level of antioxidant defense mechanisms, and high concentra-
tion of polyunsaturated fatty acids [62]. STZ injection generates free radicals that overwhelm
the brain’s defensive antioxidant system (GSH) and cause lipid membrane oxidation, leading
to the production of malondialdehyde [61,63,64]. Thus, in order to analyze the antioxidant
property of PS10, the levels of TBARS and GSH were measured in the current investigation
(Figure 6). STZ injection was found to increase TBARS and decrease GSH levels in the brain,
but these effects were reversed by PS10 treatment. Previously, antioxidant flavonoids have
been reported to exhibit cognitive improvement and neuroprotective effects in a variety of
neurological disorders [65,66]. Our study suggests that PS10 possesses antioxidant properties
that reduce lipid peroxidation and spare the antioxidant enzyme GSH, contributing to the
memory improvement effects in STZ-induced animals.
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2.7. Molecular Dynamic Simulation Analysis

The stability of the ligand–protein complex was analyzed using a simulation-based
interaction protocol. The MD simulation involved the interactions between ligand and
protein in dynamic motion and assessed the induced conformational changes at the AChE
pocket by ligand binding. The PS-10 and AChE complex was employed for MD studies.
The important interactions were retained throughout the MD simulations with slightly
different patterns (Figure 7). Compound PS-10 interacted with the key residues (Asp72,
Arg289, Trp279, and Tyr334) in the active site via ionic and hydrophobic interactions. It
formed an H-bond with Asp72 via carbonyl oxygen.

After the MD simulation, the trajectory of the compound was determined by means of
RMSD. The RMSD plot indicated that the docked complex remained stable, with minor
fluctuations within 1 ◦A throughout the simulation-induced cognitive impairment by
means of restoring PS10 against AChE. Further, root mean square fluctuation (RMSF) plots
for protein were also obtained (Figure 7). The vertical green bars represent the interacting
protein residues with ligands during simulation.
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3. Material and Methods
3.1. Scaffold Morphing

Scaffold morphing, a technique for drug designing, has been used for the design of
novel chalcone molecules. It provides rationalized structural modifications within the
parent molecule with improved physicochemical properties [67,68]. This study was carried
out using the web server MolOpt (https://xundrug.cn/molopt accessed on 5 January 2021)
recently developed web tool for scaffold morphing for bioisosteric transformation [69].
The transformation involves the replacement of the functional groups or other parts of the
molecule with their bioisosteres on key molecules. By manually designing and ‘data mining’
an inbuilt module of MolOpt, the five replaceable sites of the designed chalcone compound
were generated. The molecules that were produced were evaluated to determine if they
could be feasibly synthesized. The feasibility of synthesis was rated from 1 (very easy)
to 10 (very difficult), and a threshold of 2.5 was used to screen the molecules. The best
molecules were then subjected to pharmacokinetic and molecular docking analyses using
computational methods.

https://xundrug.cn/molopt
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3.2. Prediction of In Silico Pharmacokinetic Properties

The kinetic profiles of designed chalcone molecules, i.e., ADME, were predicted us-
ing SwissADME, a free web application for analyzing the pharmacokinetic profile of a
molecule [70]. Various parameters such as physicochemical properties, lipophilicity, and
solubility patterns are predicted on the basis of topological polar surface area (TPSA),
consensus logP, and ESOL LogS; additionally, Lipinski’s rule of five (molecular weight and
H-bond modulator) for the drug-likeness assessment was considered [71]. The gastrointesti-
nal absorption and brain permeability of the target molecules were also assessed [72,73].
The details of the current study are outlined in Figure 8.
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3.3. Molecular Docking

Biovia Discovery Studio software (2019) was used to carry out the molecular docking ex-
periments. To begin the process, the 3D X-ray crystal structure of acetylcholinesterase (AChE)
with a PDB ID of 1EVE (2.50 Å) was obtained from the Protein Data Bank (www.rcsb.org,
accessed on 10 January 2021). The structures were then preprocessed, prepared, and opti-
mized using the ‘Macromolecule’ module. The protein preprocessing was carried out by the
removal of water molecules and heteroatoms, and protonation using the ‘Add Polar’ option.
Next, the preparation and generation of binding sites around the co-crystallized ligands
was achieved using the ‘Define and Edit Binding Site’ tool. The SMILES notations and struc-
tures of the molecules and donepezil were prepared using MarvinSketch and ChemDraw
16.0 software. Ligands were prepared and minimized using the ‘Full Minimization’ of the
‘Small Molecules’ module. The docking analysis was performed using the ‘Dock Ligands
(CDOCKER)’ protocol. The native ligand, donepezil (standard drug), was also re-docked at
the active site of the AChE, and we compared the interaction behavior with the designed
molecules. The molecular interactions of docked complexes of all the molecules with AChE
were analyzed by visual inspection. The preparation and generation of binding sites around
the co-crystallized ligands were dependent on the docking scores of AChE amino acids.

3.4. Chemistry

All chemicals were taken from marketable suppliers and were used as such. A mag-
netic stirrer, hot plate (Remi), and rotary evaporator (Perfit) were used for solvent evap-
oration and recovery. The progression and completion of all the chemical reactions were
checked using TLC. Silica columns were employed to purify synthesized compounds
followed by melting point determination.

General procedure for the synthesis of (PS1): The mole equivalents of acetophenone
and p-hydroxybenzaldehyde were stirred with reflux at 60 ◦C for 72 h in methanol under
mildly acidic conditions to afford PS1. The crude product was treated with water and
dried. The compound was recrystallized with alcohol (Scheme 1).

General procedure for the synthesis of PS-1: 3-(4-Hydroxyphenyl)-1-phenylprop-2-
en-1-one (2 mmol) (PS-1) and 1,2-dibromoethane (2 mmol) were stirred in acetonitrile in
the presence of anhydrous potassium carbonate (10 mmol). The solvent was evaporated
and the crude product was thoroughly washed with water, and dried. Then, intermediate 1
was purified on a silica column using hexane:ethylacetate (8:2) as a solvent system.

General procedures for the synthesis of final compounds PS-2 to PS-10: To a solution
of intermediate 1 (0.5 mmol) in acetonitrile, different amines (1.0 mmol) and anhydrous
K2CO3 (2.5 mmol) were added. After stirring for 48 h, the solvent was removed under
vacuum and the crude product was washed with water, filtered, and dried, and then
purified on silica columns using CHCl3:MeOH (9:1) as a solvent system. The various
spectra’s can be found in Supplementary Materials.

3-(4-Hydroxyphenyl)-1-phenylprop-2-en-1-one (PS-1): Solid crystalline, yellow, yield 70%,
m.p.: 187–189 ◦C; 1H NMR (500 MHz, CDCl3, δ ppm): 8.01–7.99 (2H, m, ArH), 7.79–7.76
(1H, d, J = 15.65 Hz, -CH), 7.58–7.55 (3H, d, m, ArH), 7.51–7.48 (2H, t, J1 = 7.85, J2 = 7.25 Hz,
ArH), 7.42–7.39 (1H, d, J = 15.65 Hz, -CH), 6.90–6.88 (2H, m, ArH), 5.52 (1H, brs, OH). 13C
NMR (500 MHz, DMSO, δ ppm): 188.87, 160.07, 144.40, 137.86, 132.6, 130.85, 128.54, 128.18,
125.62, 118.35, 115.71; IR(KBr): 3500–3100 cm−1 (-OH str, m); 1647 cm−1 (C=O, s); 1591 cm−1

(Ar C=C, s). MS (ESI) m/z = 225.11 (M + H)+. Rf value: 0.42 (hexane:ethylacetate, 7:3).

3-(4-(2-Bromoethoxy)phenyl)-1-phenylprop-2-en-1-one (1): Solid crystalline white, yield 70%,
m.p.: 86–87 ◦C; 1H NMR (500 MHz, CDCl3, δ ppm): 8.01–7.99 (2H, d, J = 7.8 Hz, ArH),
7.78–7.75 (1H, d, J =12.52 Hz, -CH), 7.62–7.55 (3H, m, ArH), 7.51–7.48 (2H, t, J1 =7.75,
J2 = 7.35 Hz, ArH), 7.44–7.40 (1H, d, J = 15.65 Hz, -CH), 6.95–6.93 (2H, d, J = 8.7 Hz, ArH),
4.34–4.31 (2H, t, J1 = J2 = 6.25 Hz, -CH2), 3.66–3.63 (2H, t, J1 = J2 = 6.25 Hz, -CH2), 13C
NMR (500 MHz, CDCl3, δ ppm): 190.61, 160.58, 144.62, 138.49, 132.54, 130.26, 128.57, 128.43,
127.97, 120.12, 114.94, 65.02, 29.96; IR(KBr, cm−1): 3059 cm−1 (=C-H str, m); 1645 cm−1

www.rcsb.org
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(C=O) (s); 1605 cm−1 (Ar C=C str, m); MS (ESI) m/z = 331.03 (M + H)+. Rf value: 0.38
(hexane:ethylacetate, 8:2).

3-(4-(2-(Dimethylamino)ethoxy)phenyl)-1-phenylprop-2-en-1-one (PS-2): Intermediate 1 was
treated with dimethylamine according to the general procedure to give the desired product
PS-2 as yellow, solid, yield 60%, m.p.: 92–95 ◦C; IR(KBr, cm−1): 1655 cm−1 (C=O, s);
1596 cm−1 (Ar C=C str, s), 1300–1100 cm−1 (C-N, m); 1H NMR (500 MHz, CDCl3, δ ppm):
7.90–7.89 (2H, d, J = 7.82, 1.35 Hz, ArH), 7.68–7.65 (1H, d, J = 15.65 Hz, -CH), 7.49–7.43
(3H, m, ArH), 7.40–7.36 (2H, m, ArH), 7.32–7.29 (1H, d, J = 15.65 Hz, -CH), 6.85–6.83
(2H, d, J = 8.7 Hz, ArH), 4.02–3.98 (2H, m, -CH2), 2.64–2.62 (2H, t, J = 5.65, 5.7 Hz, -CH2),
2.23–2.21 (m, 6H, N(CH3)2), 13C NMR (500 MHz, CDCl3, δ ppm): 190.62, 158.65, 144.45,
138.46, 132.27, 130.24, 128.44, 128.33, 127.22, 119.81, 114.73, 66.48, 61.63, 46.12; MS (ESI)
m/z = 296.16 (M + H)+. Rf value: 0.62 CHCl3:MeOH, 9:1).

3-(4-(2-(Diethylamino)ethoxy)phenyl)-1-phenylprop-2-en-1-one (PS-3): Intermediate 1 was treated
with diethylamine according to the general procedure to give the desired product PS-3 as
light yellow, solid, yield 55%, m.p.: 89–91 ◦C; IR(KBr, cm−1): 1655 cm−1 (C=O, s); 1590 cm−1

(Ar C=C str, s), 1300–1100 cm−1 (C-N, m); 1H NMR (500 MHz, CDCl3, δ ppm): 7.93–7.92 (2H,
d, J = 7.4 HZ, ArH), 7.72–7.68 (1H, d, J = 15.7 Hz, -CH), 7.55–7.47 (3H, m, ArH), 7.43–7.31
(3H, m, ArH, -CH), 6.86–6.85 (2H, d, J = 8.55 Hz, ArH), 4.04–4.02 (2H, t, J1 = J2 = 6.25 Hz,
-CH2), 2.85–2.83 (2H, t, J1 = J2 = 6.1 Hz, -CH2), 2.62–2.57 (4H, q, J1 = J2 = J3 = 7.1 Hz, 2(-CH2)),
1.02–1.00 (6H, t, J1 = J2 = 7.1 Hz, 2(-CH3)); 13C NMR (500 MHz, CDCl3, δ ppm): 190.61, 160.58,
144.12, 138.44, 132.34, 130.24, 128.54, 128.33, 127.21, 119.79, 114.71, 66.11, 61.62, 46.12, 15.06;
MS (ESI) m/z = 324.19 (M + H)+. Rf value: 0.56 (CHCl3:MeOH, 9:1).

3-(4-(2-(Benzyl(methyl)amino)ethoxy)phenyl)-1-phenylprop-2-en-1-one (PS-4): Intermediate 1
was treated with N-benzylmethylamine according to the general procedure to give the de-
sired product PS-4 as yellow, solid, yield 55%, m.p.: 115–117 ◦C; IR(KBr, cm−1): 1655 cm−1

(C=O, s); 1590 cm−1 (Ar C=C str, s), 1300–1100 cm−1 (C-N, m); 1H NMR (500 MHz, CDCl3, δ
ppm): 8.01–7.99 (2H, d, J = 7.35, 1.35 Hz, ArH), 7.79–7.76 (1H, d, J = 15.5 Hz, -CH), 7.62–7.55
(3H, m, ArH), 7.52–7.45 (2H, m, ArH), 7.44–7.39 (1H, d, J = 15.45 Hz, -CH), 7.34–7.30 (3H,
m, ArH), 7.27–7.25 (2H, d, J = 8.15 Hz, ArH), 6.92–6.90 (2H, d, J = 8.15 Hz, ArH), 4.14–4.12
(2H, t, J = 6.25 Hz, -CH2), 3.63 (2H, s, -CH2), 2.87–2.84 (2H, t, J = 5.75 Hz, -CH2), 2.36 (3H, s,
-CH3); 13C NMR (500 MHz, CDCl3, δ ppm): 190.55, 160.94, 144.74, 138.54, 138.34, 130.37,
130.24, 129.12, 128.58, 128.44, 128.33, 127.22, 119.81, 117.13, 115.01, 66.48, 62.68, 55.56, 42.95;
MS (ESI) m/z = 372.19 (M + H)+; Rf value: 0.51 (CHCl3:MeOH, 9:1).

1-Phenyl-3-(4-(2-(piperidin-1-yl)ethoxy)phenyl)prop-2-en-1-one (PS-5): Intermediate 1 was
treated with N-benzylmethyl amine according to the general procedure to give the desired
product PS-5 as light brown, solid, yield 63%, m.p.: 89–91 ◦C; IR(KBr, cm−1): 1655 cm−1

(C=O, s); 1590 cm−1 (Ar C=C str, s), 1300–1100 cm−1 (C-N, m); 1H NMR (500 MHz, CDCl3,
δ ppm): 8.02–7.99 (2H, m, ArH), 7.79–7.76 (1H, d, J = 15.65 Hz, -CH), 7.63–7.55 (3H, m, ArH),
7.51–7.48 (2H, m, ArH), 7.42–7.39 (1H, d, J = 15.65 Hz, -CH), 6.94–6.93 (2H, d, J = 8.75, ArH),
4.18–4.15 (2H, t, J = 6 Hz, -CH2), 2.83–2.81 (2H, t, J = 5.9 Hz, -CH2), 2.55 (4H, s, 2(CH2)),
1.65–1.46 (6H, m, 3(CH2)); 13C NMR (500 MHz, CDCl3, δ ppm): 190.61, 160.90, 144.71,
138.54, 132.55, 130.22, 128.57, 128.43, 127.71, 119.85, 115.04, 66.04, 57.72, 55.05, 25.79, 24.06;
MS (ESI) m/z = 336.20 (M + H)+; Rf value: 0.51 (CHCl3:MeOH, 9:1).

1-Phenyl-3-(4-(2-(piperazin-1-yl)ethoxy)phenyl)prop-2-en-1-one (PS-6): Intermediate 1 was
treated with piperazine according to the general procedure to give the desired product
PS-6 as light yellow, solid, yield 65%, m.p: 96–99 ◦C; IR(KBr, cm−1): 1655 cm−1 (C=O,
s); 1596 cm−1 (Ar C=C str, s), 1300–1100 cm−1 (C-N, m); 1H NMR (500 MHz, CDCl3, δ
ppm): 8.01–7.99 (2H, m, ArH), 7.88–7.86 (1H, d, J = 11.95 Hz, -CH), 7.80–7.74 (2H, m, ArH),
7.52–7.47 (2H, m, ArH), 7.18–7.14 (1H, m, ArH), 7.00–6.98 (1H, d, J = 8.7 Hz, -CH), 6.94–6.92
(2H, d, J = 8.7, ArH), 4.16–4.14 (2H, t, J = 5.8 Hz, -CH2), 2.93–2.91 (4H, t, J = 4.7 Hz, 2(CH2)),
2.82–2.80 (2H, t, J = 5.8 Hz, -CH2), 2.77–2.75 (4H, t, J = 5.7 Hz, 2(CH2)), 2.65 (1H, s, NH);
13C NMR (500 MHz, CDCl3, δ ppm): 190.60, 160.88, 144.68, 138.51, 132.57, 130.23, 128.54,
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128.42, 127.74, 119.87, 115.04, 66.00, 57.68, 54.89, 45.97; MS (ESI) m/z= 337.19 (M + H)+; Rf
value: 0.25 (CHCl3:MeOH, 9:1).

3-(4-(2-Morpholinoethoxy)phenyl)-1-phenylprop-2-en-1-one (PS-7): Intermediate 1 was treated
with morpholine according to the general procedure to give the desired product PS-7 as
light pink, solid, yield 55%, m.p.: 104-106 ◦C; IR(KBr, cm−1): 1655 cm−1 (C=O, s); 1591 cm−1

(Ar C=C str, s), 1300–1100 cm−1 (C-N, m); 1H NMR (500 MHz, CDCl3, δ ppm): 8.01–8.00
(2H, d, J = 6.45 Hz, ArH), 7.79–7.76 (1H, d, J = 15.65 Hz, -CH), 7.62–7.55 (3H, m, ArH),
7.51–7.48 (2H, t, J = 7.55, 7.35 Hz, ArH), 7.44–7.39 (1H, d, J = 15.65 Hz, -CH), 6.94–6.93 (2H,
d, J = 8.55 Hz, ArH), 4.17–4.15 (2H, t, J = 5.55 Hz, -CH2), 3.75–3.73 (4H, t, J = 4.4 Hz, 2(CH2)),
2.84–2.82 (2H, t, J = 5.55 Hz, -CH2), 2.59 (4H, s, 2(CH2)); 13C NMR (500 MHz, CDCl3, δ ppm):
190.58, 160.78, 144.61, 138.51, 132.58, 130.23, 128.58, 128.43, 127.83, 119.93, 115.10, 66.88,
65.95, 57.51, 54.10; MS (ESI) m/z = 338.20 (M + H)+; Rf value: 0.36 (CHCl3:MeOH, 9:1).

1-Phenyl-3-(4-(2-(pyrrolidin-1-yl)ethoxy)phenyl)prop-2-en-1-one (PS-8): Intermediate 1 was
treated with pyrrolidine according to the general procedure to give the desired product
PS-8 as dark brown, solid crystalline, yield 50%, m.p: 105-107 ◦C; IR(KBr, cm–1): 1655 cm–1

(C=O, s); 1591 cm–1 (Ar C=C str, s), 1300–1100 cm–1 (C-N, m); 1H NMR (500 MHz, CDCl3,
δ ppm): 7.65–7.50 (3H, m, ArH, -CH), 7.44–7.40 (2H, t, J = 7.8 Hz, ArH), 7.37–7.32 (1H, m,
ArH), 7.21–7.19 (2H, d, J = 8.55 Hz, ArH), 6.99–6.97 (2H, d, J = 8.6 Hz, ArH) or 6.99–6.94 (2H,
m, ArH), 6.71–6.68 (1H, d, J = 14.35 Hz, -CH), 4.17–4.14 (2H, t, J = 5.9 Hz, CH2), 2.95–2.92
(2H, t, J = 6 Hz, CH2), 2.80–2.56 (4H, m, 2(CH2)), 1.95–1.76 (4H, m, 2(CH2)); 13C NMR
(500 MHz, CDCl3, δ ppm): 199.49, 158.32, 148.56, 142.73, 135.48, 130.16, 128.76, 127.41,
126.19, 125.14, 114.88, 67.00, 55.04, 54.66, 23.49; MS (ESI) m/z = 322.18 (M + H)+; Rf value:
0.51 (CHCl3:MeOH, 9:1).

3-(4-(2-(1H-Imidazol-1-yl)ethoxy)phenyl)-1-phenylprop-2-en-1-one (PS-9): Intermediate 1 was
treated with pyrrolidine according to the general procedure to give the desired product
PS-9 as light yellow, solid, yield 70%, m.p.: 93–96 ◦C; IR(KBr, cm−1): 1655 cm−1 (C=O, s);
1591 cm−1 (Ar C=C str, s), 1300–1100 cm−1 (C-N, m); 1H NMR (500 MHz, CDCl3, δ ppm):
8.02–7.99 (2H,m, ArH), 7.80–7.77 (1H, d, J = 15.55 Hz, CH), 7.62–7.61 (2H, d, J = 8.7 Hz,
ArH), 7.59–7.56 (1H, t, J = 7.5 Hz, ArH), 7.51–7.48 (2H, t, J = 7.75, 7.3 Hz, ArH), 7.44–7.40 (1H,
dd, J = 15.45, 7.3 Hz, -CH), 7.09–7.05 (1H, d, ArH), 7.05–7.03 (1H, m, ArH), 7.00–6.98 (2H, d,
J = 8.7 Hz, ArH), 6.90–6.89 (1H, d, J = 8.7 Hz, ArH), 4.37–4.35 (2H, t, J = 4.95, 5.1 Hz, -CH2),
4.27–4.25 (2H, t, J = 5.1 Hz, -CH2); 13C NMR (500 MHz, CDCl3, δ ppm): 190.58, 160.59,
144.50, 138.48, 138.40, 132.72, 130.27, 128.60, 128.17, 128.07, 120.40, 120.14, 117.13, 115.10,
66.53, 46.45; MS (ESI) m/z = 319.14 (M + H)+; Rf value: 0.48 (CHCl3:MeOH, 9:1).

3-(4-(2-(p-Methylpiperazin-1-yl)ethoxy)phenyl)-1-phenylprop-2-en-1-one (PS-10): Intermediate 1
was treated with N-methylpiperazine according to the general procedure to give the desired
product PS-10 as white, solid, yield 60%, m.p.: 138-141 ◦C; IR(KBr, cm−1): 1655 cm−1 (C=O,
s); 1590 cm−1 (Ar C=C str, s), 1300–1100 cm−1 (C-N, m); 1H NMR (500 MHz, CDCl3, δ ppm):
8.02–7.99 (2H,m, ArH), 7.80–7.76 (1H, dd, J = 15.65, 6.15 Hz, -CH), 7.63–7.55 (3H, m, ArH),
7.51–7.48 (2H, m, ArH), 7.44–7.39 (1H, dd, J = 9.6, 6 Hz, -CH), 7.00–6.93 (2H, dd, J = 8.7 Hz,
ArH), 6.90–6.89 (1H, d, J = 8.7 Hz, ArH), 4.16–4.14 (2H, t, J = 5.8 Hz, -CH2), 2.85–2.83 (2H,
t, J = 5.8, 5.01 Hz, -CH2), 2.64 (4H, s, -2(CH2)), 2.51 (4H, s, -2(CH2)), 2.31 (3H, s, CH3); 13C
NMR (500 MHz, CDCl3, δ ppm): 190.59, 160.87, 144.66, 138.53, 132.56, 130.26, 128.59, 128.43,
127.76, 119.88, 115.04, 66.15, 57.01, 55.00, 53.50, 45.94; MS (ESI) m/z = 351.21 (M + H)+; Rf
value: 0.24 (CHCl3:MeOH, 9:1).

3.5. Biological Activity
3.5.1. In Vitro Studies
In Vitro AChE Inhibition

The inhibitory potential of synthesized compounds was evaluated for brain AChE by
the widely used Ellman et al. process [43,57,58]. The method involved using spectroscopic
investigation at 450 nm. All the compounds with different concentrations were evaluated
in triplicate including donepezil (standard AChE inhibitor).
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AGE Inhibitory Activity

The synthesized compounds were assayed by the spectrofluorometric method for
inhibition of glucose-mediated protein glycation. All the compounds and aminoguanidine
(positive control) with different concentrations were evaluated in triplicate [74].

Free Radical Scavenging Activity

The activity was tested using the spectrophotometric Blois method [75].

3.5.2. In Vivo Studies
Animals

Wistar rats (200−250 g, either sex) were used for in vivo evaluation. The protocol was ap-
proved by IAEC, Chitkara University, Punjab, India (approval number: IAEC/CCP/22/01/PR-09).

Dementia Induction

To induce cognitive impairment in rats, solutions of Streptozotocin (STZ, 3 mg/kg) in
artificial cerebro-spinal fluid (ACSF) were given as i.c.v. (intracerebroventricular) injections.
The STZ injections were administered bilaterally on days 1 and 3 of the experimental
protocol. The amount of STZ injected was adjusted to ensure that 10 µL was delivered to
each site. A control group of rats was given i.c.v. injections of ACSF [76].

Experimental Groups

The rats used in the study were divided into six groups (n = 6). The treatment and
cognitive investigation in the rats were performed as shown in Figure 9.
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Figure 9. The flow of experimental protocol for in vivo studies.

Group I (ACSF): Intracerebroventricular injections of ASCF (10 µL) on day 1 and day 3.
Group II (STZ + vehicle): On days 1 and 3, group II was given intracerebroventricular

injections of STZ (3 mg/kg, 10 µL).
Group III (STZ + Donepezil): Consisted of STZ-treated rats that received donepezil

(5 mg/kg; p.o.) from day 9 to day 22 [77].
Groups IV, V, and VI (STZ + PS10): Following intracerebroventricular injections of

STZ, animal groups were administered different doses of PS10 (2, 5, and 10 mg/kg, p.o.,
respectively), from 9 to 22 days.

Behavioral Studies Using MWM (Morris Water Maze)

The MWM test was utilized by researchers to note the cognitive behavior of rats in
terms of memory and learning [78]. The rats were trained from day 19 to 22, four times
daily, to locate a hidden platform, and the time to locate the hidden platform was noted
as ELT (escape latency time). Treatment with either donepezil or PS10 was administered
60 min before the training session. On day 23, the platform was deleted, and the same
procedure was performed to test animal memory by noting the time spent by the rats as
the target quadrant (TSTQ), with a limit of 120 s [79].
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Brain Biochemical Estimations

After the behavioral experiment was completed, the rats were euthanized under mild
anesthesia using cervical dislocation, and their brains were extracted. The homogenates
were made in a buffer (pH 7.4) for further analysis. AChE activity [58], total protein
levels [80], reduced GSH levels, and thiobarbituric acid reactive species (TBARS) levels [81]
were measured using the brain homogenates.

3.6. Molecular Dynamic Simulation Studies

Using the Schrodinger suite 2021-1’s Desmond module and a Linux (Ubuntu) oper-
ating system, the molecular dynamics (MD) simulation was executed with the aid of an
NVIDIA Quadro K2200 graphics card. A simulation period of 100 ns was conducted to
investigate the thermodynamic stability of PS10 complexed with the AChE enzyme [82].
For stimulatory studies, the complex was built with the TIP3P explicit solvent system and
centered with an orthorhombic periodic boundary box, followed by pH adjustment by Na+

and 0.15 M salt concentration. The built complex system minimization was carried out with
the OPLSE_2005 force field. The NPT ensemble was a simulator with a fixed temperature
of 300 K using the Nosé–Hoover Chain method, 1.0 fs time step, and 1.01325 bar. In order
to investigate the trajectories, the simulation interaction graphs were constructed with a
trajectory path of 4.8 and an energy interval of 1.2 ps. During the simulation, the structural
dynamic patterns of the protein–ligand complex were assessed as the RMSD (root mean
square deviation) for both components of the complex. The RMSD plot recorded the aver-
age change in the displacement of the backbone atoms of the protein and ligand structures.
Additionally, the root mean square fluctuations (RMSF) for the protein and ligand in the
complex were also computed and plotted the extent of the flexibility of each component.
The RMSF represents the minimized fluctuations of the protein–ligand complex.

4. Conclusions

In this study, the objective was to assess the potential of the designed novel aminoethyl-
O-chalcone-based derivatives having multi-functional potential against AD. The com-
pounds were evaluated using in silico, in vitro, and in vivo assays to determine their
activity against varied targets like AChE, AGE formation, and free radical scavenging. The
design of the derivatives was based on the structural aspects of the biogenic molecule acetyl-
choline and the biological atmosphere within the active site of the AChE enzyme. The in
silico pharmacokinetic profiles of the synthesized compounds revealed their drug-likeliness
with good brain penetrability and gastrointestinal absorptivity. Most of the compounds
exhibited significant inhibitory activities against AChE and AGE formation with additional
antioxidant properties. The SAR analysis suggested that the potential for AChE inhibition
was mainly attributed to the type of amino group present in the compounds. The com-
pound PS10 with N-methylpiperazine substitution exhibited considerably higher AChE
inhibitory potential than donepezil. The compound PS5 also exhibited some significant
inhibition of AChE with respect to the reference. Additionally, the docking analysis showed
that N-methylpiperazine (PS10) and piperidine (PS5) interacted with the crucial amino
acids of the active site of the AChE enzyme. Moreover, these compounds had significant
free radical scavenging ability and AGE product formation inhibition. Among all the
synthesized aminoethyl-O-chalcone derivatives, PS5 and PS10 were found to be competent
multifunctional molecules. The biochemical estimations also showed significant reductions
in TBARS and GSH (oxidative stress markers) and AChE activities. These multifunctional
aspects make these newly designed and synthesized compounds potential candidates for
the development of drugs for AD and could be further explored to manage AD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28186579/s1.
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