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Abstract: The structural determination and characterization of molecules, namely proteins and
enzymes, is crucial to gaining a better understanding of their role in different chemical and biological
processes. The continuous technical developments in the experimental and computational resources
of X-ray diffraction (XRD) and, more recently, cryogenic Electron Microscopy (cryo-EM) led to an
enormous growth in the number of structures deposited in the Protein Data Bank (PDB). Bioinorganic
chemistry arose as a relevant discipline in biology and therapeutics, with a massive number of studies
reporting the effects of metal complexes on biological systems, with vanadium complexes being one of
the relevant systems addressed. In this review, we focus on the interactions of vanadium compounds
(VCs) with proteins. Several types of binding are established between VCs and proteins/enzymes.
Considering that the V-species that bind may differ from those initially added, the mentioned
structural techniques are pivotal to clarifying the nature and variety of interactions of VCs with
proteins and to proposing the mechanisms involved either in enzymatic inhibition or catalysis.
As such, we provide an account of the available structural information of VCs bound to proteins
obtained by both XRD and/or cryo-EM, mainly exploring the more recent structures, particularly
those containing organic-based vanadium complexes.

Keywords: X-ray crystallography; cryogenic Electron Microscopy (cryo-EM); protein data bank
(PDB); vanadium and vanadium complexes; vanadium-containing proteins

1. Introduction

Many studies have addressed vanadium bioinorganic chemistry and the effects of
vanadium compounds (VCs) on living beings, one of the driving forces of these research
activities being their possible applications in therapeutics [1–6]. This has led to an interest in
understanding interactions of VCs with proteins [1,7–16]. Namely, efforts to understand the
transport of VCs in blood led to many studies of the interaction of vanadium compounds
with human serum transferrin (HTF), human serum albumin (HSA), hemoglobin (Hb) and
immunoglobulins [17–23].

For some time, studies of vanadium haloperoxidases and nitrogenases, as well as
of hyper-accumulators of vanadium (e.g., some ascidians), were among the main foci of
researchers, leading to the full characterization of several vanadium-containing proteins
through X-ray diffraction methods (SC-XRD) [10,24–31]. The similarity between mono-
vanadate and phosphate and studies associated with the clarification of the inhibition of
ATP-dependent enzymes (ATP, adenosine triphosphate) and phosphatases by vanadate [10]
also gave rise to the publication of many SC-XRD structures, including vanadate species
bound to several phosphatases [10,27,28,32].
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The belief that the therapeutic action of VCs may be associated with the binding of
vanadium compounds to proteins has led to an increase in interest in the characterization
of such interactions, namely by techniques such as single crystal X-ray diffraction analysis
(SC-XRD) and cryogenic Electron Microscopy (cryo-EM). In fact, the accurate characteri-
zation of V-protein interactions is crucial to clarifying the putative role of vanadium and
vanadium compounds, namely, but not exclusively, as therapeutic agents. Despite the sub-
stantial amount of information obtained using a wide range of biochemical and biophysical
methods—e.g., Electron Paramagnetic Resonance (EPR), Circular Dichroism (CD), 51V Nu-
clear Magnetic Resonance (51V NMR), denaturing urea polyacrylamide gel electrophoresis
(urea-PAGE), Small-angle X-ray Scattering (SAXS) and electrochemistry [17,33–35]—as
recently reviewed by us [15], structural data, freely available in the Protein Data Bank
(PDB), is often required to complement it [36–38].

PDB is nowadays a vital tool for anyone involved in protein studies from biological,
biochemical or therapeutic points of view, in addition to educational purposes, as recently
highlighted by the COVID-19 pandemic [39]. Following the first X-ray protein structures
discovered in the 1950s and 1960s (namely myoglobin and hemoglobin by Kendrew and
Perutz, respectively, who shared the 1962 Nobel Prize in Chemistry), the need for an open
repository for crystallographic data rapidly arose. In 1971, the PDB was launched shortly
after the Cold Spring Harbor Symposium, entitled “Structure and Function of Proteins at
the Three-Dimensional Level” [40]. Since then, the number of deposited structures has expo-
nentially increased, reaching 100,000 entries in 2014, 150,000 in 2019 and 200,000 in January
2023 (currently, in September 2023, there are more than 209,000 entries). For more detailed
insights on the subject, we recommend several papers by Berman, co-founder and director
emerita of the PDB, namely those published within the scope of the 50th anniversary of the
PDB celebrated in 2021 [41–43].

The massive increase in number of available structures in the PDB is associated with
the astounding technical development of structural experimental methods. In 2015 and
2021, we had the opportunity to delve into the then deposited structures of vanadium-
related proteins in the PDB [10,15]. Since then, reflecting the substantial evolution of the
structural biology field itself, a considerable number of new V-containing protein structures
have been released. Most researchers are now more aware of the several modifications that
complexes of labile metal ions may undergo when added to biological media [44–49]. In
fact, the action of proteins/enzymes may be inhibited and/or modified, and the structure of
the original complex may change upon binding to proteins. Thus, sorting out the changes
occurring and the several types of binding that may be established between VCs and
proteins/enzymes is very important, and the objective of the present review is mainly
to provide an account of the presently available structural information on vanadium
complexes bound to proteins. As such, in this review, we mainly propose to explore the
more recent structures—obtained by both X-ray crystallography and cryo-EM—particularly
those containing organic-based vanadium complexes, highlighting their contribution to a
more effective knowledge on the roles and potential use of this versatile metal.

2. Vanadium-Containing Proteins and X-ray Crystallography

Despite the recent advent of cryo-EM, X-ray crystallography is still the top structural
methodology, taking advantage of its continuous development since 1895, when Röntgen
identified X-rays, and the subsequent first years of the 20th century, when its bases were
postulated [50]. Such developments are recognized at different levels, namely, but not
exclusively, at the level of (1) protein production and purification protocols (e.g., the
use of bacterial, insect and mammal expression systems), (2) crystallization processes
(e.g., automated crystallization and new crystallization additives) and (3) instrument
and data-processing software improvements (e.g., brilliant synchrotron sources and fast
detectors) [51–54].

The correct determination of different X-ray structures has been pivotal in many
relevant chemical, biological and biochemical achievements, as attested by the numerous
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Nobel Prize winners in Physics, Chemistry and Medicine associated with the technique.
Similarly, it is not surprising to confirm that over 85% of the total number of PDB entries
have been determined using single crystal X-ray crystallography. V-containing proteins
are not an exception, and most of the currently available structures in the PDB with both
inorganic- and organic-based V complexes were successfully crystallized and later properly
solved by X-ray crystallography. In this work, we will mainly address proteins containing
bound vanadium complexes with organic molecules as ligands published since 2015.

2.1. Inorganic-Based Vanadium Complexes
2.1.1. Monovanadates

Table 1 summarizes the released V-related crystallographic protein structures since
2015, and, with no surprise, the predominance of ortho- and metavanadate species is
notorious. In fact, the similarity between monovanadate and phosphate and studies associ-
ated with the clarification of the inhibition of ATP-dependent enzymes and phosphatases
by vanadate [10] also gave rise to the publication of many SC-XRD structures, including
vanadate species bound to several phosphatases, namely protein tyrosine phosphatases
(PTPs) [10,27,28].

Table 1. SC-XRD structures of monovanadate-containing proteins available in the PDB since 2015.
The identifier and the name/chemical structure of each V compound, as well as the respective PDB
codes, are provided. a The publication associated with the PDB entry is not available.

V Species Identifier V Species Name/Chemical Structure PDB Codes

V Vanadium ion 6DYH [55], 6DYL [55], 7Q0T [16]

VO4

Orthovanadate
VVO4

3−
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Table 1. Cont.

V Species Identifier V Species Name/Chemical Structure PDB Codes

VN3

Metavanadate
VVO3

−
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PTPs reverse the effect of protein tyrosine kinases by removing the phosphate group
from phosphorylated tyrosine residues, controlling several cell signaling mechanisms [91–93].
This is the case for the low-molecular-weight protein tyrosine phosphatase (LMPTP) of
the insulin receptor, putatively implicated as an anti-diabetic (type 2) biological target [94].
Stanford and collaborators solved a 1.86 Å resolution structure of the double mutated
(W49Y and N50E) bovine LMPTP in the complex with vanadate and an uncompetitive
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inhibitor (PDB: 5JNW). Vanadate, covalently bound to the sulfur moiety of the active site,
Cys12, in a tetragonal VO3 adduct, mimics the phosphocysteine intermediate, contributing,
combined with other experimental approaches, to revealing the uncompetitive nature of the
inhibitor that is nearly bound (Figure 1) [61]. As previously highlighted by Crans and co-
workers [95], whether the reduction in VV takes place or not depends on a combination of
parameters, namely pH and oxidovanadium(V) concentration, as well as the presence and
concentrations of other complexing ligands. The structure depicted in Figure 1 illustrates a
VV–thiol binding that certainly affects the possibility of its participation in redox reactions.
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Figure 1. Structural representation of the VO3 adduct covalently bound to the Cys12 residues
of bovine LMPTP (PDB: 5JNW). The axial oxygen of orthovanadate is not present, leading to a
tetrahedral geometry. The adduct is also stabilized by multiple H-bonds with the residues of the
so-called P-loop, a conserved active-site sequence motif, C(X)5R, among all PTPs (distances are
represented as dashed lines and given in Å).

Similarly, human PTP1B (PDB: 7L0H) and Yersinia pestis YopH (PDB: 7L0M) phos-
phatase variants have been co-crystallized with vanadate to investigate the role of the
characteristic WPD loop in the catalytic performance [73]. Shen and collaborators proved,
through kinetic studies, that both variants preserve their catalytic activity, although with
a different pH activity range. Both co-crystallized 2.1 Å and 2.0 Å resolution structures
support the presence of a WPD-loop closed conformation, which was later confirmed by
MD (Molecular dynamic) simulations [73].

There is also an entry of a 2.15 Å resolution structure of vanadate-bound bromoper-
oxidase from Corallina pilulifera (PDB: 7QWI), which was recently released. However, the
entry still lacks an associated publication.

From a different perspective, vanadate has been used as a crystallographic phasing
agent. One of the main experimental challenges of X-ray crystallography is solving the
so-called “phase problem” to calculate an electron density map and obtain the respec-
tive structure. Currently, due to the massive number of PDB entries, most of the new
structures are solved through molecular replacement [96,97]. If no similar proteins are
found, alternative methods can be used, including Single/Multiple Anomalous Dispersion
(SAD/MAD) and the use of different heavy atoms (e.g., mercury, gold and platinum) for
single/multiple isomorphous replacement (SIR/MIR). For a more detailed overview on
those methods, including their advantages and disadvantages, we recommend specialized
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publications [98–102]. In 2020, Omari and collaborators proposed the use of vanadate to
obtain experimental phases while circumventing some of the drawbacks of the traditional
phasing methods (e.g., eliminating the use of selenomethionine variants). The integral
membrane rabbit sarcoplasmic reticulum Ca2+-ATPase was incubated with orthovanadate,
and a 3.13 Å resolution structure (PDB: 6YSO) was obtained from twelve different angle
360◦ datasets collected at a wavelength of 2.2604 Å. Despite this low resolution, the authors
were able to identify two vanadium atoms in the structure (a ratio of one vanadium per
994 protein residues) combined with some other identified sulfur atoms. This strategy
allowed the protein initial phases to be calculated and further improved by the subsequent
steps of model building and refinement [79].

Although they are less common, some protein structures (namely oxidoreductases)
with oxidovanadium(IV) are also available, including two different iron(II)- and 2-(oxo)-
glutarate-dependent (Fe/2OG) oxygenases known to O2-functionalize C-H bonds: L-
arginine 3-hydroxylase (VioC) from Streptomyces vinaceus, which hydroxylates the C3 of the
L-arginine of the antibiotic viomycin (PDB: 6ALR) [83], and the taurine 2OG dioxygenase
(TauD) from Escherichia coli (PDB: 6EDH) [85]. Briefly, Fe/2OG oxygenases contain a
Fe2+ cofactor that is oxidized to a ferryl intermediate (FeIV-oxido), while 2-oxoglutarate
is reduced to succinate. In the first case, several crystallographic VioC structures with
different bound substrates and products were compared, including a 1.55 Å resolution
VioC-vanadyl structure (also containing L-arginine and succinate) that mimics the unstable
ferryl intermediate. The well-defined electron density of the VIVO2+ moiety exhibits a
significantly distorted octahedral geometry interacting with two His and a Glu residues and
with one of the O-atoms of the succinate molecule, while the sixth position is not completed
(Figure 2). Further computational analysis was carried out revealing the role of Arg334
in the H-bond stabilization of the intermediate [83]. Interestingly, the V=O bond distance
was determined to be 1.87 Å, which is notably longer than the theoretically established
values [103], which, as reported before [104], is an artefact due to the photoreduction of
vanadium during the X-ray data collection.
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O-atom of the succinate molecule. No electron density (not represented for better clarity of the
adduct) was found for the sixth coordination position of V.
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Finally, it should be highlighted that vanadium is also found in V-nitrogenases (V-
Nases) as part of the catalytic FeVco cofactor. Nitrogenases can catalyze a reduction in
atmospheric N2 to NH4

+, thereby playing a relevant role in the nitrogen cycle. Moreover,
nitrogenases can also catalyze Haber–Bosch and Fischer–Tropsch reactions under mild
ambient conditions, opening up prospective industrial applications [7,105,106]. In 2021, we
reviewed the most recent structural insights of V-Nases, and further information on the
topic can be found in this work and the references therein [15]. Since then, a novel 1.05 Å
resolution structure of the high-CO state V-Nase from Azotobacter vinelandii (PDB: 7AIZ)
has become available. This structure presents, for the first time, a terminal CO bound to the
FeVco cofactor (iron Fe6), in addition to the already characterized µ2-bridging CO (iron
Fe2 and Fe6), allowing the catalytic process at the level of CO reduction and hydrocarbon
formation to be seen [89].

2.1.2. Polyoxidovanadates

Polyoxidovanadates (POVs), as well as polyoxidometalates in general, have been
attracting increasing interest from the research community, and several prospective bi-
ological and therapeutic functions have been proposed, namely as insulin-enhancing
agents [107–109]. Herein, we do not intend to further explore this subject, but we recom-
mend the informative publication by Aureliano (and references therein) on the subject [110].

As expected, protein–POV interactions are crucial to their biological effects. Recent
reviews explore this, including a complete structural analysis of the entries in the PDB prior
2015 (e.g., PhoE and YopH phosphatases, ecto-nucleoside triphosphate diphosphohydrolase
(NTPDase) and tyrosine kinase) [15,110,111]. Protein–decavanadate ([HnV10O28]−(6−n),
V10) interactions are reported particularly often, but smaller POVs, including dimeric (V2),
trimeric (V3) and tetrameric (V4) vanadates, are also reported on.

To the best of our knowledge, the currently available SC-XRD protein-V10 structures
have all been released prior 2015. However, since then, as shown in Table 2, four additional
SC-XRD structures with smaller POVs have been deposited and are briefly covered next.

Moise and coworkers were able to obtain two high-resolution (1.12 Å) variant struc-
tures (W354H and W354Y) of the PTP YopH from Yersinia enterocolitica with a bound
V2 adduct (PDBs: 4ZI4 and 4ZN5). In both examples, YopH was co-crystallized with
metavanadate (VO4

3−) and a divanadate ester with glycerol, the latter added as a crystal
cryo-protectant. The latter is observed at the active center, with one of the V moieties
interacting with Cys403. The structural results, supplemented with kinetic assays using
p-nitrophenyl phosphate (p-NPP) as the substrate, showed that the WPD loop is in a
quasi-open position that is not compatible with a catalytically active form of YopH. As
such, taking advantage of the inactive state of the protein, the adduct was not decomposed
and was further characterized using computational approaches (e.g., natural bond orbital
(NBO)), revealing that POVs can interact with phosphatases [58].

A 1.18 Å resolution structure of lysozyme with a cyclo-tetrametavanadate adduct (PDB:
7ZU6) was recently reported by Tito and collaborators but, so far, the associated publication
is not available. A similar compound is found in other two previous structures: the ABC
transporter BtuCD from Escherichia coli (PDB: 1L7V) and the transferase C3 exoenzyme for
Clostridium botulinum (PDB 1UZI) [112,113].

Finally, Feder et al. published a 1.95 Å resolution structure of red kidney bean purple
acid phosphatase bound to adenosine divanadate (see Section 2.2.1 for further details),
which also contains two POV (hexa- and heptavanadate) species at the protein surface (PDB:
6HWR). Heptavanadate is known to be a partial hydrolytic product of V10, as reviewed
by Aureliano and co-authors [111]. However, these moieties were not discussed by Feder
et al., and their potential biological role was not assigned [81].
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Table 2. Single crystal X-ray structures of polyoxidovanadates-containing proteins available in the
PDB since 2015. The identifier and the name/chemical structure of each V compound, as well as the
respective PDB codes, are provided. a The publication associated with the PDB entry is not available.

V Species Identifier V Species Name/Chemical Structure PDB Codes

DVG

Divanadate Glycerol ester (DGV)
V2C3H10O8
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2.2. Organic-Based Vanadium Complexes
2.2.1. Nucleotides

As previously indicated, vanadium is often used as a substrate analogue or inhibitor
of a great range of enzymes. In this sense, there are quite a few examples of SC-XRD protein
structures containing V moieties attached to nucleosides (replacing the phosphate group)
or to nucleotides, namely adenosine diphosphate (ADP), as summarized in Table 3. All
these structures contain oxidovanadates (V)-replacing phosphate, so they correspond to
vanadium-substituted nucleotides.
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Table 3. Single crystal X-ray structures of V-nucleoside and V-nucleotide protein structures available
in the PDB since 2015. The identifier and the name/chemical structure of each V compound, as
well as the respective PDB codes, are provided. a The publication associated with the PDB entry is
not available.

V Species Identifier V Species Name/Chemical Structure PDB Codes

KL2

Adenosine-2′,3′-vanadate
VC10H14N5O7
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Table 3. Cont.

V Species Identifier V Species Name/Chemical Structure PDB Codes

AD9

ADP Metavanadate
VC10H16N5O13P2
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As indicated in Table 3, there are two structures in which vanadate forms an adduct
with adenosine: adenosine-2′,3′-vanadate and adenosine divanadate. In the first case, Pinto
and colleagues were able to obtain a 2.10 Å resolution structure (PDB: 6RVZ) of the human
deadenylase angel homolog 2 (ANGEL2) soaked with adenosine-2′,3′-vanadate, and com-
pared it with the respective 1.45 Å resolution apo-protein structure (PDB: 6RW0), revealing,
combined with a biochemical approach, its function as a 2′,3′-cyclic phosphatase [114].
During its use by the cell, RNA is known to exhibit different chemical groups at the 3′ end,
namely a 2′,3′-cyclic phosphate group that is then removed by ANGEL2. Adenosine-2’,3’-
vanadate, previously characterized in solution [121] and by X-ray analysis [122], mimics the
transition state assumed upon 2′,3′-cyclic phosphate hydrolysis and sits at the active site
next to one Mg2+ ion in a positively charged groove putatively involved in the binding of
the RNA ribose–phosphate backbone. The adenine base establishes a π-stacking interaction
with Tyr313, and the rest of the adenosine-2′,3′-vanadate moiety is stabilized by a direct
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coordination to Mg2+ and a H-network involving different (Asn353, His310 and His533)
protein residues (Figure 3) [114].
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Figure 3. Structural representation of the adenosine-2′,3′-vanadate adduct bound to human dead-
enylase, ANGEL2 (PDB: 6RVZ). Different O-atoms of vanadate and ribose moieties are interacting
with a Mg2+ ion and H-bonded to N-atoms of three protein residues: His310, Asn353 and His533
(distances are represented as dashed lines and given in Å). Tyr313 (also represented) stabilizes the
adenine moiety via a π-stacking interaction.

In addition, as previously mentioned in Section 2.1.2, a 1.95 Å resolution structure
of red kidney bean purple acid phosphatase (rkbPAP) bound to adenosine divanadate
(PDB: 6HWR) is also available [81]. Purple acid phosphatases can catalyze different sub-
strates, including ATP and ADP containing a heterovalent Fe3+-M2+ center (in which M
can correspond to Fe, Zn or Mn). The apo-rkbPAP crystals were soaked with vanadate
and adenosine, which formed in situ an adenosine divanadate moiety, which, in turn, is
an analogue of the ADP hydrolysis to adenosine monophosphate (AMP), mimicking the
expected transition state. Although the adenine base is not included in the model due to its
lack of electron density considering that it is not stabilized by protein residues, docking
studies supported its presence. Both divanadate and ribose moieties are visible at the active
site and are stabilized by both Fe3+ and Zn2+ ions (proximal vanadate) and H-bonded to
different protein residues in a five-coordinate trigonal bipyramidal geometry (proximal
vanadate) and a four-coordinate tetrahedral (distal vanadate) geometry. Based on such
observations, the authors proposed a rkbPAP catalytic model by which the nucleophilic O,
the one that interacts with Fe3+ and Zn2+, binds to the P moiety of the substrate, allowing
the opposite bond to be broken and for it to be released [81].

Uridine-2’,3’-vanadate, previously characterized in solution [121], was found in two
different structures in the PDB. In the first case, uridine-2′,3′-vanadate was used as a SAD
phasing agent to solve the structure of bovine pancreatic ribonuclease A (RNase), yielding
a 1.90 Å resolution structure (PDB: 6YO1) (for further insights on the use of V-based
compounds as crystallographic phasing agents, please consult Section 2.1.1). The data were
collected at a specific V wavelength (2.2604 Å), and the protein structure was easily solved.
A second data collection was carried out at a standard synchrotron wavelength (1.7711 Å),
and it was still possible to determine the structure, opening up the possibility of the regular
use of V-SAD phasing agents [79].

The second case is a co-crystallization 2.25 Å resolution structure of the uridine-
specific Nsp15 endoribonuclease from Severe Acute Respiratory Syndrome Coronavirus
2 (SARS CoV-2, PDB: 7K1L). Kim and collaborators investigated its potential role as a
therapeutic target during the recent COVID-19 pandemic, using a combined biochemical
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(nuclease activity assays), biophysical (differential scanning fluorimetry, DSF) and struc-
tural rationale [115]. The authors solved five SC-XRD Nsp15 structures with three different
nucleotides (5′UMP, 3′UMP and 5′GpU), tipiracil (an uracil derivative synthetic substrate
analogue) and uridine-2′,3′-vanadate as a transition state analogue. The last structure
revealed uridine-2′,3′-vanadate moiety at the active site. The uracil base interacts with
residues Ser294 and Ser346; the vanadate, covalently bound to the ribose moiety, sits where
the 3′-phosphoryl group was observed (5′GpU and tipiracil structures) and is H-bonded to
protein residues (His250, His235, Lys290, Thr341 and Gly247) and water molecules. Based
on structural data, a two-step reaction mechanism was proposed (3′-uridine monophos-
phate as final product), contributing to a better understanding of the putative inhibition of
the enzyme as a viable therapeutic option [115].

Both ortho- and metavanadate moieties bound to ADP molecules have been obtained,
leading to a well-known model for ATP. One example is the case of a 2.25 Å resolution
structure of the pre-powerstroke state of the human nonmuscle myosin-2C motor domain
(PDB: 5I4E), which, using complementary mutagenesis, kinetics and molecular dynamics
techniques, provided further insights into the structural changes upon F-actin binding (e.g.,
the existence of an allosteric communication between the distal end of the domain and the
active site) [116].

More recently, the myosin-2 motor domain from the model organism Dictyostelium
discoideum was studied by Franz and coworkers [118], who obtained two variants by replac-
ing the two hotspot threonine residues in the connecting loop (W-loop) with two alanine
residues (M765AA) or three glycine residues (M765GGG). Both M765AA and M765GGG vari-
ants were co-crystallized with 2 mM ADP, 2 mM metavanadate and 2 mM MgCl2, and
two pre-powerstroke state structures were solved and deposited at a 2.60 Å resolution
(PDB: 7B1A) and 2.55 Å resolution (PDB: 7B19), respectively. A structural analysis revealed
a helix-mediated (W-helix) communication pathway during ATP hydrolysis, controlling
the product release, while kinetics and in vitro motility assays showed that the M765GGG

variant significantly increased its ATPase activity, decreasing its motor ability [118].
Interestingly, the authors of the described red kidney bean purple acid phosphatase

(rkbPAP) structure with adenosine divanadate (PDB: 6HWR), were also able to crystallize
a 2.20 Å resolution structure of rkbPAP soaked with vanadate and ADP, leading to the
in crystallo formation of ADP metavanadate (PDB: 6PY9). This substrate analogue was
found at the active site and the vanadate moiety, H-interacting with both ions of the metal
center (Zn2+ and Fe3+) and Asn201 through oxygen atoms and adopting a four-coordinate
tetrahedral geometry that mimics the substrate-bound state. The rest of the molecule are
stabilized by a H-bond network with protein residues and water molecules, even though
the ribose moiety lacks them. The structure was later used in complementary docking
studies with ADP and ATP, revealing additional insights into the substrate binding, which
will likely be useful for future biotechnological applications [117].

Related complexes with other nucleotides—cytidine-5′-monophosphate-2′,3′-vanadate
and guanosine-5′-monophosphate-2′,3′-vanadate—are also found in the PDB, interacting
with ribozymes, which are well-known RNA molecules that can catalyze some biochemical
reactions. We are focused on proteins, so a detailed characterization of those cases will not
be provided here. Nevertheless, we note that both molecules were used as transition state
analogues, enlightening the catalytic mechanisms of the respective ribozymes. Cytidine-5′-
monophosphate-2′,3′-vanadate is present in two low-resolution crystallographic structures
of the hammerhead ribozyme, at 2.99 Å (PDB: 5EAO) and 3.20 Å (PDB: 5EAQ) resolu-
tions [119]. In turn, guanosine-5′-monophosphate-2′,3′-vanadate is present in two equally
low-resolution structures of the pistol ribozyme, at 2.80 Å (PDB: 6UEY) and 3.10 Å (PDB:
6UF1) resolutions [120].

2.2.2. Putative Therapeutic V-Complexes and Model Proteins

The use of vanadium compounds (VCs) with small organic ligands, as a means to
overcome the low oral absorption rate of inorganic salts, has been common in the last
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few decades [123–126]. Several carrier ligands have been proposed, and an extensive
number of publications cover their promising therapeutic results against different patholo-
gies, including diabetes and several types of cancer (e.g., breast, ovarian, prostate and
testicular) [1,127–129].

Despite the considerable amount of research on the interactions of VCs with proteins—
namely blood transporters such as HTF and HSA—using a great range of experimental
techniques in solution [15,17,21,130,131], the respective SC-XRD characterization has been
significantly hampered. However, the use of crystallographic protein models allowed for
relevant structural insights, overcoming the crystallization bottlenecks found with those
blood transporters and other proteins. In the last years, some SC-XRD studies of oxi-
dovanadium(IV and V) complexes bound to proteins have been reported, namely involving
the VIVO2+ center. The first SC-XRD structure involving the oxidovanadium(IV) ion was
reported in 2014 [104] and a few others have been reported since 2021 [16,75,132–134].
Table 4 summarizes the six VCs’ organic ligands bound to three different model proteins
(lysozyme, RNase and trypsin) in the PDB, published since 2015, which will be discussed
in the next sections.

Hen Egg White Lysozyme (HEWL)

Hen Egg White Lysozyme (HEWL) is a small anti-microbial glycoside hydrolase able
to hydrolyze peptidoglycan found in bacteria’s cell walls [135]. HEWL is perhaps the most
common crystallographic protein model known to produce robust and well-diffracting crystals
in diverse experimental conditions (e.g., different precipitant agents and pH values). As such,
there are numerous examples of soaked HEWL structures in the PDB containing different
compounds, namely metal-based complexes such as those of Pt, Au, Ru, Mn and Re [136–141].

From a chronological point of view, 2014 marks the release of the first HEWL–vanadium
structure: a 1.28 Å resolution structure of HEWL-VIVO(picolinato)2 (PDB: 4C3W). Briefly,
we were able to model an adduct at the active site bound to the side chain of Asp52 in a
distorted octahedral geometry; further EPR and DFT studies confirmed the oxidation state
of the metal despite the detected long V=Ooxido distance due to its reduction in VIV to VIII

during the data collection [104].
Following this pioneering crystallographic structure, the first to confirm a protein–

VIV binding by SC-XRD, an increasing attention has been devoted to HEWL. In 2022, a
thorough experimental and computational study on the binding of VIVO2+, VIVOL, VIVOL2
and VVO2L moieties to proteins was published, which includes the characterization of two
high-resolution SC-XRDs of HEWL soaked with VIVOSO4, 2,2′-bipyridine (bipy) and 1,10-
phenanthroline (phen) [16]. Complexes with both ligands were previously characterized,
showing interesting anticancer and antiparasitic properties [1,46,127,142–144]. To further
clarify their potential behavior upon protein binding, both VIVO-complexes with bipy
and phen were used in soaking experiments with HEWL, and two VIVOL structures were
obtained at 1.19 Å (PDB: 7Q0U) and 1.12 Å (PDB: 7Q0V) resolutions, respectively.

The first structure presents a single VIVO(H2O)(bipy) adduct at the active site (Figure 4).
V adopts a nearly octahedral geometry bound to the O-donors of the side chains of Asp52
and Asn46, the two N-donors of bipy, the Ooxido atom and a water molecule. The adduct is
also stabilized by H-bonds (Asp52 and Asn46) and by hydrophobic interactions (Glu35,
Gln57 and Val109). The second structure exhibits more than one putative binding site.
Similarly to the previous structure, a VIVO(H2O)(phen) adduct also sits at the active site
bound to the side chains of residues Asn46 and Asp52, although with a lower occupancy
and higher B factors, suggesting a more disordered moiety. It should be highlighted that
additional V atoms were located next to different aspartate residues (Asp101 and Asp119),
but the presence of phen moieties was not clearly revealed by the electron density [16].
Globally, this also confirms the previously indicated potential of Asp side groups to bind
VIVO2+ centers [145].
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Table 4. Structures of organic-based vanadium-complexes-containing proteins, obtained by single
crystal X-ray diffraction analysis, available in the PDB since 2015.

Organic Molecule Name/Chemical Structure PDB Codes

Picolinato
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Figure 4. Structural representation of the VIVO(H2O)(bipy) adduct covalently bound to the Asn46
and Asp52 residues of HEWL (PDB: 7Q0U), determined by X-ray crystallography.

The structural results described were complemented and validated by several different
theoretical and experimental techniques. In brief, (1) docking simulations proved the role of
microsolvation for the chiral discrimination of the binding region; (2) QM/MM experiments
favored the proposed VIVO(H2O)(phen) adduct (∆∆Gaq value of 5.8 kcal mol−1), despite
the partial lack of electron density in one of the rings of phen; (3) EPR data of HEWL
crystals incubated with VIVOSO4 and phen/bipy, similar to the one recorded in solution,
corroborate the existence of the modeled crystallographic adducts [16].

Shortly after, another work was published focusing on the ligand maltol (3-hydroxy-
2-methyl-4H-pyran-4-onato) [75]. VIVO(maltolato)2 (BMOV) and VIVO(ethylmaltolato)2
(BEOV) have been among the most studied V-containing systems, including in pre-clinical
tests [146,147]. Several HEWL crystals soaked with [VIVO(maltol)2] were analyzed. Two
isomorphous crystals obtained from the same crystallization condition at a pH of 7.5 were
tested to obtain two high-resolution structures—named A (1.13 Å resolution, PDB: 8AJ3)
and A′ (1.22 Å resolution, PDB: 8AJ4)—that revealed three different binding sites (Figure 5).
Three binding sites were assigned, but the nature and the occupancy of each adduct depend
on the structure. Interestingly, three different moieties were found: VIVO2+, VIVO(maltol)+

and VIVO(maltol)2, arising from the original soaked compound. Structure A contains the
adducts [VIVO(maltol)2(H2O)] (site 1), [VIVO(H2O)4]2+ (site 2) and [VIVO(maltol)(H2O)3]+

(site 3), while structure A′ presents the adducts [VIVO(maltol)2(H2O)] (sites 1 and 3) and
[VIVO(maltol)2] (site 2) [75]. The authors discussed the binding features of each adduct,
highlighting the importance of a H-network to stabilize them, which is reinforced by the
covalent binding of the V moiety to Asn65 in the case of binding site 2. The EPR and
ESI-MS results supported the crystallographic findings, including the +IV oxidation state.
A second crystallization condition at a pH of 4 was also used for a soaking experiment
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with VIVO(maltol)2. However, the resulting 1.31 Å resolution structure (PDB: 8AJ5) did not
present maltol moieties but three [VIVO(H2O)3]2+ ions bound to the side chains of Asp48,
Asp87 and Glu35, reinforcing the labile nature of VCs upon protein binding [75].
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Figure 5. Structural representation of the adducts found in HEWL soaked with [VIVO(maltol)2]
(structure A, PDB: 8AJ3). The three depicted binding sites present different V-based species, as
referred to in the text, from which only the site 2 is covalently bound. H-bonds (distances are
represented as dashed lines and given in Å) are important in stabilizing the adducts.

More recently, HEWL was used to investigate the ligand 1-methyl-2-ethyl-3-hydroxy-
4(1H)-pyridinone (empp) using a combined spectrometric, spectroscopic and structural
approach [133]. Empp is a pyridinone derivative known for its insulin-mimetic activity
by inhibiting the free fatty acid (FFA) release from isolated rat adipocytes [148]. Complex
[VIVO(empp)2] was soaked into HEWL crystals obtained from distinct crystallization
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conditions, and three structures were determined at different resolutions: 1.08 Å (PDB:
8OM8), 1.10 Å (PDB: 8OMS) and 1.10 Å (PDB: 8OMT), designated by structures A, B and C,
respectively.

Structure A, obtained at a pH of 4.0, exhibits a trinuclear oxidovanadium(V) adduct
[VV

3O6(empp)3(H2O)] as well as a [VIVO(empp)(H2O)]+ adduct. The first one, proving that
VIV can be oxidized to VV under the used experimental conditions, is not covalently bound
to the protein, and it is stabilized through both stacking (Trp123) and H-bond interactions
(Arg73, Lys33, #Arg73 and #Asp101, where # represents a symmetry-related molecule). One
of the VV-atoms is penta-coordinated (distorted square pyramidal geometry), while the re-
maining VV-atoms are hexa-coordinated (distorted octahedral geometry). The second one is
covalently bound to the side chain of Asp48 and H-bonded to Ser50, Asn59, Arg61, #Gln121
and #Asp125. Structure B, obtained at a pH of 7.0, exhibits a single [VIVO(empp)2(H2O)]
adduct, which is H-bonded to the main chain of Arg5, Cys6, Glu7 and #Arg14 residues.
Structure C, obtained at a pH of 7.5, contains a similar [VIVO(empp)2(H2O)] adduct, but
a second [VIVO(empp)2(H2O)2]+ adduct is also found to be H-bonded to the side chain
of Arg125. Altogether, supported by ESI-MS and EPR data, these results emphasize the
speciation of [VIVOL2] compounds upon protein interactions and the possible binding of
different V-fragments, which is important to better understanding their transport in the
bloodstream and possible binding to proteins inside cells [133].

Bovine Pancreatic Ribonuclease A (RNase A)

Bovine pancreatic ribonuclease A (RNase A) is one of the most representative ribonu-
cleases and has been extensively discussed in the literature over the years [149–151]. Its
relevance is reflected by the attribution of the Chemistry Nobel Prize in 1972 (Anfinsen,
Moore and Stein) and 1984 (Merrifield) to research involving this protein.

RNase A is widely used as a model protein, including in metalation- and crystallization-
related investigations [152–154]. To the best of our knowledge, there are currently two SC-
XRD structures of RNase A soaked with an organic-based vanadium compound. The first
one is a 1.27 Å resolution structure (PDB: 7P8R) [132]. This structure exhibits two molecules
(A and B) in the asymmetric unit, but only one adduct is bound to the side chain of the
Glu111 residue of molecule A. VIV presents a slightly distorted octahedral geometry with a
bidentate coordination of the two picolinato ligands, an Ooxido atom and an O atom from
the referred Glu111 and is further stabilized by H-bonds. The bond lengths within the
adduct present values in the expected range, even if the VIV=Ooxido (1.68 Å) is marginally
larger than the theoretical values, as found in the concomitant HEWL-VIVO(picolinato)2
structure [132]. Globally, this also confirms the previously indicated potential of Glu side
groups to bind VIVO2+ centers [155]. The authors used different experimental methods—
namely ESI-MS, CD and EPR—to consubstantiate these structural results. Briefly, ESI-MS
proved that the adduct RNase A-[VIVO(pic)2]−[phosphate/sulfate] is formed at 14,088.5 Da;
CD showed that the secondary structure of the protein is not altered upon ligand bind-
ing and EPR suggested that the equatorial water molecule of the original compound
[VIVO(pic)2(H2O)] is replaced by the protein residues Asp/Glu or His, depending on the
pH (acidic or neutral, respectively). Further computational approaches confirmed its bind-
ing to Glu111 at acidic pH values while also predicting its binding to His105 and/or His119
at physiological pH values. Interestingly, the authors also explored the potential protein
inhibition caused by [VIVO(pic)2(H2O)], verifying that the catalytic activity of RNase A is
significantly reduced in its presence. This finding agrees with the structural data, as the
adduct sits near the active site of the protein [132].

The second is a 1.57 Å resolution structure (PDB: 7QWH), obtained in a recently
published relevant work from Ferraro et al., involving UV-vis, circular dichroism, EPR,
computational and X-ray crystallographic studies on the system bovine RNase A with
[VIVO(8HQ)2] (8HQ = 8-hydroxyquinolinato) [134]. From the XRD analysis, it was found
that the geometry around the vanadium center corresponds to a slightly distorted square
pyramid; one of the 8HQ ligands is replaced by a water ligand of the OE1 of Glu111,
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yielding a [VIVO(8HQ)(H2O)]+-RNase A adduct. The 8HQ is maintained in its position
through stacking interactions with the His119 side chain. The O-atoms within the vanadium
coordination sphere are H-bonded to the N-atoms of the side chains of Asn71 and Gln69
and to H2O molecules. The VIV = Ooxido distance is 1.66 Å, thus within the expected range
for these bonds. DFT and docking calculations allowed for a deeper understanding of the
system; namely, from the crystallographic data at a pH of 5.1, it was concluded that the
formation of the [VIO(8HQ)(H2O)] + -RNase A adduct explains/results in the inhibition of
the RNase A activity [134].

Bovine Trypsin

Serine proteases, which are able to hydrolyze peptide bonds within proteins, are an
important family of enzymes that are involved in multiple biological processes and signal
transduction pathways, including digestion, immune response, blood coagulation and
apoptosis [156–159]. Bovine pancreatic trypsin is one of the most typical serine proteases
and is commonly used as a model in related studies. From a crystallographic point of
view, trypsin is also an interesting model as it produces well-diffracting crystals under a
significant range of experimental conditions.

There are currently two X-ray bovine trypsin structures deposited in the PDB con-
taining vanadium compounds (picolinato and 1,10-phenanthroline), released in 2022 [16].
Before 2022, only a 1.5 Å resolution structure of the related bovine chymotrypsin with
vanadate and benzohydroxamic acid (PDB: 2P8O) was available; this showed an adduct
at the active site with a distorted octahedral geometry and the V atom covalently bound
to the O atom of Ser195 [160]. We highlight that the binding to the side group of serine
confirms the findings of earlier studies indicating its potential to bind VIV-centers [161].

Focusing on the available V-trypsin structures, a co-crystallization strategy with
VIVOSO4 + picolinato was followed, and a 1.09 Å resolution structure was obtained (PDB:
7Q0X). A single VIVO(picolinato)2 adduct, very similar to the one described with HEWL,
sits at the active site, with VIV presenting a distorted octahedral geometry bound to Ser195,
an Ooxido and two picolinato anions through the N and O atoms. The adduct is further
stabilized by hydrogen bonds (Ser195 and Gln193) and hydrophobic interactions (Phe41,
Cys42, Cys191, Gln192 and Phe215). Despite its resemblance with the HEWL adduct, the
VIV = Ooxido bond length is significantly shorter (1.70 Å versus 1.82 Å); being slightly
above the usual values (1.57 to 1.65 Å) [71], the result was interpreted as being due to
a partial reduction of the metal during the data collection. Additional docking studies
corroborate the structural results when both buried and surface water molecules were
included, proving, as before for HEWL, the essential role of microsolvation for the chiral
discrimination of the binding region [16].

The second V-trypsin structure was motivated by the fact that the previously referred-
to HEWL-VIVO(H2O)(phen) adduct is partially lacking in electron density for the phen
moiety. A successful co-crystallization experiment with bovine trypsin resulted in a 1.20 Å
resolution structure (PDB: 7Q0W). The structure revealed multiple imidazole (Im) molecules
arising from the crystallization condition and a single V adduct at the active site with a
distorted octahedral geometry (Figure 6). V is bound to the O-atom of the side chain of
the Ser195 residue, to the two N-atoms of the phen moiety, to the N-atom of an imida-
zole molecule and to two O-atoms. Similarly to picolinato, hydrogen and hydrophobic
interactions have a relevant role in stabilizing the adduct [16].

The distances between the V moiety and those O-atoms (1.70 and 1.71 Å) did not
reveal the adduct as VVO2 or VIVO(OH). Computational methods—DFT and docking
simulations—were used to address this point, showing that the presence of two Ooxido
or a (Ooxido, OH) couple is equally possible (similar energies, although the VV moiety is
slightly preferred) [16]. The finding that the conversion energy between the two common
vanadium oxidation states (IV and V) is low suggests that the interchange of the two forms
of the VO(phen)-trypsin complex is easy, anticipating consequences for the ease of ROS
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production. It is not yet known whether this will happen for other complexes and proteins,
but this is a subject to be properly explored by researchers in the near future.
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3. Vanadium-Containing Proteins and Cryo-EM

Despite the still vast prevalence of structures determined by X-ray diffraction tech-
niques when compared with those determined by other methods, structural biology is
witnessing a paradigm shift: seven years ago, 89% of the total number of PDB entries were
solved by X-ray crystallography, while, in 2023, this percentage decreased to 85%.

One of the main reasons for this scenario is the rise of cryo-EM techniques—in particu-
lar, single-particle analysis and cryo-electron tomography—which were further recognized
by the attribution of the Chemistry Nobel Prize in 2017 to Dubochet, Frank and Henderson.
In the recent years, cryo-EM has made remarkable technical progresses and much higher
resolutions are now possible. Simultaneously, access to cutting-edge equipment is now
facilitated and diffused throughout the worldwide community dedicated to structural
resolution. Altogether, considering its potential to better mimic physiological conditions
as it may be applied to samples in solution, cryo-EM has become one of the most popular
structural methodologies. In fact, as expressed in Figure 7, there is an exponential increase
in the number of PDB entries solved by cryo-EM methods, and approximately 74% of
them have been deposited since 2020. For a more detailed description on the advances
and potential uses of cryo-EM (including in drug design projects), we recommend several
publications [162–166].

Table 5 summarizes the vanadium-containing protein structures that have been de-
posited in the PDB since 2015. These show a clear incidence of ADP-vanadate species that
are used to mimic the intermediate state of the ATP hydrolysis of several ATP-binding
cassette (ABC) transporters.
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Table 5. Cryo-EM structures of V-containing proteins available in the PDB since 2015. The identifier and
name/chemical structure of each vanadium compound, as well as the respective PDB codes, are provided.

V Species Identifier V Species Name/Chemical Structure PDB Codes

VO4

Orthovanadate
VO4

3−
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7CH8 [181]

It should be noted that many of the structures identified as containing inorganic
orthovanadate (identifier VO4) also contain an associated ADP moiety, as the authors did
not deposit the ADP-vanadate as a single molecule (identifiers AOV or AD9). In fact, from
the eleven VO4 structures indicated in Table 5, only one contains exclusively orthovanadate;
it is a 3.30 Å resolution structure of an E. coli potassium uptake transporter KdpFABC (PDB:
7ZRD). KdpFABC contains different subunits, namely the P-type ATPase KdpB, in which a
serine residue (Ser162) is phosphorylated when no more potassium is needed, leading to
the inhibition of the transporter. To further elucidate this inhibition from a structural point
of view, Silberberg and collaborators characterized a vast range of cryo-EM wild-type and
variant KdpFABC structures resulting from inhibiting and non-inhibiting conditions, and a
new inhibited KdpFABC state (named E1P tight) was found [174].

Taking advantage on its well-known structural similarity with phosphate, orthovana-
date (able to stabilize P-type ATPases in an E2P state) was incubated with a wild-type
KdpFABC sample (PDB: 7ZRD). The orthovanadate was found next to the residue Asp307
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of KdpB, known to be bound to the γ-phosphate of ATP. Interestingly, the cryo-EM structure
was determined in an E1P-tight state similar to the one under turnover conditions (PDB:
7ZRE), which was interpreted as the conformation adopted after ADP release [174].
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Regarding ADP-vanadate intermediate conformation form structures, we recently
listed some of them [15]. Our review encompassed the single particle cryo-EM structures
of the following ABC transporters: (1) LptB2FG and the complex LptB2FG-LptC from
Escherichia coli (PDBs: 6MHZ and 6MI8) [176]; (2) TmrAB from Thermus thermophilus in two
different conformations (PDBs: 6RAK and 6RAJ) [177]; (3) NaAtm1 from Novosphingobium
aromaticivorans (PDB: 6VQT) [167]; and (4) MlaFEDB from Acinetobacter baumannii (PDB:
7D0A) [169].

Since then, a considerable amount of other bacterial ABC transporters cryo-EM struc-
tures containing an ADP-orthovanadate adduct have been made available. This is the
case for a 3.50 Å resolution structure of the E. coli ABC transporter complex LolCDE (PDB:
7MDY), which is able to transport lipoproteins from the inner membrane to the outer
membrane. The authors were able to obtain an intermediate conformation of the ATPase
with one ADP-vanadate moiety in each of the two ATP sites at the interface of a dimer of
the LolD domain. This binding led to the rearrangement of the transmembrane helices
(TM2) in the domains LolC and LolE which, in turn, released the bound lipoprotein to the
periplasm [178].

There is also an example of a cryo-EM entry containing an ADP-metavanadate adduct,
the 3.90 Å resolution structure of the ABC transporter MlaFEBD from Pseudomonas areugi-
nosa (PDB: 7CH8), which participates in the transport of phospholipids to the inner leaflet
of the outer membrane in Gram-negative bacteria. To gain further insights into the trans-
port mechanism, the authors determined and compared three distinct cryo-EM MlaFEBD
structures: the apo-form (nucleotide-free), the previously referred-to ADP-vanadate (mim-
icking the ADP-bound post-hydrolysis conformation) and the ATP analogue AMPPNP
(mimicking the ATP-bound state). Unexpectedly, significant conformational modifications
upon nucleotide binding were not detected. An ADP-vanadate moiety was found at the
ATP binding site of each copy of the MlaF dimer. The adenine and the ribose moieties
are coordinated to Arg18 and Arg21, respectively, while the phosphate moieties are coor-



Molecules 2023, 28, 6538 22 of 30

dinated to Lys47 and a magnesium ion, and the vanadate is close to the catalytic Glu170
residue. Several phospholipids were found to bind to the substrate-binding pocket of
the MlaE, suggesting that this step can be a passive diffusion mechanism rather than an
ATP-dependent one [181].

Much less commonly, an eucaryotic ABC transporter with ADP-orthovanadate is also
found in the PDB: a single particle 3.77 Å resolution structure of Pdr5 from Saccharomyces
cerevisiae (PDB: 7P06). Pdr5 is an efflux pump belonging to the PDR (pleiotropic drug
resistance) subfamily, which is deeply involved in multi-drug resistance as it can transport
a great range of xenobiotics. Known as a model for pathogen fungi (e.g., Candida albicans)
homologues, different apo- and nucleotide-bound Pdr5 were characterized. An ADP-
orthovanadate structure was found in an outward-facing conformation, corresponding to
intermediate step of the ATP hydrolysis. The authors further explored the structural rear-
rangements in both transmembrane and extracellular domains, revealing an asymmetric
ATP hydrolysis as conformational changes are much more pronounced in one half of Pdr5,
supporting a peristaltic movement of the xenobiotic [179].

Finally, cryo-EM was also used to characterize a system containing a polyoxidovanadate.
Their putative biological and therapeutic relevance were mentioned in Section 2.1.2 [107–111].
Among polyoxidovanadates, decavanadate (V10) has been particularly studied [182]. Win-
kler and collaborators were able to solve a 3.80 Å resolution single-particle structure of the
human ion channel TRPM4 complexed with V10 (PDB: 5WP6) [175]. TRPM4, belonging
to the TRPM (Transient Receptor Potential Melastatin) subfamily, is a Ca2+-activated non-
selective channel that transports sodium and/or potassium to depolarize the cell when
the intracellular calcium level increases, participating in countless bioprocesses such as
the cardiac rhythm. The study aimed to characterize the V10 binding to the protein as
V10, being highly negatively charged, interferes with the membrane potential, modulating
the voltage dependence of TRPM4. Two V10 binding sites were found (exhibiting several
positive residues), at the turn of the C-terminal domain and at the interface of MHR1/2
and the MHR3 of the MHR (N-terminal TRPM homology region) domain. The different
structural aspects were discussed (e.g., the role of Gln977 in the Ca2+ permeability of the
protein), contributing to elucidating the function of the TRPM ion channels [175].

4. Conclusions and Future Directions

As widely described, X-ray crystallography and, more recently, cryo-EM have played
pivotal roles in shedding light on the current state of the art of several biological processes.
Despite the massive advances in the last decades, much more is expected and will certainly
be achieved in the next few years, namely by the introduction of artificial intelligence (AI)
tools, currently mainly represented by AlphaFold software (https://alphafold.ebi.ac.uk/,
accessed on 7 September 2023) [183].

In fact, the technical development of both experimental and computational structural
methods and the understanding that the biological effects of metal complexes on biological
systems, namely of vanadium complexes, may be associated with interactions of the metal
compounds with proteins, led to an enormous growth in the number of reported structures
in the PDB. Concomitantly, this led to a much better understanding of the nature and
variety of interactions of metal complexes with proteins, as well as the mechanisms of
many reactions involved either in inhibition or catalysis of enzymes by metal ions or in
many other types of involvement of metal complexes (e.g., structural or toxic effects) that
impact on proteins.

Regarding vanadium compounds, besides halogenases, nitrogenases and vanabins,
for which structural information has been available for some time [1,7,10,24–31], and the
interference of vanadate in several biological processes [6,7,9,184], it is presently recog-
nized that the biological effects of VCs may be due to their interaction with proteins, and
several studies have addressed this topic. The number of structural studies addressing the
interaction of vanadium compounds with proteins will undoubtedly increase in the near

https://alphafold.ebi.ac.uk/
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future and will provide new information and clues to help understand the biological and
therapeutic effects of VCs.

Notwithstanding, despite the relevance of information provided by the several method-
ologies used, it is known that in biological media, VCs undergo hydrolysis and will certainly
be involved in several ligand exchange and redox processes, as well as modifications in
geometry, coordination number and nuclearity [15,111]. Additionally, at the low concen-
trations prevailing, the species formed may totally differ from the compound initially
introduced in the media; thus, if a biological effect is reported, the mechanism of action pro-
posed must take into account the species that are effectively formed. Most researchers are
now more aware of the complex speciation that is established in biological media [44–49].
Thus, the understanding of the changes occurring and of the several types of binding
that may be established between VCs and proteins/enzymes is very important, not only
because their action may be inhibited and/or modified but also because the structure of
the original complex may have changed upon binding to the protein. The present review
provides an updated account of the presently available structural information of vana-
dium complexes bound to proteins, and it was indeed confirmed that in many cases, the
V-containing species that is found to be bound to the protein differs from the one initially
added to the crystallization media.
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