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Abstract: This review focuses on the synthesis and biological activity of flavones and their related
flavonoidic compounds, namely flavonols and aurones. Among the biological activities of natural
and synthetic flavones and aurones, their anticancer, antioxidant, and antimicrobial properties are
highlighted and detailed in this review. Starting from the structures of natural flavones acting on
multiple anticancer targets (myricetin, genkwanin, and other structurally related compounds), new
flavone analogs were recently designed and evaluated for their anticancer activity. The most repre-
sentative compounds and their anticancer activity are summarized in this review. Natural flavones
recognized for their antimicrobial properties (baicalein, luteolin, quercetol, apigenin, kaempferol,
tricin) have been recently derivatized or structurally modulated by chemical synthetic methods in
order to obtain new effective antimicrobial flavonoidic derivatives with improved biological prop-
erties. The most promising antimicrobial agents are systematically highlighted in this review. The
most applied method for the synthesis of flavones and aurones is based on the oxidative cyclization
of o-hydroxychalcones. Depending on the reaction conditions and the structure of the precursor, in
some cases, several cyclization products result simultaneously: flavones, flavanones, flavonols, and
aurones. Based on the literature data and the results obtained by our research group, our aim is to
highlight the most promising methods for the synthesis of flavones, as well as the synthetic routes
for the other structurally related cyclization products, such as hydroxyflavones and aurones, while
considering that, in practice, it is difficult to predict which is the main or exclusive cyclization product
of o-hydroxychalcones under certain reaction conditions.

Keywords: chalcones; flavones; flavonols; aurones; anticancer activity; antimicrobial activity

1. Introduction

Flavonoids are a widely distributed group of natural polyphenolic compounds that are
found in plants usually in glycosylated form and have been shown to possess a wide range
of biological activities, including antioxidant, anti-inflammatory, antibacterial, antiviral,
and anticancer properties, making them an attractive target for synthesis and further study.

Structurally, flavonoids are functional aromatic compounds constituted by a C6-C3-C6
structure. The bioprecursor of flavonoids is the amino acid L-phenylalanine, which is
transformed into phenyl-propenoyl-S-CoA with the involvement of the phenylalanine
ammonia-lyase enzyme. Enzymatic condensation of phenyl-propenoyl-S-CoA with three
malonyl-S-CoA units, followed by cyclization, yields o-hydroxychalcones that are struc-
turally 1,3-diarylpropen-1-ones [1].

The reactive α,β-unsaturated ketone structure and the presence of hydroxy groups in
o-hydroxychalcones make their cyclization possible, resulting in different flavonoidic com-
pounds. Similar to biochemical cyclization pathways, in organic synthesis, the cyclization
of o-hydroxychalcones represents the most useful way to obtain compounds from aurones,
flavanones, flavones, flavonols, and flavylium salts, as will be detailed in Section 3.
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The outstanding biological potential of natural flavonoids has attracted interest in
the medical field, meaning that many of their synthetic analogs are currently known as
promising candidates in treatments for cancer; microbial, fungal, and viral infections;
inflammatory diseases; and diabetes.

Among the flavonoidic compounds, flavones and flavonols are related by the fact that
they possess the same basic skeleton, the 2-phenyl-chromen-4-one system [1]. Flavones
represent one of the most studied sub-class of flavonoids due to their wide distribution in
plants and their wide structural diversity.

Flavonols, also called hydroxyflavones, differ from flavones by the presence of a
hydroxy group at position 3 in the chromen-4-one ring (C ring, Figure 1) [1]. Although
they have very similar structures, natural flavonols are not formed from chalcones via
flavones as intermediates but through another biochemical pathway, with the involvement
of other enzymes, via flavanones. Flavanones are common bioprecursors for flavones and
flavonols [2].
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Figure 1. General structures of flavones, flavonols, aurones, and their common precursors,
the o-hydroxychalcones.

Aurones, 2-benzylidenebenzofuran-3(2H)-ones [2], also belong to the flavonoid class,
being structural isomers of flavones (Figure 1). Even if aurones are less known compared
to flavones, research on them has experienced significant development in recent years due
to their promising therapeutic potential.

Because of their related structure, flavones, flavonols, and aurones have common
properties, such as the interesting way they exert their antioxidant, anticancer, antimicrobial,
and other pharmacological activities [2].

In recent years, various methods have been developed for synthesizing flavones and
related compounds, mainly hydroxyflavones and aurones, including chemical, biochemical,
enzymatic, and total synthesis. Chemical synthesis is based on different approaches
involving the use of different precursors or reagents, with the earliest developed synthesis
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methodologies for flavones emanating from the late 1890s–1900s (the von Kostanecki
methodology and von Auwers synthesis [3]).

This review aims to present the most relevant methods for flavone and aurone syn-
thesis, starting with the earliest and concluding with the recent methods. We consider it
important to specify some examples from the literature and from our own research in which
aurones and hydroxyflavones were obtained via the cyclization of o-hydroxychalcones,
considering that they are structurally related compounds and that sometimes it is dif-
ficult to predict which would be the main or exclusive reaction product under certain
reaction conditions.

Although the synthesis methodologies were first applied for obtaining the basic
skeleton of natural flavones or aurones (in which rings A and B are benzene rings), some of
these methods were successfully extended to obtain new bioactive flavonoidic analogs of
natural compounds or flavone/aurone hybrids through structural modulations at the level
of the A, B, or C rings with the aim of obtaining new bioisosters with improved biological
functions. All structural modulations retain the aromatic character of the A and B rings,
which is essential for their biological activity.

The structural modulations made on the A ring of flavones and aurones involve
grafting different electron-withdrawing (halogen atoms, cian, or nitro) or electron-donating
substituents such as hydroxy, methoxy, or acyloxy groups. Bulkier substituents such
as pyperidine, directly connected to the A ring or through a linker such as benzyloxy,
benzylamino, isopentyloxy, or benzylaminomethylene, are also introduced at different
positions of the A ring of some flavonoidic analogs with reported anticancer/antimicrobial
activity, as exemplified below.

The structural modulations at the aromatic B ring include the introduction of various
electron-withdrawing (halogen atoms, carbamoyl, or trifluoromethyl groups) or electron-
donating substituents (hydroxy, methoxy, benzyloxy, alkyl, acylamino, alkylamino, di-
alkylamino, or other multifunctionalized residues such as amino acid residues). Other
structural modifications are based on replacing the B ring with other pentaatomic or
hexaatomic aromatic heterocycles such as thiazole, pyrazole, thiophene, and pyridine,
alone or linked/condensed with other (hetero)aromatic rings in order to obtain extended
π-conjugated aromatic systems such as 2-phenylthiazole, thiazolo [3,2-b][1,2,4]triazole,
1,3-diphenylpyrazole, 3-naphtyl-1-phenylpyrazole, and quinoline.

The structural changes at the level of the C ring of flavones and aurones have been less
frequently investigated. The most frequently reported changes include the derivatization
of the hydroxy group of hydroxyflavones via alkylation or acylation. Recent attempts
to obtain azaaurones, compounds which contain nitrogen as a heteroatom in the C ring
instead of oxygen, have been made. It was found that replacing the intracyclic oxygen
of aurones with nitrogen is beneficial for selective cytotoxicity against some multidrug
resistant cancer cells, such as the resistant cancer cell line P-glycoprotein-overexpressing
human doxorubicin resistant uterine sarcoma cells (MES-SA/Dx5) [4].

2. Biological Activity of Flavones, Flavonols, and Aurones
2.1. Anticancer Activity

The antitumor activity of flavones is most often due to their ability to target certain key
structures that lead to cell cycle arrest and the apoptosis of tumor cells. Thus, flavones can
inhibit the specific enzymes responsible for tumorigenesis, which are normally involved
in the regulation of the cell cycle but whose function is deregulated under pathological
conditions, for example, protein kinase C (PKC) [5], cyclin-dependent kinases (CDK) [6],
casein kinases (CK) [7], PIM-1 kinases [8], death-associated protein kinase 1 (DAPK-1),
and tyrosine kinases [9]. Some flavones can inhibit the polymerization of tubulin, thus
preventing the formation of microtubules [10]. All this leads to cell cycle arrest, most
often in the G2/M phase. Flavones can also activate certain enzymes that cause tumor cell
apoptosis, such as caspases [11,12].
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Natural flavones such as apigenin and nobiletin can regulate the expression of impor-
tant inflammatory signaling pathways, including nuclear factor erythroid 2-related factor 2
(Nrf2) and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). The
antioxidant properties of several natural flavones are attributable to their ability to regulate
the expression of Nrf2/heme oxygenase-1 (HO-1), which decreases free radical levels and
oxidative stress [13]. Nuclear factor erythroid 2-related factor (Nrf2) can interact with the
NF-κB signaling pathway to maintain cellular redox homeostasis during inflammatory
states. As the NF-κB pathway activates the expression of genes implicated in inflammation
that can lead to chronic inflammation, tumor development, or proliferation, the Nrf2 path-
way displays important antioxidant roles, such as mediating the release of ROS (reactive
oxygen species) induced by NF-κB or suppressing the transcription of NF-κB-dependent
pro-inflammatory genes [14]. Thus, the activation of Nrf2 pathway will suppress the NF-κB
pathway and reduce TNFα, IL-6, and IL-1β proinflammatory cytokine levels [14].

The potential of flavones to act on multiple anticancer targets or by synergic mecha-
nisms of action allows them to be considered as key structures for the development of new
multitarget-acting therapeutic agents.

In several cases, the anticancer activity of natural flavones and aurones is closely
related to their antioxidant activity. Myricetin (Figure 2), a natural flavone with polyphenol
structure, presents good antioxidant properties by acting as a scavenger for reactive oxygen
species and by enhancing the activity of glutathione-S-transferase [15]. Myricetin also
presents great antitumor properties by targeting key structures, leading to cell cycle arrest
and apoptosis. Myricetin has been shown to inhibit several enzymes involved in cell cycle
regulation whose functions were deregulated under pathological conditions, namely, PKC,
CK2, PIM-1, and DAPK1 [16]. Myricetin promotes tumor cell apoptosis by modulating
certain signaling pathways, including Bcl2 (B-cell lymphoma 2), NF-κB, MAPKs (mitogen-
activated protein kinases), and the Wnt/β-catenin signaling pathway [16–18]. Recently,
it was reported that myricetin inhibits interferon-γ-induced programmed death ligand-1
(PD-L1) and indoleamine 2,3-dioxygenase 1 (IDO1) expression in lung cancer cells via
the regulation of the Janus kinase/signal transducer and activator of the JAK/STAT-IRF1
transcription pathway [19]. According to the authors of [19], in their study, Myricetin
recovered the function of T cells in the lung cancer cells and Jurkat-PD-1 T cells. Myricetin
restored the survival, proliferation, CD69 expression, and interleukin-2 (IL-2) secretion of
Jurkat-PD-1 T cells suppressed by IFN-γ-treated lung cancer cells [19]. PD-L1 and ISO1
are two immune checkpoints responsible for the immune escape of tumors. Thus, as
an inhibitor of IFN-γ-induced PD-L1 and ISO1, myricetin has potential applications in
tumor immunotherapy.

Recent studies have shown that myricetin induces apoptosis and autophagy in human
gastric cancer cells through the inhibition of the PI3K/Akt/mTOR pathway (phosphoinosi-
tide 3-kinase, PI3K/Protein kinase B, Akt/Mechanistic target of rapamycin, mTOR) [20].
The abnormal increase in the activity of the PI3K/Akt/mTOR pathway is associated with
various malignancies; therefore, the modulation of this signaling pathway represents a new
strategy, in particular in gastric cancer treatment [21].

Myricetin also proved to be effective in preventing mutagenesis induced by different
carcinogenic compounds such as formaldehyde [22]. Myricetin alleviates the formaldehyde-
enhanced Warburg effect in tumor cells through the inhibition of human hypoxia-inducible
factor 1 subunit alpha (HIF-1α), an important target in lung and ovarian tumors [22].

Gu Ling et al. recently revealed that myricetin regulates the p38 MAPK pathway by
targeting MAP Kinase Kinase 3 (MKK3) in non-small cell lung cancer cells (NSCLC) [23].
These results encourage future research on the development of new anticancer agents,
MKK3 inhibitors, through the structural modulation of myricetin.

Genkwanin (Figure 2), another natural flavone with antioxidant properties, has demon-
strated promising anticancer activity against a series of cancer cell lines, including human
MCF-7 breast cancer (IC50 = 13.6 ± 0.3 µg/mL), HepG-2 human hepatocellular carci-
noma (IC50 = 22.5 ± 0.3 µg/mL), and HCT-116 colon cancer (IC50 = 15.4 ± 0.5 µg/mL).
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Genkwanin is also able to reduce the migration, invasion, and proliferation of lung cancer
cells by targeting the phosphoinositide 3-kinase (PI3K) and phospho-protein kinase B (AKT)
signaling pathways [24]. Due to this mechanism, genkwanin represents an effective option
for the treatment of cancer proliferation and metastasis. Because genkwanin presents low
oral bioavailability, genkwanin nanosuspensions were prepared in order to improve its
solubility and pharmacokinetic profile. Li Y et al. reported the therapeutic potential of
genkwanin nanosuspensions as novel antitumor agents in breast carcinoma therapy [25].

Spiegel M. et al. established that, through the bond dissociation enthalpy (BDE) of the
hydrogen atom transfer (HAT) mechanism, the antioxidant activity of flavones could be
related to the presence of a hydroxy group located on the B ring, especially in position C4′,
more than the A-ring substitution. Regarding flavonols, the presence of a hydroxy group
in C3 is beneficial for their antioxidant activity. These positions present the lowest values
of bond dissociation entalphy (BDE = 84.4 kcal/mol for C4′, in the case of luteolin, and
BDE = 84.6 kcal/mol for C3, in the case of morin) [26].

The anticancer activity of flavones could be correlated with their antioxidant activity,
but it is not a mandatory rule in all cases. Grigalius I. and Petrikaite V. studied the relation-
ship between the anticancer and antioxidant activities of trihydroxyflavones. The antioxi-
dant activity was evaluated by using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method,
and the anticancer activity was evaluated by using the MTT (3-[4,5-dimethylthiazol-2-
yl]-2,5-diphenyl tetrazolium bromide) method, both of which were performed on three
different types of human cancer cell lines: lung (A549), breast (MCF-7), and brain epithe-
lium (U87). Based on the calculation of the Pearson coefficient (r), a moderate correlation
was revealed between the two biological properties [27]. It was found that the substituents
on the phenyl ring (B ring) are the most important for the antioxidant activity of trihydrox-
yflavones. Thus, the most potent antioxidants have the o-dihydroxy group (catechol) on
the B ring and are involved in binding hydroxy, peroxyl, and peroxynitrile radicals [27]
(Figure 2, compounds 3 and 4). However, hydroxyflavone 5 does not possess this structural
feature, but it does present the best anticancer activity, thus, in this case, alluding to the
existence of other mechanisms of action for anticancer activity besides the neutralizing
effect of free radicals.
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Zhao L. et al studied the structural elements of flavones capable of blocking different
serine-threonine kinases involved in the cell cycle. Structure–activity relationship studies
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were conducted for PKC, CK-2, PIM-1 kinase, DAPK-1, and CDK. It was found that the
hydroxy groups grafted on rings A, B, and C act as H-bond donors/acceptors in the
interaction with PKC, PIM-1, DAPK-1, and CDK [28]. For the inhibition of CK-2, it was
found that the presence of the halogen atoms Br and Cl at positions 6 and 8 of the A ring,
respectively, and the hydroxy group only in position 4 of the B ring are beneficial. The
carbonyl group located in position 4 of the chromen-4-one ring acts as a H-bond acceptor in
the interaction with various amino acid residues from CK-2, CDK, and PIM-1. The benzene
ring (B ring) interacts by π–π stacking with the phenylalanine residue Fen113 of CK-2,
and through this mechanism, it also blocks the ATP binding site of these enzymes. The
benzene ring (B ring) can also make van der Waals interactions with certain hydrophobic
residues from CDK-9 and PIM-1, thus making additional contact with these enzymes
without blocking the binding of ATP. It has also been observed that changing the position
of the phenyl ring from 2 to 3, specific to isoflavones, leads to the loss of activity [28].

Flavopiridol (Table 1, line 1) is a semisynthetic flavone that is currently being used
in clinical trials as an anticancer agent for the treatment of acute myeloid leukemia. This
compound acts by inhibiting kinases CDK-1, -2, -4, -6, and -7, all of which are competi-
tive with ATP. At the same time, flavopiridol significantly inhibits kinases CDK-9 (non-
competitive with ATP) [9,28]. Flavopiridol also inhibits the activity of positive transcription
elongation factor (P-TEFb), a cyclin-dependent kinase controlling elongation via RNA
polymerase II [29].

The anticancer activity of flavopiridol is due to the presence of a chromone moiety
that is bioisosteric with the purine ring of ATP and binds competitively to the ATP binding
pocket of CDK. The benzene ring (ring B) provides additional contact with the enzyme,
as it interacts with different regions than those occupied by ATP, participating in van der
Waals-type interactions with other amino acid units [28]. Other important elements for
the inhibition of kinase activity by flavopiridol are the hydroxy groups at C-7 and C-5,
the carbonyl group at C-4, the nitrogen atom, and the hydroxy group from the piperidine,
and all of these functional groups are involved in the formation of hydrogen bonds with
CDK [28].

Starting from the structures of two natural products with anticancer activity with dif-
ferent mechanisms of action, 3,5,4′-trimethoxystilbene and 5,6,7-trimethoxyflavone, Hassan
A.H. et al. synthesized new antiproliferative compounds by combining two pharmacophore
moieties in the same molecule by replacing the vinylene residue in stilbene with the amide
group [30]. The cytotoxic activities of the synthesized compounds against several cancer
cell lines were determined at 10 µM doses in all cases. The structures of the most active
compounds are presented in Table 1, lines 2–4.

Flavone–stylbene hybrids in which the nitrogen atom of the amide linker is attached to
the flavone moiety proved to be more citotoxic than the corresponding compounds with the
opposite amide linker configuration. Trimethoxylated flavone–stylbene hybrids showed
superior activity compared to dimethoxylated flavone–stylbene hybrids on hematologic,
colorectal, central nervous system, ovarian, renal, and breast cancer cell lines [30]. On
lung cancer cell lines, the dimethoxylated derivatives were generally more active than the
trimethoxylated ones. Most of the tested hybrid compounds showed selective activity,
showing no cytotoxicity on normal cells. Their anticancer mechanism of action consists of
inducing apoptosis and inhibiting cell proliferation [30].

Continuing their research, Hassan A.H. et al. synthesized a series of trimethoxyflavone-
based aryl-amides, starting from the structures of already approved arylamide-type medic-
inal compounds (imatinib, masitinib) and replacing the bulky aromatic entity in their
structure with 5,6,7-trimethoxyflavone and 5-hydroxy-6,7-dimethoxyflavone. The forma-
tion of the amide bond was carried out in the 3′ and 4′ positions on the B ring of the
flavone using 3′-amino and 4′-amino precursors coupled with various acyl chlorides and
3′-carboxyl precursors condensed with aryl amines, respectively [31].

Two flavones presented good broad-spectrum anticancer activity by triggering cell
cycle arrest in the G1 phase (Table 1, line 5). These compounds could represent hit com-
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pounds for the design of new, more potent inhibitors of STE20/GCK-IV kinase family
members, including HGK, TNIK, and MINK1 kinases. It was found that the presence of the
carbonyl of the amide linker attached to the flavone moiety is beneficial for the anticancer
activity of the tested flavone-based aryl-amides. Reversing the attachment mode of the
amide linker led to a significant decrease in anticancer activity [31].

A series of dimethoxyflavonols and trimethoxyflavonols derivatives were obtained
via the alkylation of the hydroxy group at position 3 of the chromen-4-one ring (C ring)
(Figure 3). The compounds were investigated for their anticancer activity on both androgen-
sensitive (LNCaP) and androgen-insensitive (PC-3 and DU145) prostate cancer cell lines [32].
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It was found that the alkylation of the hydroxy group in position 3 generally increased
the antiproliferative activity of the compounds. The presence of an amino group linked to
the hydroxy group at position 3 of the flavonols through a three- to five-carbon linker is
beneficial for antiproliferative activity against the three human prostate cancer cell lines
with tumor selectivity. N-methylpiperazin-1-yl, pyrrolidin-1-yl, and dibutyl amino groups
proved to be beneficial, improving the anticancer activity of the tested compounds. The
most promising derivative in terms of selectivity, anticancer activity, and bioavailability
contains a dibutyl amino group linked to the oxygen at position 3 via a three-carbon
linker (Table 1, line 6). The bioavailability of the tested compounds was superior to that of
fisetin [32].

Starting from a series of differently substituted chalcones, Pontes et al. synthesized a
series of chromene–chalcone hybrid compounds in order to test their anticancer activity
on breast cancer cell lines. The most active compound is depicted in Table 1, line 7. The
mechanism of action involves the inhibition of cell migration and induction of apoptosis, by
determining cell cycle arrest in the G2/M phase. Moreover, this compound has been proved
to alter tubulin polymerization, representing a promising new microtubule-destabilizing
agent. It was found that the presence of the halogen atoms grafted on the basic skeleton
of chromene–chalcone hybrids is beneficial to antitumor activity. Brominated compounds
presented superior activity to chlorinated and fluorinated compounds. The evaluated
compounds presented selective cytotoxicity on cancer cell lines compared to non-cancerous
cell lines [10].

New hybrid compounds of flavones (chrysin and kaempferol) and substituted 1,2,3-
triazoles were recently synthesized via the chemical derivatization of the hydroxyl groups of
chrysin and kaempferol with functionalized 1,2,3-triazole compounds [33]. The antitumor
activity of the obtained mono- and bis-coupled hybrids was evaluated in vitro on 60 cell
lines of 9 common cancer types (NCI60) [33]. The hybrid compounds presenting the most
significant antiproliferative effect are mentioned in Table 1, lines 8, 9.

A series of new heterocyclic derivatives were recently synthesized via the function-
alization of a flavone ring with an aminophenoxy moiety in different positions of the A
ring and a phenoxy moiety in different positions of the B ring [34]. Their cytotoxicity was
investigated in vitro against two human non-small cell lung cancer (NSCLC) cell lines
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(A549 and NCI-H1975). It was found that the presence of a 4-aminophenoxy group at the
sixth position of the A ring and a terminal phenoxy group on the B ring is beneficial for
cancer-selective cytotoxicity. A flavone derivative containing a phenoxy moiety at the C’3
position of the B ring and a p-aminophenoxy group at the sixth position of the A ring was
the most effective, presenting micromolar IC50 values (for A549 and H1975) and a high
selectivity index (SI > 10, Table 1, line 10). Further flow cytometric analyses showed that
this compound induces apoptosis and cell cycle arrest in the G2/M phase through the
up-regulation of p21 expression [34]. The absence of the phenoxy moiety on the B ring and
the different position of the p-aminophenoxy moieties on the A ring decreased the efficacy
and selectivity of aminophenoxy derivatives [34].

New C-dimethylated flavones were recently synthesized and evaluated for their anti-
tubercular and anticancer activity [35]. In this study, four flavones presented anticancer
activity against a human adenocarcinoma A549 cell line, with IC50 values between 39 and
48 µM (Table 1, lines 11–14). This study’s in silico docking simulations revealed that these
four compounds present improved binding and interaction profiles against the epidermal
growth factor receptor (EGFR) [35].

Other recently reported examples of synthetic flavones with antitumor activity are
illustrated in Table 1, lines 15–20.

Natural and synthetic aurones possess a broad variety of biological activities, includ-
ing antiproliferative activity against different cancer cell lines. The anticancer activity of
aurones is due to their ability to interact with different key antitumor molecular targets,
and examples of such interactions include the following: the inhibition of serine/threonine
cyclin-dependent kinases (CDK 1 and 2) [36], the inhibition of topoisomerase IIα [37], the in-
hibition of sphingosine kinase (SphK) [38], and interfering with microtubule assembly [39].
In some cases, it was found that the anticancer activity of aurones is strongly related to
their antioxidant activity [40].

Several aurones have been shown to modulate the activity of ATP-dependent efflux
pumps such as P-glycoprotein [41] and breast cancer resistance protein (BCRP/ABCG2) [42].
Through this mechanism, aurones can potentiate the effect of simultaneously adminis-
tered anticancer chemotherapeutics by blocking the multidrug resistance mechanisms of
tumor cells.

Our research group synthesized a series of aurone analogs by replacing the B ring
(phenyl) with the 2-arylthiazole system in order to obtain compounds with superior anti-
cancer activity, considering the anticancer potential of thiazole derivatives. Two aurone
analogs were active against cancer cell lines resistant to currently used chemotherapeutics,
such as multidrug-resistant leukemia cell lines and breast cancer cell lines, and both showed
cytotoxic activities that were superior to doxorubicin (Table 1, lines 21, 22) [43]. Other
recently reported examples of synthetic aurones with antitumor activity are illustrated in
Table 1, lines 23–31.

Table 1. Synthetic analogs of flavones and aurones with antitumor properties.

Entry Chemical Structure Cancer Cell Lines against the Tested Compounds Present
Cytotoxic Activity Ref.
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CEM (68.74%), HL60(TB) (64.01%), K562 (72.38%), MOLT4 

(89.58%), SR (70.19%), growth inhibition determined at 10 µM 
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R = OH 

- Ovarian cancer cell lines OVCAR3 (76.24%), OVCAR8 

(76.91%), ADRRES (50.62%) at 10 µM dosage. 

- Breast cancer cells MCF7 (50.65%), HS578T (103.91%), BT549 

(93.00%), MDAMB468 (40.13%), growth inhibition determined 

at 10 µM dosage. 

3 
O

O

H3CO

H3CO

H3CO

N
H

O

O

O

 

- Cell lines of hematologic cancers RPMI8226 (153.74%), 

CCRFCEM (111.94%), HL60(TB) (65.43%), K562 (82.60%), 

MOLT4 (97.10%), SR (88.49%), growth inhibition determined 
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- Non-small-cell lung cancer cell lines (NSCLC) HOP92 
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[30] 

Flavopiridol

- Acute myeloid leukemia cells U266 (69% growth
inhibition in G0/G1 cell cycle, dosage: 100 nM). [44]
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Table 1. Cont.

Entry Chemical Structure Cancer Cell Lines against the Tested Compounds Present
Cytotoxic Activity Ref.
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R = OCH3

- Cell lines of hematologic cancers RPMI8226 (99.70%),
CCRFCEM (68.74%), HL60(TB) (64.01%), K562
(72.38%), MOLT4 (89.58%), SR (70.19%), growth
inhibition determined at 10 µM dosage.

- Non-small-cell lung cancer (NSCLC) A549 (56.48%),
HOP62 (62.50%), HOP92 (75.26%), H226 (41.45%), H23
(51.21%), H460 (69.96%), H522 (65.28%), growth
inhibition determined at 10 µM dosage.

- Breast cancer cells MCF7 (65.73%), HS578T (90.80%),
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inhibition determined at 10 µM dosage.

[30]

R = OH

- Ovarian cancer cell lines OVCAR3 (76.24%), OVCAR8
(76.91%), ADRRES (50.62%) at 10 µM dosage.

- Breast cancer cells MCF7 (50.65%), HS578T (103.91%),
BT549 (93.00%), MDAMB468 (40.13%), growth
inhibition determined at 10 µM dosage.
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± 1.5 µM). 

- Androgen-insensitive prostate cancer cell lines PC-3 (IC50 = 1.4 

± 0.2 µM) and DU145 (IC50 = 7.6 ± 2.4 µM). 
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7 

O NH2
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OCH3
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OCH3  

- Breast cancer cell lines MCF-7 (IC50 = 3.65 ± 0.021 µM), Hs578T 

(IC50 = 4.52 ± 0.019 µM), with tumor selectivity compared to 

non-cancer cell lines MCF-10A (4.17 and 3.08). 

[10] 

8 

 

- Non-small cell lung cancer cell lines: HOP-62 (GI50 = 3.76 µM), 

HOP-92 (GI50 = 4.43 µM), NCI-H226 (GI50 = 3.51 µM), NCI-H23 

(GI50 = 7.70 µM), NCI-H522 (GI50 = 6.60 µM). 

- Colon cancer cell line: HCT-116 (GI50 = 5.91 µM). 

- Central nervous system cancer cell lines: SF-268 (GI50 = 4.32 

µM), SF-539 (GI50 = 5.17 µM), SNB-19 (GI50 = 4.51 µM), SNB-75 

(GI50 = 3.74 µM). 

- Melanoma: MALME-3M (GI50 = 5.06 µM), SK-MEL-2 (GI50 = 

6.80 µM). 

- Ovarian cancer cell lines: OVCAR-8 (GI50 = 3.76 µM), 

NCI/ADR-RES (GI50 = 5.57 µM), SK-OV-3 (GI50 = 6.57 µM). 

- Renal cancer cell lines: 786-0 (GI50 = 9.26 µM), ACHN (GI50 = 

6.23 µM), CAKI-1 (GI50 = 5.76 µM), RXF 393 (GI50 = 3.58 µM). 

- Breast cancer cell lines: HS 578T (GI50 = 6.26 µM), BT-549 (GI50 

= 7.98 µM). 

[33] 

- Cell lines of hematologic cancers RPMI8226 (93.25%),
CCRFCEM (83.98%), HL60(TB) (42.34%), K562
(63.61%), MOLT4 (71.17%), growth inhibition
determined at 10 µM dosage.

- Non-small-cell lung cancer cell lines (NSCLC) A549
(51.79%), HOP92 (100.39%), H322M (56.40%), H522
(55.74%), growth inhibition determined at
10 µM dosage.

[30]
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(IC50 = 4.52 ± 0.019 µM), with tumor selectivity compared to 
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- Non-small cell lung cancer cell lines: HOP-62 (GI50 = 3.76 µM), 

HOP-92 (GI50 = 4.43 µM), NCI-H226 (GI50 = 3.51 µM), NCI-H23 

(GI50 = 7.70 µM), NCI-H522 (GI50 = 6.60 µM). 

- Colon cancer cell line: HCT-116 (GI50 = 5.91 µM). 

- Central nervous system cancer cell lines: SF-268 (GI50 = 4.32 

µM), SF-539 (GI50 = 5.17 µM), SNB-19 (GI50 = 4.51 µM), SNB-75 
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- Melanoma: MALME-3M (GI50 = 5.06 µM), SK-MEL-2 (GI50 = 

6.80 µM). 

- Ovarian cancer cell lines: OVCAR-8 (GI50 = 3.76 µM), 

NCI/ADR-RES (GI50 = 5.57 µM), SK-OV-3 (GI50 = 6.57 µM). 

- Renal cancer cell lines: 786-0 (GI50 = 9.26 µM), ACHN (GI50 = 

6.23 µM), CAKI-1 (GI50 = 5.76 µM), RXF 393 (GI50 = 3.58 µM). 

- Breast cancer cell lines: HS 578T (GI50 = 6.26 µM), BT-549 (GI50 

= 7.98 µM). 

[33] 

- Large spectra antitumor activity:

melanoma (160.26–107.81% SKMEL5), hematologic
(111.12–92.74% leukemia HL60), renal (129.05% RXF393),
colon (98.27–82.03% COLO205), lung (93.28% H522), brain
(147.04–141.63% SF295 glioma), ovarian (76.54–51.79%
IGROV1, OVCAR3, OVCAR8, ADREES, SKOV3), growth
inhibition determined at 10 µM dosage.

[31]
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6.80 µM). 

- Ovarian cancer cell lines: OVCAR-8 (GI50 = 3.76 µM), 

NCI/ADR-RES (GI50 = 5.57 µM), SK-OV-3 (GI50 = 6.57 µM). 

- Renal cancer cell lines: 786-0 (GI50 = 9.26 µM), ACHN (GI50 = 

6.23 µM), CAKI-1 (GI50 = 5.76 µM), RXF 393 (GI50 = 3.58 µM). 

- Breast cancer cell lines: HS 578T (GI50 = 6.26 µM), BT-549 (GI50 

= 7.98 µM). 

[33] 

- Androgen-sensitive prostate cancer cell line LNCaP
(IC50 = 2.4 ± 1.5 µM).

- Androgen-insensitive prostate cancer cell lines PC-3
(IC50 = 1.4 ± 0.2 µM) and DU145
(IC50 = 7.6 ± 2.4 µM).

[32]
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- Cell lines of hematologic cancers RPMI8226 (93.25%), CCRF-

CEM (83.98%), HL60(TB) (42.34%), K562 (63.61%), MOLT4 

(71.17%), growth inhibition determined at 10 µM dosage. 

- Non-small-cell lung cancer cell lines (NSCLC) A549 (51.79%), 

HOP92 (100.39%), H322M (56.40%), H522 (55.74%), growth 

inhibition determined at 10 µM dosage. 

[30] 
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OOCH3

H3CO
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(CH3 , Cl)

 

- Large spectra antitumor activity: 

melanoma (160.26–107.81% SKMEL5), hematologic (111.12–92.74% 

leukemia HL60), renal (129.05% RXF393), colon (98.27–82.03% 

COLO205), lung (93.28% H522), brain (147.04–141.63% SF295 gli-

oma), ovarian (76.54–51.79% IGROV1, OVCAR3, OVCAR8, 

ADREES, SKOV3), growth inhibition determined at 10 µM dosage. 

[31] 
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OCH3

O (CH2)3

OCH3

N

 

- Androgen-sensitive prostate cancer cell line LNCaP (IC50 = 2.4 

± 1.5 µM). 

- Androgen-insensitive prostate cancer cell lines PC-3 (IC50 = 1.4 

± 0.2 µM) and DU145 (IC50 = 7.6 ± 2.4 µM). 

[32] 

7 

O NH2

CN

O

OCH3

Br

OCH3  

- Breast cancer cell lines MCF-7 (IC50 = 3.65 ± 0.021 µM), Hs578T 

(IC50 = 4.52 ± 0.019 µM), with tumor selectivity compared to 

non-cancer cell lines MCF-10A (4.17 and 3.08). 

[10] 

8 

 

- Non-small cell lung cancer cell lines: HOP-62 (GI50 = 3.76 µM), 

HOP-92 (GI50 = 4.43 µM), NCI-H226 (GI50 = 3.51 µM), NCI-H23 

(GI50 = 7.70 µM), NCI-H522 (GI50 = 6.60 µM). 

- Colon cancer cell line: HCT-116 (GI50 = 5.91 µM). 

- Central nervous system cancer cell lines: SF-268 (GI50 = 4.32 

µM), SF-539 (GI50 = 5.17 µM), SNB-19 (GI50 = 4.51 µM), SNB-75 

(GI50 = 3.74 µM). 

- Melanoma: MALME-3M (GI50 = 5.06 µM), SK-MEL-2 (GI50 = 

6.80 µM). 

- Ovarian cancer cell lines: OVCAR-8 (GI50 = 3.76 µM), 

NCI/ADR-RES (GI50 = 5.57 µM), SK-OV-3 (GI50 = 6.57 µM). 

- Renal cancer cell lines: 786-0 (GI50 = 9.26 µM), ACHN (GI50 = 

6.23 µM), CAKI-1 (GI50 = 5.76 µM), RXF 393 (GI50 = 3.58 µM). 

- Breast cancer cell lines: HS 578T (GI50 = 6.26 µM), BT-549 (GI50 

= 7.98 µM). 

[33] 

- Breast cancer cell lines MCF-7
(IC50 = 3.65 ± 0.021 µM), Hs578T
(IC50 = 4.52 ± 0.019 µM), with tumor selectivity
compared to non-cancer cell lines MCF-10A
(4.17 and 3.08).

[10]
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ADREES, SKOV3), growth inhibition determined at 10 µM dosage. 
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- Androgen-sensitive prostate cancer cell line LNCaP (IC50 = 2.4 

± 1.5 µM). 

- Androgen-insensitive prostate cancer cell lines PC-3 (IC50 = 1.4 

± 0.2 µM) and DU145 (IC50 = 7.6 ± 2.4 µM). 

[32] 

7 

O NH2

CN
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OCH3

Br

OCH3  

- Breast cancer cell lines MCF-7 (IC50 = 3.65 ± 0.021 µM), Hs578T 

(IC50 = 4.52 ± 0.019 µM), with tumor selectivity compared to 

non-cancer cell lines MCF-10A (4.17 and 3.08). 

[10] 

8 

 

- Non-small cell lung cancer cell lines: HOP-62 (GI50 = 3.76 µM), 

HOP-92 (GI50 = 4.43 µM), NCI-H226 (GI50 = 3.51 µM), NCI-H23 

(GI50 = 7.70 µM), NCI-H522 (GI50 = 6.60 µM). 

- Colon cancer cell line: HCT-116 (GI50 = 5.91 µM). 

- Central nervous system cancer cell lines: SF-268 (GI50 = 4.32 

µM), SF-539 (GI50 = 5.17 µM), SNB-19 (GI50 = 4.51 µM), SNB-75 

(GI50 = 3.74 µM). 

- Melanoma: MALME-3M (GI50 = 5.06 µM), SK-MEL-2 (GI50 = 

6.80 µM). 

- Ovarian cancer cell lines: OVCAR-8 (GI50 = 3.76 µM), 

NCI/ADR-RES (GI50 = 5.57 µM), SK-OV-3 (GI50 = 6.57 µM). 

- Renal cancer cell lines: 786-0 (GI50 = 9.26 µM), ACHN (GI50 = 

6.23 µM), CAKI-1 (GI50 = 5.76 µM), RXF 393 (GI50 = 3.58 µM). 

- Breast cancer cell lines: HS 578T (GI50 = 6.26 µM), BT-549 (GI50 

= 7.98 µM). 

[33] 

- Non-small cell lung cancer cell lines: HOP-62
(GI50 = 3.76 µM), HOP-92 (GI50 = 4.43 µM), NCI-H226
(GI50 = 3.51 µM), NCI-H23 (GI50 = 7.70 µM),
NCI-H522 (GI50 = 6.60 µM).

- Colon cancer cell line: HCT-116 (GI50 = 5.91 µM).
- Central nervous system cancer cell lines: SF-268

(GI50 = 4.32 µM), SF-539 (GI50 = 5.17 µM), SNB-19
(GI50 = 4.51 µM), SNB-75 (GI50 = 3.74 µM).

- Melanoma: MALME-3M (GI50 = 5.06 µM), SK-MEL-2
(GI50 = 6.80 µM).

- Ovarian cancer cell lines: OVCAR-8 (GI50 = 3.76 µM),
NCI/ADR-RES (GI50 = 5.57 µM), SK-OV-3
(GI50 = 6.57 µM).

- Renal cancer cell lines: 786-0 (GI50 = 9.26 µM), ACHN
(GI50 = 6.23 µM), CAKI-1 (GI50 = 5.76 µM), RXF 393
(GI50 = 3.58 µM).

- Breast cancer cell lines: HS 578T (GI50 = 6.26 µM),
BT-549 (GI50 = 7.98 µM).

[33]
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- Non-small cell lung cancer cell lines: HOP-62 (GI50 = 2.33 µM), 

HOP-92 (GI50 = 1.89 µM), NCI-H226 (GI50 = 2.07 µM), NCI-H23 
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(GI50 = 2.21 µM), SNB-19 (GI50 = 4.55 µM), SNB-75 (GI50 = 1.69 µM), 

U251 (GI50 = 2.80 µM). 

- Melanoma: MALME-3M (GI50 = 2.03 µM), SK-MEL-2 (GI50 = 

4.49 µM). 

- Ovarian cancer cell line: IGROV1 (GI50 = 4.45 µM). 

- Renal cancer cell lines: 786-0 (GI50 = 1.96 µM), RXF 393 (GI50 = 

1.78 µM), TK-10 (GI50 = 3.01 µM). 

- Breast cancer cell lines: MDA-MB-231/ATCC (GI50 = 2.34 µM), 

HS 578T (GI50 = 3.28 µM), MDA-MB-468 (GI50 = 1.97 µM). 

[33] 

10 

 

- Non-small cell lung cancer cell lines: A549 (IC50 = 4.2 ± 0.4 

µM), NCI-H1975 (IC50 = 2.3 ± 0.2 µM). 
[34] 
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CH3

H3CO

H3C
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- Human adenocarcinoma cell line A549 (IC50 = 39.17 µM). [35] 

12 
O

O

CH3

H3CO

H3C

OCH3

OCH3

OCH3

OCH3

 

- Human adenocarcinoma cell line A549 (IC50 = 39.21 µM). [35] 

13 
O

O

CH3

H3CO

H3C

OCH3

F

 

- Human adenocarcinoma cell line A549 (IC50 = 48.43 µM). [35] 

14 

 

- Human adenocarcinoma cell line A549 (IC50 = 43.48 µM). [35] 

- Non-small cell lung cancer cell lines: HOP-62
(GI50 = 2.33 µM), HOP-92 (GI50 = 1.89 µM), NCI-H226
(GI50 = 2.07 µM), NCI-H23 (GI50 = 3.70 µM),
NCI-H522 (GI50 = 3.66 µM).

- Colon cancer cell line: HCT-116 (GI50 = 3.52 µM).

CNS cancer: SF-268 (GI50 = 3.52 µM), SF-295
(GI50 = 2.32 µM), SF-539 (GI50 = 2.21 µM), SNB-19
(GI50 = 4.55 µM), SNB-75 (GI50 = 1.69 µM), U251
(GI50 = 2.80 µM).

- Melanoma: MALME-3M (GI50 = 2.03 µM), SK-MEL-2
(GI50 = 4.49 µM).

- Ovarian cancer cell line: IGROV1 (GI50 = 4.45 µM).
- Renal cancer cell lines: 786-0 (GI50 = 1.96 µM), RXF

393 (GI50 = 1.78 µM), TK-10 (GI50 = 3.01 µM).
- Breast cancer cell lines: MDA-MB-231/ATCC

(GI50 = 2.34 µM), HS 578T (GI50 = 3.28 µM),
MDA-MB-468 (GI50 = 1.97 µM).

[33]
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- Human adenocarcinoma cell line A549 (IC50 = 48.43 µM). [35] 

14 

 

- Human adenocarcinoma cell line A549 (IC50 = 43.48 µM). [35] 

- Non-small cell lung cancer cell lines:
A549 (IC50 = 4.2 ± 0.4 µM),
NCI-H1975 (IC50 = 2.3 ± 0.2 µM).

[34]
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- Human adenocarcinoma cell line A549
(IC50 = 39.17 µM). [35]
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(IC50 = 48.43 µM). [35]
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- Non-small cell lung cancer cell lines: A549 (IC50 = 4.2 ± 0.4 

µM), NCI-H1975 (IC50 = 2.3 ± 0.2 µM). 
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- Human adenocarcinoma cell line A549 (IC50 = 48.43 µM). [35] 

14 

 

- Human adenocarcinoma cell line A549 (IC50 = 43.48 µM). [35] 
- Human adenocarcinoma cell line A549

(IC50 = 43.48 µM). [35]
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- AR-negative castration-resistant prostate cancer cell line 

(CRPC) as topoisomerase II catalytic inhibitor (88.9% growth 

inhibition at 20 µM) and by intercalating and binding to the 

DNA minor groove (IC50 = 0.13 ± 0.007 µM). 

- Sensitizes AR-positive CRPC cells to enzalutamide and tax-

anes. 

[45] 

16 O

O

H3CO

H3CO

OCH3

OH

OH

OCH3

 

- Human pancreas adenocarcinoma ascites metastasis Aspc-1 

cancer cell lines (IC50 = 5.30 µM). 
[46] 

17 

O

OOH

HO

OH3C

CH3

 

- MCF-7 breast cancer cells (IC50 = 5.6 ± 1.94 µM) and yeasts ex-

pressing human caspase-7. 
[11] 

18 O

OOCH3

CH3

CH3

O

H3CO

CH2

 

- Human erythroleukemia cell line HEL (IC50 = 9.945 ± 0.930 

µM). 

- Prostate cancer cell line PC3 (IC50 = 6.473 ± 0.811 µM). 

[47] 

19 O

OOCH3

CH3

CH3

NH

H3CO

R

OCH3

O

R = iso-C4H9, sec-C4H9, iso-C3H7, BocHN(CH2)4  

- Human erythroleukemia cell line HEL (IC50 = 7.563–8.886 µM). 

- Prostate cancer cell line PC3 (IC50 = 9.140–10.242 µM). 
[47] 

20 

O

OOCH3

CH3

CH3

NH

H3CO

OCH3

O

CH3H3C

 

- Human erythroleukemia cell line HEL (IC50 = 10.526 ± 0.992 

µM). 

- Prostate cancer cell line PC3 (IC50 = 11.266 ± 0.971 µM). 

[47] 

21 
O

O

N

S  

- Leukemia cell line, doxorubicin-resistant phenotype 

CEM/ADR5000 (IC50 = 5.85 ± 0.46 µM). 
[43] 

- AR-negative castration-resistant prostate cancer cell
line (CRPC) as topoisomerase II catalytic inhibitor
(88.9% growth inhibition at 20 µM) and by
intercalating and binding to the DNA minor groove
(IC50 = 0.13 ± 0.007 µM).

- Sensitizes AR-positive CRPC cells to enzalutamide
and taxanes.

[45]
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- Human erythroleukemia cell line HEL (IC50 = 7.563–8.886 µM). 

- Prostate cancer cell line PC3 (IC50 = 9.140–10.242 µM). 
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20 

O

OOCH3

CH3
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NH

H3CO

OCH3
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CH3H3C

 

- Human erythroleukemia cell line HEL (IC50 = 10.526 ± 0.992 

µM). 

- Prostate cancer cell line PC3 (IC50 = 11.266 ± 0.971 µM). 

[47] 

21 
O

O

N

S  

- Leukemia cell line, doxorubicin-resistant phenotype 

CEM/ADR5000 (IC50 = 5.85 ± 0.46 µM). 
[43] 

- Human pancreas adenocarcinoma ascites metastasis
Aspc-1 cancer cell lines (IC50 = 5.30 µM). [46]
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CEM/ADR5000 (IC50 = 5.85 ± 0.46 µM). 
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yeasts expressing human caspase-7. [11]
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[47]
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[47]
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N

S  
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CEM/ADR5000 (IC50 = 5.85 ± 0.46 µM). [43]
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Table 1. Cont.

Entry Chemical Structure Cancer Cell Lines against the Tested Compounds Present
Cytotoxic Activity Ref.
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22 
O

O

N

S
ClBr

 

- Breast adenocarcinoma cell line, resistant phenotype 

MDA-MB231/BCRP (IC50 = 5.43 ± 3.17 µM). 
[43] 

23 
O

O

Cl

Cl

Cl
 

- Human colorectal cancer cell line HCT 116 (IC50 = 36 µM). 

- Human chronic myelogenous leukemia cell line K562 (IC50 = 

23 µM). 

- Hormone-dependent breast cancer cell line MCF-7 (IC50 = 23 

µM). 

[48] 

24 O

O

CH3

Cl

Cl

 

- Human chronic 

myelogenous leukemia cell line K562 (IC50 = 20 µM). 
[48] 

25 O

N(CH2CH3)2

O
HO

 

- Inhibition of in vitro angiogenesis of HUVEC (human umbili-

cal vein endothelial cells) proliferation, motility, and tube 

formation (IC50 = 0.25 µM). 

- Anti-proliferative and anti-invasive 

activities against A549 (non-small cell lung cancer cell line, 

IC50 = 1.25 µM), and MCF-7 (breast cancer cell line, IC50 = 1.81 

µM). 

[49] 

26 O

N(CH2CH3)2

O
O

OH3C

 

- Inhibition of in vitro angiogenesis of HUVEC (human umbili-

cal vein endothelial cells) proliferation, motility, and tube 

formation (IC50 = 0.23 µM). 

- Anti-proliferative and anti-invasive 

activities against A549 (non-small cell lung cancer cell line, 

IC50 = 1.29 µM), and MCF-7 (breast cancer cell line, IC50 = 2.95 

µM). 

[49] 

27 
O

O

CF3

RO

R = H, CH3, C2H5, CH2-CH=CH2, C6H5-CH2, n-C7H15  

- Leucocythemia cell line HL-60 (IC50 = 1.54–3.53 µM). 

- Colorectal adenocarcinoma cell line HT-29 (IC50 = 4.12–8.90 

µM). 

[50] 

28 O

O

OH  

- Human oral squamous carcinoma cell lines Ca9-22 (derived 

from gingival tissue, CC50 = 37 µM), HSC-2 (CC50 = 57 µM), 

and HSC-4 (derived from tongue, CC50 = 31 µM), with tu-

mor-specificity in comparison to oral normal cells. 

[51] 

29 O

O
R

O

O

OCH3

 

R = Cl: leukemia cell lines MOLT-4 (−17.79% mean growth per-

centage), and SR (−22.38% mean growth percentage). 

R = H: renal cancer cell line UO-31 (−44.36% mean growth per-

centage). 

The mean growth percentages were determined for five concentra-

tions ranging from 10−4 to 10−8 M. 

[52] 

- Breast adenocarcinoma cell line, resistant phenotype
MDA-MB231/BCRP (IC50 = 5.43 ± 3.17 µM). [43]
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(IC50 = 36 µM).

- Human chronic myelogenous leukemia cell line K562
(IC50 = 23 µM).

- Hormone-dependent breast cancer cell line MCF-7
(IC50 = 23 µM).

[48]
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[51] 

29 O

O
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O
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R = Cl: leukemia cell lines MOLT-4 (−17.79% mean growth per-

centage), and SR (−22.38% mean growth percentage). 

R = H: renal cancer cell line UO-31 (−44.36% mean growth per-

centage). 

The mean growth percentages were determined for five concentra-

tions ranging from 10−4 to 10−8 M. 

[52] 

- Human chronic myelogenous leukemia cell line K562
(IC50 = 20 µM). [48]
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centage). 
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[52] 

- Inhibition of in vitro angiogenesis of HUVEC (human
umbilical vein endothelial cells) proliferation, motility,
and tube formation (IC50 = 0.25 µM).

- Anti-proliferative and anti-invasive activities against
A549 (non-small cell lung cancer cell line,
IC50 = 1.25 µM), and MCF-7 (breast cancer cell line,
IC50 = 1.81 µM).

[49]
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IC50 = 1.29 µM), and MCF-7 (breast cancer cell line,
IC50 = 2.95 µM).

[49]
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2.2. Antibacterial and Antifungal Activity

Bacterial and fungal resistance to existing antibiotics is a worldwide health issue,
particularly affecting the immunocompromised patients. Without effective antimicrobial
agents, several medical procedures could endanger the lives of patients by increasing
the risk of microbial infections. The basic structure of natural flavones and aurones have
inspired researchers to develop new antimicrobial agents with improved bioavailability
and antibacterial and antifungal properties.

Recently, it was reported that the natural flavone myricetin (Figure 2) presents anti
biofilm activity against Staphylococcus aureus and attenuates osteomyelitis by inhibiting
the Toll-like receptor-2 (TLR2)/mitogen-activated protein kinase (MAPK) pathway in
experimental mice [54].

Ashok D. et al. synthesized new flavonol analogs bearing the extended heteroaromatic
system 1-phenyl-3-(thiophen-2-yl)-1H-pyrazol-4-yl instead of a phenyl ring (B ring) and
containing various substituents on the chromone system. The synthesized flavonol deriva-
tives were screened for their antimicrobial activity against several fungal strains (Aspergillus
niger, Penicillium italicum, Fusarium oxysporum) and bacterial strains (Staphylococcus aureus,
Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis). The inhibition zones (IZ) were
determined at 50 µg/mL concentration for each compound in dimethyl sulfoxide (used
as a solvent). Four of the tested compounds (Table 2, lines 1–4) show good antimicrobial
activity and represent hit compounds for the design of new antifungal and/or antibacterial
therapeutic agents [55].

In order to obtain new flavone analogs with antibacterial activity, Lv X.H. et al. syn-
thesized a series of flavone Mannich base derivatives by applying the Mannich reaction
between primary amines and using natural flavones as components with mobile hydrogen
and formaldehyde as a carbonyl component. The natural flavones used as precursors were
baicalein, luteolin, quercetol, apigenin, and kaempferol. Derivatization was performed at
position 8 of the chromone moiety by applying the Mannich reaction [56]. The antibacte-
rial activity of the obtained flavone Mannich bases was evaluated for two Gram-positive
bacteria (S. aureus and Listeria monocytogenes) and two Gram-negative bacteria (E. coli and
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Salmonella gallinarium), and novobiocin and ciprofloxacin were used as standards. The
structures of the most active compounds are shown in Table 2, lines 5, 6. Through per-
forming in vitro experiments and in silico molecular docking studies, it was found that
these compounds exhibit potent inhibition against topoisomerase II and topoisomerase IV
isolated from E. coli [56].

New hydroxyflavone derivatives containing the dimethylamino group grafted at
position 4 of the benzene ring (B ring) were synthesized and evaluated for their antifungal
activity against Acremonium strictum, Penicillium expansum, and Aspergillus flavus. Four of
the tested compounds presented very good antifungal activities against some of the tested
fungal strains (Table 2, lines 7–10) [57].

New quinoline-based aurone analogs were synthesized and evaluated for their an-
tibacterial, antifungal, and anti-biofilm activity. The compounds mentioned in Table 2, lines
11–13 presented the most significant antibacterial and antifungal activities, and some of
them were also shown to be good anti-biofilm agents [58].

New C-dimethylated flavones were recently synthesized and evaluated for their anti-
tubercular and anticancer activity [35]. Two dimethylated and dimethoxylated flavones
bearing the fluoro and dimethylamino substituents in position 4 of the B ring were shown to
have significant antibacterial activity against the H37Rv strain of replicating Mycobacterium
tuberculosis, with sensitivity up to 6.25 µg/mL (Table 2, line 14).

2.3. Antiviral Activity

Viral infections represent a global health issue and have had many implications on
public health throughout history, including the appearance of new mutant viral strains and
the emergence of pandemics. Specific aspects of modernization, such as rapid air transit
and urbanization, have accelerated the emergence and spread of viruses. Antiviral therapy
is necessary when vaccination does not bring the expected results or in the case of infections
for which vaccination has not been implemented. Flavones have also been included in the
research of new molecules with antiviral potential, yielding some important results and
positive prospects for the future.

According to a recently reported study, the natural flavone myricetin (Figure 2) pos-
sesses potency against SARS-CoV-2 infection through blocking viral-entry facilitators and
suppressing inflammation through the RIPK1/NF-κB pathway [59]. Myricetin also inhibits
SASR-CoV-2 infection and replication in Vero E6 cells (EC50 55.18 µM) [59]; these results
suggest that this flavone represents a key structure for the design of new therapeutic agents
against COVID-19.

Regarding tricin, 4′,5,7-trihydroxy-3′,5′-dimethoxyflavone, a flavone derivative with
activity against cytomegalovirus (CMV), Fujimoto K.J. et al. modulated its structure
by grafting a fluorine atom on the chromen-4-one ring. Thus, two compounds were
obtained—6-F-tricin and 7-F-tricin—and the antiviral activity of which was measured
against cytomegalovirus replicated on embryonic lung cell cultures. Compared to gan-
ciclovir, 6-F-tricin showed much stronger activity against cytomegalovirus (Table 2, line
15). Moreover, it was observed that 6-F-tricin did not produce cytotoxicity on the used
embryonic cells. Substitution with fluorine is beneficial for increasing the affinity for target
proteins (in this case, for CDK9, cyclin-dependent kinase 9) [60].

The antiviral potential of flavones has also been demonstrated against tropical diseases
such as Chikungunya fever. Badavath V.N. et al. synthesized nineteen flavones in order to
evaluate their antiviral activity against Chikungunya virus replication. Two compounds
showed activity at concentrations below 1 µg/mL (Table 2, lines 16, 17). It was observed
that the more potent compounds possess heterocycles (thiophen-2-yl and pyridyn-2-yl) in
position 2 of the chromen-4-one ring instead of the benzene ring (B ring). Through conduct-
ing molecular docking studies, it was deduced that these compounds act by inhibiting the
Chikungunya virus protease [61].
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Table 2. Synthetic analogs of flavones and aurones with antimicrobial (antibacterial/
antifungal/antiviral) properties.

Entry Chemical Structure Microbial Strains against the Tested Compounds
Present Antimicrobial Activity Ref.
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Fusarium oxysporum (IZ = 25 mm) 

[55] 

4 O

O

OH

N
N

S

H3CO

 

Antibacterial activity (inhibition zone for 50 µg/mL 

solution): 

Staphylococcus aureus (IZ = 33 mm) 

Bacillus subtilis (IZ = 17 mm) 

Escherichia coli (IZ = 33 mm) 

Antifungal activity (inhibition zone for 50 µg/mL solu-

tion): 

Aspergillus niger (IZ = 14 mm) 

Penicillium italicum (IZ = 26 mm) 

Fusarium oxysporum (IZ = 27 mm) 

[55] 

5 
O

OOH

HO

HN

H3CO

OH

OH

 

Antibacterial activity: 

Staphylococcus aureus (MIC = 2 mg/L) 

Escherichia coli (MIC = 4 mg/L) 

Salmonella gallinarum (MIC = 0.125 mg/L) 

[56] 

Antibacterial activity (inhibition zone for
50 µg/mL solution):
Staphylococcus aureus (IZ = 30 mm)
Bacillus subtilis (IZ = 11 mm)
Escherichia coli (IZ = 31 mm)
Antifungal activity (inhibition zone for
50 µg/mL solution):
Aspergillus niger (IZ = 13 mm)
Penicillium italicum (IZ = 24 mm)
Fusarium oxysporum (IZ = 25 mm)

[55]

4

Molecules 2023, 28, x FOR PEER REVIEW 16 of 53 
 

 

Table 2. Synthetic analogs of flavones and aurones with antimicrobial (antibacteri-

al/antifungal/antiviral) properties. 

Entry Chemical Structure 
Microbial Strains against the Tested Compounds 

Present Antimicrobial Activity 
Ref. 

1 O

O

OH

N
N

S

 

Antifungal activity (inhibition zone for 50 µg/mL solu-

tion): 

Aspergillus niger (IZ = 16 mm) 

Penicillium italicum (IZ = 20 mm) 
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[55] 
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Antibacterial activity (inhibition zone for 50 µg/mL 

solution): 

Staphylococcus aureus (IZ = 30 mm) 

Bacillus subtilis (IZ = 11 mm) 

Escherichia coli (IZ = 31 mm) 

Antifungal activity (inhibition zone for 50 µg/mL solu-

tion): 

Aspergillus niger (IZ = 13 mm) 

Penicillium italicum (IZ = 24 mm) 
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[55] 

4 O

O

OH

N
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S

H3CO

 

Antibacterial activity (inhibition zone for 50 µg/mL 

solution): 

Staphylococcus aureus (IZ = 33 mm) 

Bacillus subtilis (IZ = 17 mm) 

Escherichia coli (IZ = 33 mm) 

Antifungal activity (inhibition zone for 50 µg/mL solu-

tion): 

Aspergillus niger (IZ = 14 mm) 

Penicillium italicum (IZ = 26 mm) 

Fusarium oxysporum (IZ = 27 mm) 

[55] 

5 
O

OOH

HO

HN

H3CO

OH

OH

 

Antibacterial activity: 

Staphylococcus aureus (MIC = 2 mg/L) 

Escherichia coli (MIC = 4 mg/L) 

Salmonella gallinarum (MIC = 0.125 mg/L) 

[56] 

Antibacterial activity (inhibition zone for
50 µg/mL solution):
Staphylococcus aureus (IZ = 33 mm)
Bacillus subtilis (IZ = 17 mm)
Escherichia coli (IZ = 33 mm)
Antifungal activity (inhibition zone for
50 µg/mL solution):
Aspergillus niger (IZ = 14 mm)
Penicillium italicum (IZ = 26 mm)
Fusarium oxysporum (IZ = 27 mm)

[55]
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Escherichia coli (IZ = 30 mm) 

[55] 
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Antibacterial activity (inhibition zone for 50 µg/mL 

solution): 

Staphylococcus aureus (IZ = 30 mm) 

Bacillus subtilis (IZ = 11 mm) 

Escherichia coli (IZ = 31 mm) 

Antifungal activity (inhibition zone for 50 µg/mL solu-
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Antibacterial activity (inhibition zone for 50 µg/mL 

solution): 

Staphylococcus aureus (IZ = 33 mm) 
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[55] 
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H3CO
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Antibacterial activity: 

Staphylococcus aureus (MIC = 2 mg/L) 

Escherichia coli (MIC = 4 mg/L) 

Salmonella gallinarum (MIC = 0.125 mg/L) 

[56] 

Antibacterial activity:
Staphylococcus aureus (MIC = 2 mg/L)
Escherichia coli (MIC = 4 mg/L)
Salmonella gallinarum (MIC = 0.125 mg/L)

[56]
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Antibacterial activity: 

Staphylococcus aureus (MIC = 1 mg/L) 

Escherichia coli (MIC = 2 mg/L) 

Salmonella gallinarum (MIC = 0.05 mg/L) 

Listeria monocytogenes (MIC = 0.5 mg/L) 

[56] 

7 O

O

OH

N
CH3

CH3

 

Antifungal activity (percentage inhibition at 0.25 

mg/mL and, respectively 0.5 mg/mL concentration): 

Acremonium strictum (81.33%; 100%) 

Penicillium expansum (60.87%; 100%) 

Aspergillus flavus (41.02%; 65.64%) 

[57] 

8 

O

O

O

N
CH3

CH3

NH2

O  

Antifungal activity (percentage inhibition at 0.25 

mg/mL and, respectively 0.5 mg/mL concentration): 

Acremonium strictum (70%; 100%) 

Penicillium expansum (42.15%; 100%) 

Aspergillus flavus (6.41%; 46.15%) 

[57] 

9 
O

O

O

N
CH3

CH3

Cl
O  

Antifungal activity (percentage inhibition at 0.25 

mg/mL and, respectively 0.5 mg/mL concentration): 

Acremonium strictum (76.88%; 100%) 

Aspergillus flavus (15.38%; 60.51%) 

[57] 

10 

O

O

O

N
CH3

CH3

O

O NH2

 

Antifungal activity (percentage inhibition at 0.25 

mg/mL and, respectively 0.5 mg/mL concentration): 

Acremonium strictum (73.33%; 100%) 

[57] 

11 O

N

O

HO
Cl

 

Antibacterial activity: 

Staphylococcus aureus (MIC = 1.25 mg/mL) 

Bacillus subtilis (MIC = 0.02 mg/mL) 

Mycobacterium smegmatis (MIC = 0.625 mg/mL) 

Antifungal activity: 

Fusarium oxysporum (MIC = 0.625 mg/mL) 

[58] 

Antibacterial activity:
Staphylococcus aureus (MIC = 1 mg/L)
Escherichia coli (MIC = 2 mg/L)
Salmonella gallinarum (MIC = 0.05 mg/L)
Listeria monocytogenes (MIC = 0.5 mg/L)

[56]
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Antifungal activity (percentage inhibition at 0.25 
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N
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Antibacterial activity: 

Staphylococcus aureus (MIC = 1.25 mg/mL) 

Bacillus subtilis (MIC = 0.02 mg/mL) 

Mycobacterium smegmatis (MIC = 0.625 mg/mL) 

Antifungal activity: 

Fusarium oxysporum (MIC = 0.625 mg/mL) 
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Antifungal activity (percentage inhibition at
0.25 mg/mL and, respectively
0.5 mg/mL concentration):
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Penicillium expansum (60.87%; 100%)
Aspergillus flavus (41.02%; 65.64%)

[57]
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Antibacterial activity: 

Staphylococcus aureus (MIC = 1.25 mg/mL) 

Bacillus subtilis (MIC = 0.02 mg/mL) 

Mycobacterium smegmatis (MIC = 0.625 mg/mL) 

Antifungal activity: 

Fusarium oxysporum (MIC = 0.625 mg/mL) 

[58] 

Antifungal activity (percentage inhibition at
0.25 mg/mL and, respectively
0.5 mg/mL concentration):
Acremonium strictum (70%; 100%)
Penicillium expansum (42.15%; 100%)
Aspergillus flavus (6.41%; 46.15%)

[57]
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[57] 
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N
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Antifungal activity (percentage inhibition at 0.25 

mg/mL and, respectively 0.5 mg/mL concentration): 

Acremonium strictum (76.88%; 100%) 

Aspergillus flavus (15.38%; 60.51%) 

[57] 
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Antifungal activity (percentage inhibition at 0.25 

mg/mL and, respectively 0.5 mg/mL concentration): 

Acremonium strictum (73.33%; 100%) 

[57] 

11 O

N
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HO
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Antibacterial activity: 

Staphylococcus aureus (MIC = 1.25 mg/mL) 

Bacillus subtilis (MIC = 0.02 mg/mL) 

Mycobacterium smegmatis (MIC = 0.625 mg/mL) 

Antifungal activity: 

Fusarium oxysporum (MIC = 0.625 mg/mL) 

[58] 

Antifungal activity (percentage inhibition at
0.25 mg/mL and, respectively
0.5 mg/mL concentration):
Acremonium strictum (76.88%; 100%)
Aspergillus flavus (15.38%; 60.51%)

[57]

10

Molecules 2023, 28, x FOR PEER REVIEW 17 of 53 
 

 

6 

O

OOH

HO

HN OH

O

OH3C

O

O CH3

O

O CH3O

H3C O

 

Antibacterial activity: 
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[57] 
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Antifungal activity (percentage inhibition at 0.25 

mg/mL and, respectively 0.5 mg/mL concentration): 

Acremonium strictum (70%; 100%) 

Penicillium expansum (42.15%; 100%) 

Aspergillus flavus (6.41%; 46.15%) 

[57] 
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N
CH3

CH3

Cl
O  

Antifungal activity (percentage inhibition at 0.25 

mg/mL and, respectively 0.5 mg/mL concentration): 

Acremonium strictum (76.88%; 100%) 

Aspergillus flavus (15.38%; 60.51%) 
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Antifungal activity (percentage inhibition at 0.25 

mg/mL and, respectively 0.5 mg/mL concentration): 

Acremonium strictum (73.33%; 100%) 

[57] 

11 O

N

O

HO
Cl

 

Antibacterial activity: 

Staphylococcus aureus (MIC = 1.25 mg/mL) 

Bacillus subtilis (MIC = 0.02 mg/mL) 

Mycobacterium smegmatis (MIC = 0.625 mg/mL) 

Antifungal activity: 

Fusarium oxysporum (MIC = 0.625 mg/mL) 

[58] 

Antifungal activity (percentage inhibition at
0.25 mg/mL and, respectively
0.5 mg/mL concentration):
Acremonium strictum (73.33%; 100%)

[57]
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Antibacterial activity: 

Staphylococcus aureus (MIC = 1 mg/L) 

Escherichia coli (MIC = 2 mg/L) 

Salmonella gallinarum (MIC = 0.05 mg/L) 

Listeria monocytogenes (MIC = 0.5 mg/L) 
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Antifungal activity (percentage inhibition at 0.25 

mg/mL and, respectively 0.5 mg/mL concentration): 

Acremonium strictum (81.33%; 100%) 

Penicillium expansum (60.87%; 100%) 

Aspergillus flavus (41.02%; 65.64%) 

[57] 
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Antifungal activity (percentage inhibition at 0.25 

mg/mL and, respectively 0.5 mg/mL concentration): 

Acremonium strictum (70%; 100%) 

Penicillium expansum (42.15%; 100%) 

Aspergillus flavus (6.41%; 46.15%) 

[57] 
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O

O

O

N
CH3

CH3

Cl
O  

Antifungal activity (percentage inhibition at 0.25 

mg/mL and, respectively 0.5 mg/mL concentration): 

Acremonium strictum (76.88%; 100%) 

Aspergillus flavus (15.38%; 60.51%) 

[57] 

10 
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CH3
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Antifungal activity (percentage inhibition at 0.25 

mg/mL and, respectively 0.5 mg/mL concentration): 

Acremonium strictum (73.33%; 100%) 

[57] 

11 O

N

O

HO
Cl

 

Antibacterial activity: 

Staphylococcus aureus (MIC = 1.25 mg/mL) 

Bacillus subtilis (MIC = 0.02 mg/mL) 

Mycobacterium smegmatis (MIC = 0.625 mg/mL) 

Antifungal activity: 

Fusarium oxysporum (MIC = 0.625 mg/mL) 

[58] 

Antibacterial activity:
Staphylococcus aureus (MIC = 1.25 mg/mL)
Bacillus subtilis (MIC = 0.02 mg/mL)
Mycobacterium smegmatis (MIC = 0.625 mg/mL)
Antifungal activity:
Fusarium oxysporum (MIC = 0.625 mg/mL)

[58]
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Antibacterial activity: 

Staphylococcus aureus (MIC = 2.5 mg/mL) 

Bacillus subtilis (MIC = 0.156 mg/mL) 

Mycobacterium smegmatis (MIC = 0.078 mg/mL) 

Anti biofilm and anti quorum sensing activity (100 

µg/mL) 

Antifungal activity: 

Fusarium oxysporum (MIC = 0.313 mg/mL) 

Candida albicans (MIC = 0.078 mg/mL) 

[58] 
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HO
Cl

R
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Antibacterial activity (R=6-OCH3, 7-Cl) 

Staphylococcus aureus (MIC = 1.25 mg/mL) 

Bacillus subtilis (MIC = 1.25 mg/mL) 

Klebsiella pneumoniae (MIC = 0.625 mg/mL) 

Anti biofilm activity (R=6-OCH3, 100 µg/mL) 

Antifungal activity (R=7-Cl): 

Candida albicans (MIC = 0.156 mg/mL) 

[58] 

14 

O

O

CH3

H3CO

H3C

OCH3

R

R = -F, -N(CH3)2  

Antibacterial activity  

Mycobacterium tuberculosis H37Rv  

(MIC = 6.25 µg/mL) 

[35] 

15 

 

Antiviral activity 

Human cytomegalovirus (EC50 = 0.126 nM) 
[60] 

16 

O

O

S

 

Antiviral activity 

Chikungunya Virus (IC50 = 0.44 µM) 
[61] 

17 

O

O

N

 

Antiviral activity 

Chikungunya Virus (IC50 = 0.45 µM) 
[61] 

3. Chemical Synthesis of Flavones 

3.1. Von Kostanecki Method 

Stanislaus von Kostanecki’s method was established in 1898–1899 and is considered 

one of the earliest methods for the synthesis of flavones. It uses o-hydroxyacetophenone 

(or o-acetoxyacetophenone) (6) and benzaldehyde (7) as precursors to form 

2′-hydroxychalcone (or 2′-acetoxychalcone) (8) through Claisen–Schmidt condensation. 

In the next step, the obtained chalcone (8) is converted to flavone (9) through bromination 

followed by a dehydrobromination reaction in alkali alcoholic solution (Scheme 1).  

Antibacterial activity:
Staphylococcus aureus (MIC = 2.5 mg/mL)
Bacillus subtilis (MIC = 0.156 mg/mL)
Mycobacterium smegmatis (MIC = 0.078 mg/mL)
Anti biofilm and anti quorum sensing activity
(100 µg/mL)
Antifungal activity:
Fusarium oxysporum (MIC = 0.313 mg/mL)
Candida albicans (MIC = 0.078 mg/mL)

[58]
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[35] 

15 

 

Antiviral activity 
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[60] 

16 

O

O

S

 

Antiviral activity 

Chikungunya Virus (IC50 = 0.44 µM) 
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Chikungunya Virus (IC50 = 0.45 µM) 
[61] 

3. Chemical Synthesis of Flavones 

3.1. Von Kostanecki Method 

Stanislaus von Kostanecki’s method was established in 1898–1899 and is considered 

one of the earliest methods for the synthesis of flavones. It uses o-hydroxyacetophenone 

(or o-acetoxyacetophenone) (6) and benzaldehyde (7) as precursors to form 

2′-hydroxychalcone (or 2′-acetoxychalcone) (8) through Claisen–Schmidt condensation. 

In the next step, the obtained chalcone (8) is converted to flavone (9) through bromination 

followed by a dehydrobromination reaction in alkali alcoholic solution (Scheme 1).  

Antibacterial activity (R=6-OCH3, 7-Cl)
Staphylococcus aureus (MIC = 1.25 mg/mL)
Bacillus subtilis (MIC = 1.25 mg/mL)
Klebsiella pneumoniae (MIC = 0.625 mg/mL)
Anti biofilm activity (R=6-OCH3, 100 µg/mL)
Antifungal activity (R=7-Cl):
Candida albicans (MIC = 0.156 mg/mL)

[58]
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2′-hydroxychalcone (or 2′-acetoxychalcone) (8) through Claisen–Schmidt condensation. 
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3. Chemical Synthesis of Flavones
3.1. Von Kostanecki Method

Stanislaus von Kostanecki’s method was established in 1898–1899 and is considered
one of the earliest methods for the synthesis of flavones. It uses o-hydroxyacetophenone (or
o-acetoxyacetophenone) (6) and benzaldehyde (7) as precursors to form 2′-hydroxychalcone
(or 2′-acetoxychalcone) (8) through Claisen–Schmidt condensation. In the next step, the
obtained chalcone (8) is converted to flavone (9) through bromination followed by a dehy-
drobromination reaction in alkali alcoholic solution (Scheme 1).
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The reaction pathway differs depending of the reaction conditions. According to
von Kostanecki’s collaboration with Levi and Tambor, it is presumed that, instead of a
chalcone, an aldol (11) between the two compounds forms; then, via cyclization, a flavanone
(12) is formed. This flavanone is subsequently subjected to nuclear bromination with
bromine in carbon disulfide, resulting in a 3-bromoflavanone (13) [62], and ultimately, the
brominated intermediate suffers a dehydrobromination reaction, thus deriving a flavone
(9) (Scheme 2) [63,64].
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However, according to von Kostanecki’s collaboration with Emilewicz and Tambor
(also known as Emilewicz–von Kostanecki cyclization), the chalcone (14) is formed and
then brominated, resulting in a chalcone dibromide (15). This brominated compound is
cyclized through the elimination of one bromine atom, resulting in a 2-bromoflavanone
(16) and, finally, the flavone (9) after eliminating the second atom (Scheme 3) [3,64].
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The proposed mechanism starts with the Claisen–Schmidt condensation of
o-hydroxyacetophenone (10) with benzaldehyde (7), resulting in an o-hydroxychalcone (14).
The nucleophilic species is represented by the intermediate (17), stabilized via conjuga-
tion, and formed via the deprotonation of acetophenone (10) in basic media. Through the
bromination of the chalcone (14) on the C=C bond, a chalcone dibromide (15) is formed.
Further dehydrobromination of 15 followed by cyclization of the intermediate 18 affords
a 2-bromoflavanone intermediate (19). The intermediate 19 leads to the flavone 9 via the
expulsion of Br− (Scheme 4) [3].
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Kshatriya et al.) [3].

The limitations of the von Kostanecki method are the possibility of nuclear bromina-
tion and the tendency to form 2-benzylidene-coumaran-3-ones (22) (benzalcoumaranones
or aurones [65]) (Scheme 5) instead of flavones (21) when trying to synthesize natural
flavones either with 5,7-disubstitution pattern, a 4′- or 5′-alkoxy substituent, or containing
a phloroglucinol moiety. Better results can be obtained when methyl ether derivatives (20)
are used as precursors [66–68]. Hutchins and Wheeler observed that treating the chalcone
dibromides (20) with potassium cyanide in ethanolic solution or heating above their melting
point will convert them into flavones (21) [68]. The same reagent converts aurones (22) back
to flavones (21) (Scheme 5). The quantity of potassium cyanide influences the reaction’s
outcome. In the case of 2-p-alkoxybenzylidenecoumaran-3-ones, refluxing with an excess of
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reagent will cause the ring expansion of the aurone, affording 4′-alkoxyflavones (21), while
treating the chalcone dibromide (20) with an insufficient quantity of potassium cyanide
produces 2-benzylidene-coumaran-3-one (aurone 22) instead of a flavone [69].
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Scheme 5. Hutchins and Wheeler method to convert chalcone dibromides and aurones to flavones
using potassium cyanide in ethanol (image adapted from Fitzgerald et al.) [69].

The possible mechanism of obtaining flavones from aurones using ethanolic potassium
cyanide starts with a nucleophilic attack by a cyanide anion on the methine carbon of the
aurone (22), followed by hydrogen transfer and carbanion (24) formation. The carbanion’s
electrons migrate, recreating the double bond and preparing the ring expansion. Conjuga-
tion and intramolecular nucleophilic attack by the newly formed oxygen anion (25) lead to
the expulsion of the cyanide anion, a good nucleofuge, and ring closure (Scheme 6) [69].
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Scheme 6. Possible mechanism for converting aurones to flavones using ethanolic potassium cyanide
(image adapted from Fitzgerald et al.) [69].

However, it has been established that aurone formation may be avoided by providing
milder conditions for the dehydrohalogenation reaction [64]. Donnelly and Doran have
observed that the quantity of flavone increases with a decrease in base concentration [70].
von Auwers and Anschutz have shown that 4′-alkoxyflavones can be obtained by per-
forming the cyclization reaction in cold alcohol rather than hot alcohol, which generates
aurones [64,71].

Zemplén and Bognár improved the von Kostanecki method and demonstrated that
nuclear bromination could be avoided by submitting acetates of hydroxyflavanones to
bromination in absolute chloroform and in the presence of UV light. The obtained inter-
mediate was a 3-bromoflavanone that could be easily dehydrobrominated, thus forming a
flavone. This method is suitable for obtaining 3-hydroxyflavones [62,66].

Improvements in the direct dehydrogenation of chalcones and flavanones were made
by using selenium dioxide as an oxidative reagent [66,72].
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A new method by von Kostanecki was established in 1904 in collaboration with Sz-
abránski. This method is used for obtaining 3-hydroxyflavones (28) from flavanones (12)
via isonitrosoflavanones. The flavanone is nitrosated with pentyl nitrite (26) and hydrochlo-
ric acid. The isonitrosoflavanone (27) is converted into 3-hydroxyflavone (28) via hydrolysis
with diluted sulfuric acid (Scheme 7) [73].
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Scheme 7. von Kostanecki–Szabránski method for obtaining 3-hydroxyflavones.

3.2. Von Auwers–Müller Method

Karl von Auwers’s method was first established in 1908 in collaboration with Müller,
and it consists of the conversion of aurones 29 into 3-hydroxyflavones 28 (Scheme 8) via
bromination in chloroform, followed by the dehydrohalogenation of the intermediate (33)
with ring rearrangement under the action of potassium hydroxide in ethanol solution
(Scheme 9) [3,74].
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Scheme 9. Original von Auwers synthesis using 5-methylcoumaranone [74].

Originally, the aurone used by von Auwers and Müller was 2-benzylidene-
5-methylcoumaranone 32, obtained from 5-methylcoumaranone 31 (previously synthe-
sized by Stoermer and Bartsch) [75]. Von Auwers and Müller synthesized coumaranone
31 starting from o-chloracetyl-p-cresol (30) (Scheme 9) [74]. This is supposed to lead to a
cyclodehydrohalogenation via the action of sodium hydroxide in ethanol while heating.
The obtained coumaranone 31, via condensation with benzaldehyde, is converted into the
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aurone 32, which can add bromine to the ethylene bond. The obtained dibromo derivative
33 is transformed into 3-hydroxyflavone 34 via dehydrobromination and recyclization
under the action of potassium hydroxide in ethanol while heating [74].

The mechanism of von Auwers synthesis is presented in Scheme 10. It starts with
the bromination of aurone on the double bond, resulting in a 1,2-dibrominated compound
(35). The subsequent substitution of bromine via the nucleophilic attack of a hydroxide
anion results in an α,β-unsaturated ketone (38), which yields hydroxyflavone through
cyclodebromination [3].
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As much as this method tried to improve upon von Kostanecki’s one, it also had
limited applicability for obtaining natural 3-hydroxyflavones. To improve the outcome
of this method, they suggested chlorination instead of bromination. This resulted in a
trichlorinated derivative that would convert into a chlorinated hydroxyflavone that has
one chlorine atom in positions 5 or 7. However, any attempt to eliminate the last chlorine
atom failed. 3-Hydroxyflavones could be obtained from aurones in better yields only if the
splitting of the coumaranone ring would take place easier than the dehydrohalogenation.
They concluded that the presence of chlorine, methoxy, and methyl groups in position 5 of
the coumaranone ring facilitates the formation of 3-hydroxyflavones, while methoxy and
methyl groups in meta position and two methoxy groups on the aldehyde make it more
difficult [76,77].

3.3. Allan–Robinson Method

The Allan–Robinson method was first established in 1924, and it involves converting
2-hydroxyacetophenones to flavones via treatment with anhydrides of aromatic carboxylic
acids and the sodium salts of the corresponding carboxylic acids while heating (Scheme 11).
The first part of this procedure entails converting ω-methoxyresacetophenone (Scheme 11:
R′ = OH, R = OCH3) into 7-hydroxy-3-methoxyflavone (41) using benzoic anhydride
and sodium benzoate (Ar = C6H5). This method was further extended by using various
2-hydroxyacetophenone derivatives (40) and aromatic anhydrides as starting materials [78].
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Scheme 11. Allan–Robinson method for obtaining flavones.

In the first step of the reaction mechanism, the deprotonated enolic tautomer of 2-
hydroxyacetophenone (42) performs a nucleophilic attack on the carbonyl group of the
anhydride (43), affording a 1,3-diketone compound (o-hidroxydibenzoylmethane) (44). The
basic conditions provided by the sodium salt transform the intermediate into a flavone via
enolisation followed by intramolecular cyclocondensation (Scheme 12) [3].
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flavones and 3-hydroxyflavones. It has been used for obtaining a large variety of natural 

compounds, including fisetin, quercitin [80], datiscetin [81], myricetin, methylgalangin 

[82], limocitrol, limocitrin, spinacitrin [83], kaempferol [84], axillarin [85], jaceidin [86], 

and hispidulin [8]. 

3.4. Baker–Verkataraman Method 

This method was established after the individual work of Baker and Verkataraman 

in 1933. It is used to obtain flavones from o-acyloxyacetophenones (48). These precursors 
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zene or toluene with anhydrous potassium carbonate. The o-hydroxydibenzoylmethane 

Scheme 12. General reaction mechanism of the Allan–Robinson method for the synthesis of flavones.

An alternative to the reaction conditions of this method was proposed by Wheeler. This
modification implies that 2-hydroxyacetophenone (10) is turned into 2-benzoyloxyacetophenone
(48) via treatment with benzoyl chloride and pyridine. The obtained acetophenone derivative
(48) can be converted into a flavone (9) either in glycerol while heating or via treatment with
KOH in pyridine, followed by the cyclization of the 1,3-diketone intermediate (44) with glacial
acetic acid and concentrated sulfuric acid while heating (Scheme 13) [79].
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Unlike the previous presented methods, this one can be used for synthesizing more
complex structures, making the Allan–Robinson method suitable for obtaining natural
flavones and 3-hydroxyflavones. It has been used for obtaining a large variety of natural
compounds, including fisetin, quercitin [80], datiscetin [81], myricetin, methylgalangin [82],
limocitrol, limocitrin, spinacitrin [83], kaempferol [84], axillarin [85], jaceidin [86], and
hispidulin [8].

3.4. Baker–Verkataraman Method

This method was established after the individual work of Baker and Verkataraman in
1933. It is used to obtain flavones from o-acyloxyacetophenones (48). These precursors are
first converted into o-hydroxydibenzoylmethane derivatives (44) via heating in benzene or
toluene with anhydrous potassium carbonate. The o-hydroxydibenzoylmethane derivatives
(44) are cyclized into the corresponding flavones (9) via treatment with cold concentrated
sulfuric acid [3,87] (Scheme 14).
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Verkataraman first used this method to obtain α-naphtoflavone from 2-acetyl-1-naphthyl
benzoate via heating with sodium benzoate and benzoic anhydride [88,89]. Mahal and
Verkataraman obtained the diketone derivative via treatment with NaNH2 in ether at room
temperature. Further cyclization to the corresponding α-naphtoflavone was performed via
treatment with concentrated sulfuric acid in ethanol at reflux [90].

According to the mechanism, this method starts with an intramolecular Claisen con-
densation between acetophenone and an ester group grafted in ortho position on the aro-
matic ring (an o-acyloxyacetophenone 48), which can also be interpreted as acyl group trans-
fer. This is followed by cyclocondensation in acidic conditions via a 2-hydroxyflavanone
intermediate (53) (Scheme 15) [3,91].

Baker found out that this method could yield 3-acylflavones (56) via the treatment
of o-acyloxyacetophenone 48 with sodium salts of carboxylic acids. Instead of cyclocon-
densation, the o-hydroxydibenzoylmethane 44 can be acylated on the methylene carbon,
affording a triacylmethane derivative (54). This intermediate is cyclized to 2-hydroxy-3-
acylflavanone (55) and then dehydrated, affording the corresponding 3-acylflavone (56)
(Scheme 16) [87].

However, the conventional method could not produce large yields of flavones [91].
Cramer and Elschnig discovered that the best catalyst is sodium ethoxide [92]. Ares
et al. suggested using potassium tert-butoxide for the synthesis of the diketone interme-
diate, obtaining higher yields [93]. Jain et al. used benzoyl chloride in benzene under
phase transfer-catalysis conditions with n-tetrabutylamonium hydrogen sulphate, obtain-
ing o-hydroxydibenzoylmethane. Further treatment with p-toluenesulphonic acid yielded
flavones with good results [94]. Modifying this method permits the synthesis of hy-
droxyflavones with phloroglucinol units via heating the 2-hydroxyacetophenones with
aqueous 5% potassium carbonate followed by treatment with acetic acid [95]. Song and
Ahn proposed the use of tetrabutylammonium fluoride as a phase transfer catalyst for
the condensation of dibenzoylmethanes, also obtaining good yields [96]. Another use-
ful reaction condition for cyclocondensation was discovered by Stanek and Stodulski,
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who used N-triflylphosphoramide, an organocatalyst which is active in mild reaction
conditions [97]. Through using microwave irradiation, Pinto et al. managed to obtain
3-aroyl-5-hydroxyflavones from 2,6-diaroyloxyacetophenones [98]. Similar results were
obtained with a shorter reaction time by using ethyl ammonium nitrate, a recyclable ionic
liquid, under microwave irradiation [99].
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Through the cyclization of dibenzoylmethanes with CuBr2, 3-bromoflavones are
formed, and these can then be converted into 3-aminoflavones [100]. Other catalysts
that are reportedly useful for converting dibenzoylmethanes into flavones include the
following: FeCl3 in dichloromethane [101]; CuCl2 under microwave irradiation [102];
Cobalt(bis(salicylideniminato-3-propyl)hydroxide, a six coordinate cobalt Schiff base com-
plex [103]; montmorillonite K 10 Clay under microwave irradiation (clay-catalyzed synthe-
sis) [104]; amberlyst 15, a cation-exchange resin, under reflux in isopropyl alcohol [105];
solid supported catalysts like mesoporous titania/tungstophosphoric acid composites
TiO2/H3PW12O40 at reflux [106], trifluoromethanesulfonic acid in toluene at reflux [107],
Wells–Dawson heteropolyacid in toluene at reflux (or solvent-free) [108], molybdophospho-
ric and molybdosilicic Keggin heteropolyacids in acetonitrile at reflux [109], and silica gel
supported NaHSO4 in toluene at reflux [110].

3.5. Algar–Flynn–Oyamada Method

This method represents the collaboration between Algar and Flynn and the individual
work of Oyamada from 1934 to 1935. It can be used to obtain 3-hydroxyflavones (28) from
o-hydroxychalcones (14) by means of hydrogen peroxide in aqueous sodium hydroxide
solution and cooling [111]. Algar and Flynn used this method with hot potassium hydroxide
alcoholic solution, and both achieved good yields (Scheme 17) [112].
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The mechanism has experienced many alterations over time. At first, Algar and Flynn
were not able to isolate the intermediates. They proposed the transitory formation of an
ethylene peroxide in the first stage of oxidation [112]. Oyamada considered the existence
of a flavanone intermediate (60) formed by the electrophilic attack of hydrogen peroxide
on position 3 of the flavanone anion (59) [111,113]. Dean and Podimuang demonstrated
that no epoxides were formed as intermediates for obtaining 3-hydroxyflavones (28). They
argued that a β-position attack by the hydroperoxide anion would be difficult for phenolic
chalcones due to the internal electronic inactivation (see mesomere structure 58) and the
basic conditions that turn them into anions, facilitating the electrostatic repulsion of the
hydrogen peroxide (Scheme 18) [114].
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Starting from o-hydroxychalcones, via epoxides as intermediates, two cyclization
products can theoretically be formed, namely, aurones (63), if the attack takes place in the
α position, and flavonols (65) (via flavanone 64), if the attack takes place in the β position
(Scheme 19). When 6′-substituted-2′-hydroxychalcones (61) were used as precursors, it
was found that the cyclization takes place preferentially via α attack, with the formation of
aurones as major reaction products. This is due to the fact that the substituent grafted in
the 6′ position of the chalcone displaces the keto group from the plane of the aromatic ring.
This causes the steric inhibition of resonance from the 2’-oxygen anion and determines the
activation of the α-carbon [77].
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Adams and Main argued that we should not rule out the idea that epoxides are precur-
sors and intermediates in the formation of flavonols via β-attack. They demonstrated that
treating an epoxide at various pHs in aqueous acetonitrile solution and room temperature
led to small amounts of the β-cyclization product, which was a flavonol derivative [115,116].

Dean and Podimuang’s theory was also challenged by Serdiuk et al. They concluded
that epoxides are indeed intermediates in this method by analyzing the thermodynamic
characteristics of the intermediate reactions and finding out that the reactions of chalcones
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in anionic form with the hydroperoxide anion are energetically favorable [113]. However,
Bhattacharyya and Hatua demonstrated through the density functional theory that epoxi-
dation is unlikely because of the electrostatic interaction of the hydroperoxide anion with
the conjugated double bond, although an epoxide intermediate could still be formed at high
temperatures and converted into aurone, supporting Dean and Podimuang’s work [117].

The major limitation of the Algar–Flynn–Oyamada method is the fact that it cannot be
applied for the synthesis of 3-hydroxyflavones via the cyclization of the corresponding 6′-
substituted o-hydroxychalcones because, in this case, cyclization takes place preferentially
via α-attack [118]. Also, besides 3-hydroxyflavones, aurones can be easily obtained through
α-cyclization, and sometimes, even 2-benzyl-2-hydroxydihydrobenzofuran-3-ones (67) and
2-arylbenzofuran-3-carboxylic acids (68) are formed [116,119] (Scheme 19).

Oxidative cyclization with H2O2/NaOH or KOH of o-hydroxychalcones was applied
by Li Xiang et al. for the synthesis of new 3-O-substituted flavonols as anti-prostate cancer
agents [32]. Khdera H.A. et al. recently synthesized a series of flavonol derivatives with
antifungal properties via the oxidative cyclization of o-hydroxychalcones with H2O2/KOH,
followed by the further derivatization of the 3-OH group [57].

A couple of modifications for this method exist, namely, using Na2CO3 and H2O2 in
methanol and water to obtain 5′-substituted-3-hydroxyflavones [120], phase transfer cataly-
sis (tetrabutylammonium bromide, iodide, or hydrogensulphate; benzyltriphenylphospho-
nium chloride; ethyltriphenylphosphonium iodide; propyltriphenylphosphonium iodide
or bromide) [121], and direct synthesis starting from acetophenone and aldehyde without
isolating the chalcone intermediate (known as one-pot synthesis) [55,122–125].

Other modern improvements have been made for the Algar–Flynn–Oyamada reaction,
such as performing the synthesis under microwave irradiation [55].

The oxidative cyclization of o-hydroxychalcones with H2O2/OH− was successfully
extended by our research group for the synthesis of new analogs of hydroxyflavones
containing the 2-phenylthiazole moiety instead of the phenyl B ring of the basic skeleton
of natural flavones. In the first step, the thiazole o-hydroxy-heterochalcones (70) were
obtained in 75–82% yields via the condensation of o-hydroxyacetophenone (10) with differ-
ent 2-arylthiazol-4-yl carbaldehydes (69) (Scheme 20). Their epoxidation with hydrogen
peroxide, followed by oxidative cyclization, afforded the corresponding 2-arylthiazole
hydroxyflavones (71) in 65–71% yields [126].
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Scheme 20. Synthesis of new thiazole hydroxychromones via the oxidative cyclization of thiazole
o-hydroxy chalcones [126].

The cyclization pathway of thiazole and thiazolo[3,2-b][1,2,4]triazole hetero-chalcones
with hydrogen peroxide in basic media (NaOH) was investigated by V. Zaharia et al.
Through treatment with the hydrogen peroxide of o-hydroxy-heterochalcones (72) in basic
media, the corresponding hydroxyflavones (73) were obtained (Scheme 21a). The epoxyke-
tones (75) were obtained in the same reaction conditions as the hydroxyflavones (73),
starting from the unhydroxylated heterochalcones (74) as precursors (Scheme 21b) [127].
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3.6. Claisen–Schmidt Method

This method was established in 1962 and consists of two steps. The first step is
Claisen–Schmidt condensation between an o-hydroxyacetophenone (10) and benzaldehyde
derivative (7) in basic medium, which affords chalcones. The second step involves the
oxidative cyclization of the obtained chalcones (14), which can be achieved using a large
variety of conditions and catalysts [3] (Scheme 22).
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Scheme 22. The Claisen–Schmidt method.

The condensation mechanism begins with the formation of an anion of the acetophe-
none (76) under basic conditions. Through the nucleophilic attack of the anion (76) on the
carbonyl group of benzaldehyde (7), followed by the elimination of H2O, the corresponding
chalcones (14) are obtained [128] (Scheme 23).

Cyclization can be realized by many methods, first starting with iodine in hot dimethyl
sulfoxide (I2/DMSO, ∆). Patonay et al. observed that this method is suitable for a large
variety of substituents, including electron-donating and electron-withdrawing groups and
sensitive-to-oxidation and protecting groups. Thus, it can be considered a general method
of cyclization for obtaining flavones from 2′-hydroxychalcones [129]. The mechanism
involves the formation of an iodonium cation (79) via the interaction of I2 with the o-
hydroxychalcone (14), followed by cyclization via the nucleophilic attack of the o-hydroxy
group. Further elimination of hydroiodic acid affords the corresponding flavones (9). The
solvent dimethyl sulfoxide (81) is important in this reaction because it acts as a co-oxidant
and regenerates iodine [130] (Scheme 24).
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Scheme 24. Mechanism of the oxidative cyclization of o-hydroxychalcones with I2/DMSO. Role of
DMSO in the regeneration of iodine (mechanism adapted from Masesane) [130].

Through using microwave irradiation, the reaction time is greatly reduced to ap-
proximatively three minutes [131]. However, this method is limited in the case of 2′-
hydroxychalcones with a phloroglucinol moiety, affording complex mixtures. Hans and
Grover extended the applicability of iodine as an oxidant agent by instead using sodium
periodate in hot dimethyl sulfoxide (NaIO4/DMSO, ∆), managing to smoothly convert
phloroglucinol-derived chalcones into the corresponding flavones [132] (Scheme 25).
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Scheme 25. Oxidative cyclization of o-hydroxychalcones using I2 or NaIO4 in DMSO [129,131,132].

In order to extend the general method of cyclization of o-hydroxychalcones with
iodine in dimethyl sulfoxide, our research group investigated this method using a series
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of 2-arylthiazole o-hydroxychalcones as precursors (85). A similar chemical behavior was
observed in this case, with the corresponding 2-arylthiazole flavones (86) being obtained
with 32–55% yields (Scheme 26) [133].
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At present, the cyclization of o-hydroxychalcones using iodine in dimethyl sulfoxide
still represents the principal method for the synthesis of flavones and their analogs with
various structures. This method is still finding multiple applications because it generally
allows for obtaining the target compounds with high yields, while the o-hydroxychalcones
needed as precursors can be easily obtained via Claisen–Schmidt
condensation [30,34,35,46,47,61].

Another method for the cyclization of o-hydroxychalcones was established by Litkei
et al., who used iodosobenzene diacetate (phenyliodine(III) diacetate, PIDA), a hypervalent
iodine reagent, which forms iodosylbenzene in situ [134] (Scheme 27). The same reagent
was used for obtaining prenylated flavones, which are abundant in nature, from prenylated
2′-hydroxychalcones [135].
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The usage of ionic liquids for this oxidative cyclization was described in the litera-
ture. Du et al. developed a new method involving Cu(I) iodide, mediated by the ionic
liquid [bmim][NTf2] (1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide,
compound 88) at a low temperature. The reaction mechanism has not been fully elucidated,
but the results so far reveal that a flavanone is formed intermediately. The flavanone seems
to be dehydrogenated to the corresponding flavone in the same reaction conditions [136].
Lahyani and Trabelsi reported the oxidative cyclization of o-hydroxychalcones with iodine
monochloride in dimethyl sulfoxide (ICl-DMSO) under ultrasound. This method has simi-
lar advantages to than of ultrasound processes, such as mild conditions, high yields, and
eco-friendliness. The mechanism is similar to the one based on oxidative cyclization with
I2-DMSO [137] (Scheme 28).
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Scheme 28. Oxidative cyclization of o-hydroxychalcones with CuI in ionic liquid [136] and ICl in
DMSO, respectively, under ultrasound [137].

Heating o-hydroxychalcones with iodine in triethylene glycol is also a good and
inexpensive method for their cyclization. While the underlying mechanism is not fully
understood, the authors proposed a pathway that involves the iodination of chalcone, which
affords chalcone diiodides (89), similar to the chalcone dihalides from the von Kostanecki’s
method. Via the dehydrohalogenation of the intermediate (90), a 3-iodoflavanone (80) is
formed, which yields the corresponding flavone (9) via β-elimination of a second hydroiodic
acid molecule [138]. The use of iodine on silica gel (I2-SiO2) was reported by Babu et al. to
provide favorable results and less harmful effects towards the environment [139]. Another
solid supported catalyst, iodine on neutral alumina (I2-Al2O3), was reported by Sarda et al.,
providing short reaction times, simple conditions, and very good yields [140] (Scheme 29).
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Scheme 29. (a) Oxidative cyclization with iodine in triethylene glycol and solid supports (silica gel
and alumina) [138–140]. (b) The proposed pathway for oxidation with molecular iodine (adapted
from Miyake et al. [138]).

An alternative to the toxicity and corrosiveness of iodine was proposed by Kulkarni
et al., who used ammonium iodide under exposure to air and solvent-free conditions, thus
generating in situ iodine that acted as a cyclization agent [141] (Scheme 30).
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Scheme 30. Oxidative cyclization using NH4I in solvent-free conditions [141].

Selenium dioxide is another catalyst used for the cyclization of o-hydroxychalcones.
It can be combined with various solvents, such as pentan-1-ol [142] (only providing low
yields) [132], dioxane [143], and isoamyl alcohol with prolonged heating, to facilitate the
formation of side products and low yields [144]. Dimethyl sulfoxide was also used with
good yields [145], but in order to diminish the high toxicity of DMSO, Gupta et al. managed
to use selenium dioxide and traces of solvent over silica gel under microwave irradiation,
yielding very good results [146]. Similar to I2/DMSO, SeO2/DMSO is also problematic for
chalcones with a phloroglucinol oxygenation pattern [132]. However, selenium dioxide is
volatile and hazardous. Lamba and Makrandi proposed using sodium selenite (Na2SeO3),
which is less volatile, and found out that it acts as a proper dehydrogenating agent in
DMSO [147] (Scheme 31).
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solvents and reaction conditions [142–147].

Palladium was also experimented on as a catalyst. Kasahara et al. used lithium
chloropalladite (Li2PdCl4), palladium(II) acetate, and (CH3COO)2Pd to obtain flavones.
The reaction was described as a phenoxypalladation, with the formation of the intermedi-
ates 91 and 92, followed by the elimination of palladium (II) hydride (HPdCl). This method
also yielded small amounts of flavanone (12) [148] (Scheme 32).
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Scheme 32. Oxidative cyclization of o-hydroxychalcones with palladium(II) salts [148].

Cyclodehydrogenation with DDQ (2,3-dichloro-5,6-dicyano-p-benzoquinone) was
proposed by Imafuku et al. Their method involves using dioxane as a solvent and results
in a mixture of flavones, flavanones, and aurones in low yields [149]. Another agent that
acts in a similar manner is nickel peroxide (NiO2) in dioxane, yielding a similar mixture.
However, flavanones can be dehydrogenated to flavones under the action of NiO2 in
benzene as a solvent [150] (Scheme 33).
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Scheme 33. Oxidative cyclization of o-hydroxychalcones using DDQ and nickel peroxide [149,150].

Disulfides are also a good choice for cyclodehydrogenation. Hoshino et al. used
four disulfides, namely, dineopentyl disulfide, diisopentyl disulfide, dipentyl disulfide,
and diphenyl disulfide, with the latter giving the best yields. The disadvantages of this
method include the very high temperatures (260–290 ◦C) and very low yields when electron-
withdrawing groups (NO2) are present [151] (Scheme 34).
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Scheme 34. Oxidative cyclization using organic disulfides.

Initially meant for obtaining quinolines from 2′-aminochalcones using FeCl3·6H2O
in methanol, Kumar and Perumal applied the same method on 2′-hydroxychalcones and
obtained flavones (96, X = O) with satisfactory results [152]. Similarly, Liu et al. used
cerium(IV) sulphate tetrahydrate (Ce(SO4)2·4H2O) on silica gel to obtain flavones from
2′-hydroxychalcones at 100 ◦C, aza-flavones (96, X = NH), and aza-flavanones from 2′-
aminochalcones (95, X = NH) [153] (Scheme 35).
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Scheme 35. Oxidative cyclization of o-hydroxychalcones using FeCl3 hexahydrate or Ce(SO4)2

tetrahydrate [152,153].

In addition to all the reagents previously mentioned, sodium perborate tetrahydrate
(SPB, compound 97) was proposed by Ganguly et al. They observed that depending on the
solvent, this method could yield different products, such as warm acetic acid and SPB in
excess yielded flavones (9), while warm aqueous acetonitrile yielded flavanones. In the
case of flavone formation, SPB and acetic acid generate peracetoxyboron anion species (101)
that favorize the oxidative cyclization of o-hydroxychalcones [154,155] (Scheme 36).

Molecules 2023, 28, x FOR PEER REVIEW 36 of 53 
 

 

OH

O

R
S

S
R



O

O
R = neopentyl, isopentyl, pentyl, phenyl

14                                                                                                                 9  

Scheme 34. Oxidative cyclization using organic disulfides. 

Initially meant for obtaining quinolines from 2′-aminochalcones using FeCl3·6H2O in 

methanol, Kumar and Perumal applied the same method on 2′-hydroxychalcones and 

obtained flavones (96, X = O) with satisfactory results [152]. Similarly, Liu et al. used ce-

rium(IV) sulphate tetrahydrate (Ce(SO4)2·4H2O) on silica gel to obtain flavones from 

2′-hydroxychalcones at 100 °C, aza-flavones (96, X = NH), and aza-flavanones from 

2′-aminochalcones (95, X = NH) [153] (Scheme 35).  

XH

O
SiO2 supported Ce(SO4)2  4H2O

100C

(Hemanth Kumar K. 2007)

(Liu R. 2017)

X

O

FeCl3  6H2O, CH3OH

X = NH, O

.

.

95                                                                                                                 96

 

Scheme 35. Oxidative cyclization of o-hydroxychalcones using FeCl3 hexahydrate or Ce(SO4)2 tet-

rahydrate [152,153]. 

In addition to all the reagents previously mentioned, sodium perborate tetrahydrate 

(SPB, compound 97) was proposed by Ganguly et al. They observed that depending on 

the solvent, this method could yield different products, such as warm acetic acid and SPB 

in excess yielded flavones (9), while warm aqueous acetonitrile yielded flavanones. In the 

case of flavone formation, SPB and acetic acid generate peracetoxyboron anion species 

(101) that favorize the oxidative cyclization of o-hydroxychalcones [154,155] (Scheme 36). 

OH

O
50-60C

B
HO

HO

O

O

O

O
B

OH

OH

Na Na

O

O (a)

(b)

B
HO

HO

O

O

O

O
B

OH

OH

CH3COOH

-H2O
B

HO

HO

O

O

O

O
B OH

CH3COOH

-H2O

B
HO

HO

O

O

O

O
B O C

O

CH3 B O O
HO

HO
B

O

O O C

O

CH3

-CH3COO

CH3COOH

97

14 9

98                                                             99

100                                                             101  

Scheme 36. (a) Oxidative cyclization of o-hydroxychalcones using sodium perborate tetrahydrate 

(SPB). (b) The mechanism for generating peracetoxyboron anionic species [154,155]. 

Scheme 36. (a) Oxidative cyclization of o-hydroxychalcones using sodium perborate tetrahydrate
(SPB). (b) The mechanism for generating peracetoxyboron anionic species [154,155].



Molecules 2023, 28, 6528 37 of 52

Other reagents for the oxidative cyclization include indium(III) halides (InCl3 and
InBr3) on silica gel and in solvent-free conditions, which has been shown to provide higher
yields when InBr3 is used [156] or when sodium tellurite is used in dimethyl sulfoxide and
anhydrous conditions (Na2TeO3-DMSO) [157]. The reaction mechanism has not completely
ben elucidated. The supposed reported pathway for the oxidative cyclization with indium
halides involves the formation of a flavanone as an intermediate, which is dehydrogenated
in the same reaction conditions to the corresponding flavone [156]. Oxalic acid in ethanol
reflux, which was used by Zambare et al., has been shown to be a very useful and cheap
method, with excellent yields over 90% [158] (Scheme 37).
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tellurite in DMSO [157], and oxalic acid [158].

Photocyclization provides another way to perform this reaction. However, in one
study, it yielded only flavanones and in low quantities [159]. By adding a heterocyclic
N-oxide, pyrimido[5,4-g]pteridine N-oxide (102), Maki et al. managed to obtain flavones
(9) but still only in unsatisfactory yields and in a mixture with flavanones (12). The
photoreaction involves a single electron transfer (SET) process from chalcone (14) to N-
oxide (102). Initially, the N-oxide is found in the oxygenated form, pyrimido [5,4-g]pteridin-
2,4,6,8(1H,3H,7H,9H)-tetrone 5-oxide (102), and as the mixture forms, it gets deoxygenated
to pyrimido [5,4-g]pteridine (109) [160]. Electrochemistry found applications in this reaction
too. Saničanin and Tabaković cyclized 2′-hydroxychalcones by electrochemically generating
a cation radical of tris-(4-bromophenyl)amine, which acted as a homogenous electron
transfer reagent. This method creates a mixture of flavanones and flavones in moderate
yields [161] (Scheme 38).

Through creating a totally non-hazardous medium, a different approach for the cy-
clization of o-hydroxychalcones was implemented by Tamuli et al. In this case, the catalyst
consists of a mixture of two agro-food waste products—Musa sp. ‘Malbhog’ peel ash
(MMPA) and Musa champa Hort. ex Hook. F. peel ash (MCPA)—which allowed for the
cyclodehydrogenation of o-hydroxychalcones in solvent-free conditions and at room tem-
perature [162] (Scheme 39).

Among the reported methods for the cyclization of o-hydroxychalcones, our research
group investigated the most promising ones in order to obtain new flavonoid analogs contain-
ing the 2-arylthiazole moiety instead of the benzene ring B. Our aim was to also investigate
the chemical behavior of 2-arylthiazole o-hydroxychalcones in the cyclization reactions.
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Scheme 38. (a) Oxidative cyclization using photo- and electrochemistry [160,161]. (b) Mechanism of
single-electron transfer process (adapted from Maki et al. [160]).
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The oxidative cyclization of the 2-arylthiazole o-hydroxychalcones (85) afforded
various reaction products, depending on the oxidizing agent. Flavanones (112) were
obtained with 40–55% yields via the cyclization of the corresponding 2-arylthiazole o-
hydroxychalcones in acidic catalysis (H2SO4 conc. in ethanol) [133]. The cyclization of
2-arylthiazole o-hydroxychalcones in the presence of sodium acetate in methanol (used
as a solvent) also afforded the corresponding flavanones (112) in good yields. The use
of copper(II) acetate in dimethyl sulfoxyde resulted in a mixture of aurones (110) and
the corresponding flavones (86) in an approximate 1:1 molar ratio [43]. Hydroxyflavones
(111) were obtained via the cyclization of the same substrates with hydrogen peroxide in
alkaline catalysis [43], and flavones (86) were obtained when iodine in dimethyl sulfoxide
was used [43,133]. The cyclization with selenium dioxide in n-butanol led to a mixture
of flavones (86) and hydroxyflavones (111) [43]. Cyclization with mercury(II) acetate in
pyridine as a solvent afforded the corresponding Z-aurones (110) with 70–86% yields [43].
The cyclization products and the reactions conditions are summarized in Scheme 40.
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Scheme 40. Cyclization products obtained via the oxidative cyclization of 2-arylthiazole
o-hydroxychalcones in different reaction conditions [43,133,163].

The cyclization of o-methoxylated chalcones bearing the 2-arylthiazole moiety (113)
was further studied in similar reaction conditions. It was found that the reaction occurred
differently depending on the oxidizing agent and the reaction conditions. Through treat-
ment with iodine in dimethyl sulfoxide, at reflux, the corresponding flavones (86) were



Molecules 2023, 28, 6528 40 of 52

formed. This fact indicates that the demethylation of the methoxy group of chalcone oc-
curred, resulting in the corresponding o-hydroxychalcone (85), which was further cyclized
to the corresponding flavone [163]. Instead, when hydrogen peroxide in NaOH was used
as a cyclization agent, the formation of the corresponding epoxides (114) was observed,
which can be explained by the fact that the methoxy group is resistant in these reaction
conditions; therefore, the cyclization to flavone cannot take place (Scheme 41) [163].
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3.7. Mentzer Method

This method involves synthesizing flavones based on the reaction between phenols
(phenol, resorcinol, or phloroglucinol) and β-ketoesters (116) [164] (Scheme 42). It is
based on the Pechmann reaction (used to obtain coumarins from phenol and ethyl acetoac-
etate) [165]. Mentzer et al. obtained flavones from resorcinol and ethyl 2-benzylacetoacetate
by heating up the mixture for 48 h at 250 ◦C [166].
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Scheme 42. The Mentzer method for the synthesis of flavones.

The mechanism involves a nucleophilic attack by the phenolic compound (115) on
the β-ketoester (116), resulting in an arenium ion (117). Under heating, the intermediate
eliminates the alcohol and affords o-hydroxydibenzoylmethane (119), a compound which
is also available in the Baker–Verkataraman method, which is cyclized into flavone (9) [164]
(Scheme 43).

Seijas et al. developed a solvent-free modification of this method that uses microwave
irradiation instead of heating. The yields are good, and the time of reaction is significantly
reduced [167] (Scheme 44).
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While this method mostly uses 2-bromo- or 2-iodochromones, Kraus and Gupta 

demonstrated that these precursors yield aurones rather than flavones. By using 

2-chlorochromone, they managed to obtain flavones in proper yields (68–74%) [169]. 

Their synthesis starts with the esterification of a phenolic compound (125) and 

3,3-dichloroacrylic acid (126), resulting in a dichloro acrylic ester (127). This compound 

undergoes Fries transposition, affording the intermediate 128. Further cycloelimination 
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3.8. Suzuki–Miyaura Method

The Suzuki–Miyaura method is a cross-coupling reaction based on the insertion of
palladium in sp2 hybridized C-X bonds and the usage of various organoboron precursors
(124) under mild reaction conditions. In the case of flavones, 2-halogenochromones (123)
are used as substrates; however, they are difficult to obtain [168] (Scheme 45).
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Scheme 45. The Suzuki–Miyaura method for the synthesis of flavones starting from
2-halogenochromones [168,169].

While this method mostly uses 2-bromo- or 2-iodochromones, Kraus and Gupta
demonstrated that these precursors yield aurones rather than flavones. By using
2-chlorochromone, they managed to obtain flavones in proper yields (68–74%) [169].

Their synthesis starts with the esterification of a phenolic compound (125) and
3,3-dichloroacrylic acid (126), resulting in a dichloro acrylic ester (127). This compound
undergoes Fries transposition, affording the intermediate 128. Further cycloelimination
in basic conditions yields 2-chlorochromone (129). Finally, this is then coupled with aryl-
boronic acids, which can replace the halogen atom from the chromone skeleton with the
aryl rest of the boronic compound, thus affording a flavone (130) [169] (Scheme 46).
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Scheme 46. The pathway of the Suzuki–Miyaura method for obtaining substituted flavones (image
adapted from Kraus and Gupta [169]).

The postulated mechanism of the Suzuki–Miyaura method involves a catalytic cycle
initiated by the formation of the active Pd catalytic species Pd(PPh3)2 (132). Further oxida-
tive insertion of palladium to the 2-halogenochromone (133) leads to the organopalladium
intermediate 134 (chromon-2-yl-palladium(II) chloride). In the transmetalation step, the
chlorine atom is transferred to the boronic compound 124, resulting in a chloroboronic acid
(135) and chromon-2-yl-phenyl-palladium (136), which undergoes reductive elimination,
yielding the flavone (9) and the active Pd catalyst Pd(PPh3)2 [170] (Scheme 47).
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4. Chemical Synthesis of Aurones

Among the reported methods for the synthesis of aurones, the most applied are
those based on the oxidative cyclization of o-hydroxychalcones. These reactions are me-
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diated by transitional metal salts such as Hg(CH3COO)2 [40,48,171], CuBr2 [171,172], or
Tl(NO3)3 [173], whose metal cation interacts with the double bond in chalcones, thus
favoring the attack of the ortho hydroxy group on the alpha carbon (Scheme 48) [130].
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Scheme 49. Synthesis of aurone analogs containing the 2-phenylthiazole moiety [43]. 
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Scheme 48. Aurone synthesis via the cyclization of o-hydroxychalcones [171–173].

The cyclization of o-hydroxychalcones (137) with mercury(II) acetate afforded the best
yields in aurones (138) when the reaction was performed in pyridine [40,48,171] or with
dimethyl sulfoxide [174] as a solvent at reflux. In the case of cyclization with cupric bromide,
aprotic polar solvents such as dimethyl sulfoxide [171] or N,N-dimethyl formamide [37,172]
have been shown to be the optimal solvents.

In the case of thallium nitrate-mediated cyclization, reported data indicate that the
reaction course depends on the nature of the substituents on the B ring; only the electron-
withdrawing groups (chlorine, formyl, methoxycarbonyl, and nitro) grafted in the para
position are favorable for cyclization to aurones. In other cases, mixtures of aurones and
isoflavones, or exclusively isoflavones, are obtained [175].

Our research group synthesized a series of aurone analogs (140) containing the same
2-phenylthiazole aromatic system as the B ring in Z-configuration, achieving 70-86% yields
via the cyclization of the corresponding o-hydroxychalcones (139) with mercury(II) acetate
in pyridine at reflux (Scheme 49) [43].
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Another chemical route towards aurones involves starting with substituted benzofuran-
3-ones as precursors. Benzofuran-3-ones (143) are synthesized in two steps. The first step
consists of the introduction of a chloroacetyl group on the aromatic ring of the phenols (141)
by applying a Hoesch-type reaction (with 2-chloronitriles in the presence of anhydrous
ZnCl2 and gaseous HCl) [176] or Friedel–Crafts acylation (with alfa-halogenated acyl chlo-
rides in the presence of AlCl3) [49,177]. In the next step, an intramolecular Williamson-type
reaction with ring closure is applied (Scheme 50) [49,176,177].
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Scheme 50. Synthesis of benzofuran-3-ones.

The condensation of benzofuran-3-ones (143) with aromatic aldehydes (144) affords
the corresponding aurones 145 (Scheme 51). This step can be performed under acid catalysis
with HCl [52] and HCl/CH3COOH [49,74], in basic catalysis with 50% KOH/Ethanol or
KOH/Methanol [176–178] or NaOH/NaOCH3 [50], or with a Al2O3 catalyst [75]. A recently
reported method for the condensation of benzofuran-3-ones with aromatic aldehydes uses
an activated Ba(OH)2 catalyst in dimethyl sulfoxide as a solvent [53,58].
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Another reported method for the synthesis of aurones involves the cyclization of
hydroxypropynylphenol derivatives (149) obtained via the alkynylation of salicylaldehyde
derivatives (146) with lithium arylacetylures (147) (Scheme 52) [179,180].
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Harkat H. et al. performed the cyclization of hydroxypropynylphenol derivatives
(149) in the presence of gold(I) chloride and potassium carbonate in acetonitrile. Further ox-
idation with MnO2 of the intermediate secondary alcohol (150) afforded the corresponding
aurones 151 (Scheme 52) [179].

Li S. et al. proposed a variant of cyclization with AgNO3. Ag+ ions catalyze both the cy-
clocondensation reaction and the oxidation of the secondary alcohols to the corresponding
aurones 151 (Scheme 52) [180].

5. Conclusions

From a pharmacological point of view, flavones, flavonols, and aurones are precious
natural products that have inspired researchers over time to create new biologically active
compounds for use as anticancer and anti-infectious agents with benzochromon-4-one or
benzofuran-3-one structures.

The polyphenolic structure of natural flavones and aurones determines their low
stability to oxidants in solution and also generally decreases their bioavailability after oral
administration due to their low solubility, thus affecting their potential use as therapeutic
agents. Consequently, the structural modulations on aromatic rings A and B that have
been reported to aid the design of new flavone/aurone analogs and facilitate both the
improvement of therapeutic properties and pharmacokinetic profiles and increases in
stability must be taken into account.

The hybridization of the basic skeletons of flavones and aurones with other phar-
macophore moieties has led to new compounds with superior pharmacological profiles
compared to their natural analogs.

The most applied routes for the synthesis of flavones, hydroxyflavones, and aurones
involve the cyclization of o-hydroxychalcones. As exemplified in Section 3, the cyclization
pathway transpires differently depending on the reaction conditions, the catalysts used,
and the nature and position of the substituents grafted on the aromatic moieties [118,127].

In order to obtain new biologically active compounds based on the flavone scaffold,
two main directions can be outlined, offering future research perspectives. One research
direction involves using natural flavones already recognized for their therapeutic potential
as precursors. Through the alkylation of their OH groups [10,45] or by grafting differ-
ent pharmacophore units on their aromatic rings [31], new flavonoid analogs or hybrid
molecules such as Mannich bases [56] with improved biological functions can be obtained.
Based on literature data regarding the discovery of new important pharmacophore moieties
targeting tumor-associated structures or recognized for their antimicrobial properties, new
multi-target-acting hybrid molecules with anticancer or antimicrobial potential could be de-
veloped using similar strategies that involve starting from the structures of natural flavones.

Another research direction with important future prospects in the development of
new flavone analogs involves the synthesis of the 2-phenyl-chromen-4-one system via
different procedures. The most applied and promising route consists of the cyclization of
o-hydroxychalcones with I2/DMSO [30,46,47,61,133]. Although this method was imple-
mented long time ago, this procedure is still largely exploited and extended on various
structures because it generally allows one to obtain target compounds with high yields
and because the o-hydroxychalcones needed for use as precursors are accessible and easily
obtainable via Claisen–Schmidt condensation.

The oxidative cyclization of o-hydroxychalcones with H2O2 in basic media represents
a promising route with future prospects for the synthesis of 3-hydroxyflavones. The
cyclization pathway transpires differently depending on the nature and the position of
the substituents grafted on the aromatic moieties, thus affording 3-hydroxyflavones or
aurones [116,118,119]. Modern improvements have been made to this method, such as
performing the synthesis under microwave irradiation [55].

Even if the presented methods for the synthesis of flavones and aurones generally
refer to obtaining the basic skeleton for natural flavones and aurones, in which the aro-
matic moieties are benzene and benzochromon-4-one or benzofuran-3-one rings, these
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methods have also been successfully applied in obtaining other new synthetic analogs
of flavones or aurones containing other aromatic moieties such as heteroaromatic sys-
tems [35,43,53,55,58,61]. In particular, flavone/aurone analogs bearing the heterocyclic
moieties thiazole, pyrazole, thiophene, pyridine, and quinoline instead of ring B represent
basic skeletons with future prospects for the design and development of new heterocyclic
flavonoid analogs with anticancer and antimicrobial potential.

The results presented in this review regarding the biological activity of flavones
and related compounds confirm that the general synthetic pathways towards flavones,
flavonols, and aurones have great importance for future research on the development of
new effective anticancer and antimicrobial agents.
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