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Abstract: Fruits, vegetables, and other food items contain phytochemicals or secondary metabolites
which may be considered non-essential nutrients but have medicinal importance. These dietary phy-
tochemicals exhibit chemopreventive and therapeutic effects against numerous diseases. Polyphenols
are secondary metabolites found in vegetables, fruits, and grains. These compounds exhibit several
health benefits such as immune modulators, vasodilators, and antioxidants. This review focuses on
recent studies on using dietary polyphenols to treat cardiovascular disorders, atherosclerosis, and
vascular endothelium deficits. We focus on exploring the safety of highly effective polyphenols to
ensure their maximum impact on cardiac abnormalities and discuss recent epidemiological evidence
and intervention trials related to these properties. Kaempferol, quercetin, and resveratrol prevent
oxidative stress by regulating proteins that induce oxidation in heart tissues. In addition, polyphe-
nols modulate the tone of the endothelium of vessels by releasing nitric oxide (NO) and reducing
low-density lipoprotein (LDL) oxidation to prevent atherosclerosis. In cardiomyocytes, polyphenols
suppress the expression of inflammatory markers and inhibit the production of inflammation markers
to exert an anti-inflammatory response. Consequently, heart diseases such as strokes, hypertension,
heart failure, and ischemic heart disease could be prevented by dietary polyphenols.

Keywords: polyphenols; cardiovascular; atherosclerosis; oxidative stress

1. Introduction

Cardiovascular disease (CVD), encompassing conditions such as atherosclerosis, hy-
pertension, myocardial infarction, cardiomyopathy, arrhythmia, and heart failure (HF),
is a major contributor to global mortality. The incidence of CVD has experienced a no-
table increase [1–4]. Despite the wide range of pharmaceuticals currently utilized for the
management of CVD, such as statins, angiotensin-converting enzyme inhibitors (ACEIs),
angiotensin receptor blockers (ARBs), calcium channel blockers (CCBs), fibrates, and
β-blockers, it is important to acknowledge that a significant number of these medications
are associated with adverse effects in the human population [4]. Hence, there exists a sig-
nificant clinical requirement to discover and cultivate innovative therapeutic strategies for
CVD [2]. The transport of oxygen and nutrients in the human body is carried out via blood
circulation along with the removal of metabolic by-products and carbon dioxide through
the cardiovascular system (CVS). Coronary artery disease (CAD), cerebrovascular disease
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(CVD), peripheral artery disease (PAD), congenital heart disease (CHD), hypertension,
heart failure, and stroke are all disorders that affect the heart and blood arteries [1,2]. Within
this context, cardiovascular diseases (CVDs) are among the leading causes of mortality
throughout the world, claiming 17.9 million individual lives worldwide in 2019, which is
approximately 32% of total fatalities. Approximately, 85% of these mortality rates were
due to heart attacks and strokes (WHO site). Strokes kill 6.7 million people each year, and
coronary heart disease claims 7.4 million lives [3,4].

Several pathologies can affect the cardiovascular system. Some of these pathologies
include primary heart ailments, including cardiomyopathy and cardiac malignancies.
Infectious and infectious-allergic damage to heart tissue, metabolic and systemic disorders,
and diseases of other organs are also covered in this category [5,6]. CHD starts with
inflammation of the blood artery walls, which narrows and causes angina pectoris [7]. In
this respect, blood clots restrict arteries later in the disease’s progression, resulting in severe
myocardial ischemia and myocardial infarction (heart attack). Heart failure can occur in
severe cases of CHD when the heart muscle’s ability to pump blood around the body
deteriorates [2]. Because these disorders are generally caused by arterial injury, symptoms
and treatments vary depending on which arteries are afflicted [2].

Age and gender are among the most reported non-modifiable cardiovascular risk fac-
tors. Cardiovascular disorders become more common as people become older due to a rise
in plasma cholesterol on one hand and the augmentation of arterial rigidity and peripheral
vascular resistance on the other hand [8]. Although the risk of cardiovascular disorder
varies with gender and age, the incidence is three to five times greater in men < 50 years of
age compared to women. On the other hand, a considerable increase in the occurrence
of CVD has been observed in women over the age of 50 years. Genetic factors, inactivity,
hypertension, obesity, diabetes, smoking, and dyslipidemia are the prominent risk factors
for cardiovascular disorders, as described in published reports [9–12].

Research findings have shown that a balanced diet is beneficial for preventing CVD [13].
The consumption of a high percentage of fruits and vegetables in a diet, such as the Vegan
diet, is strongly correlated with a long life expectancy. In addition, it decreases the incidence
of cardiovascular diseases [14]. According to epidemiological research, people who con-
sume a diet rich in polyphenols experience a 46 percent reduction in their risk of developing
CVD [15]; these food items are rich in polyphenols. Polyphenols are present in vegetables
and in many fruits and seeds that we routinely consume as secondary metabolites [16]. In
this regard, there is a connection between the consumption of fruits, vegetables, seeds, and
nuts and a decreased incidence of chronic and age-related degenerative illnesses [17].

Polyphenols have also been found useful in enhancing endothelial function, prevent-
ing aberrant platelet aggregation, decreasing inflammation, and improving plasma lipid
profile, all of which benefit cardiovascular health. Because the processes by which these
chemicals exert cardioprotective activities are not entirely known, although not conclusively
shown, there may be a connection between the cardiovascular advantages of some diets
and their polyphenol levels [18]. Based on the preceding remarks, this work focuses on
summarizing the literature dealing with the pharmacological effects of dietary polyphenols
and presents an overview of the recent developments regarding their use in the prevention
and treatment of different diseases. We hope that this paper can be beneficial to future
research and the development of new therapeutic strategies. Depicted in Figure 1 is a
sketch that shows how nutrition can help in preventing atherosclerosis, which contributes
to CVD.
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Figure 1. Nutrition can help prevent atherosclerosis, which is a pathophysiological process that con-
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from plants have been related to improved health in terms of obesity, diabetes, and CVD. 
A recent study has focused on marine macroalgae, presumably because of epidemiologi-
cal evidence from Asian nations that suggests a diet high in seaweed lowers the occur-
rence of CVD, cancer, and other chronic disorders [1,20]. 

Polyphenols are also outstanding plant-derived secondary metabolites that exhibit 
anticancer, anti-cardiovascular, antidiabetic, and anti-neurodegenerative properties. 
Compounds like phenicic acid, stilbenes, flavonoids, coumarins, tannins, and lignins are 
present in numerous plants, including tonka bean (Dipteryx odorata), sweet grass (Hiero-
chloe odorata), sweet woodruff (Galium odoratum), deer-tongue grass (Dichanthelium clan-
destinum), sweet clover (Verbascum spp.), and vanilla grass (Anthoxanthum odoratum). In 
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Figure 1. Nutrition can help prevent atherosclerosis, which is a pathophysiological process that
contributes to the development of cardiovascular disease (CVD).

2. Polyphenols

Polyphenols are phytochemicals or secondary plant compounds that are considered
non-essential nutrients in plants [19]. They are a rich collection of chemicals present in
plants and algae, where their natural role is to defend the organism against UV radiation,
infection, and herbivore ingestion. Polyphenols come in a variety of structural forms,
from basic monomers to complex polymerized structures. Seaweed polyphenols may help
lower hyperglycemia, hyperlipidemia, oxidative stress, chronic inflammation, metabolic
abnormalities linked to CVDs, and diabetes sequelae. On the other hand, polyphenols
from plants have been related to improved health in terms of obesity, diabetes, and CVD. A
recent study has focused on marine macroalgae, presumably because of epidemiological
evidence from Asian nations that suggests a diet high in seaweed lowers the occurrence of
CVD, cancer, and other chronic disorders [1,20].

Polyphenols are also outstanding plant-derived secondary metabolites that exhibit
anticancer, anti-cardiovascular, antidiabetic, and anti-neurodegenerative properties. Com-
pounds like phenicic acid, stilbenes, flavonoids, coumarins, tannins, and lignins are present
in numerous plants, including tonka bean (Dipteryx odorata), sweet grass (Hierochloe odorata),
sweet woodruff (Galium odoratum), deer-tongue grass (Dichanthelium clandestinum), sweet
clover (Verbascum spp.), and vanilla grass (Anthoxanthum odoratum). In addition to its
antioxidant characteristics, resveratrol also exerts ameliorating effects against inflamma-
tion, cancer, aging, obesity, and diabetes, along with cardioprotective and neurological
benefits [21]. A scientific literature analysis on PubMed with the keywords “Cardio-
vascular Polyphenols” showed that around 4,000 papers have been published between
2010 and 2023. Figure 2 represents our keyword occurrence analysis, in which the most
focused research keywords were oxidative stress, inflammation, resveratrol, atherosclerosis,
endothelium, dietary supplement, blood pressure, and apoptosis.

Phenolic compounds are the most copious non-energetic components in plant-based
meals. The aptitude of polyphenols to alter enzymatic activity and, consequently, the signal-
transmitting mechanisms of several processes occurring in cells may be attributed to their
physicochemical properties, which allow polyphenols to participate in numerous metabolic
cellular redox processes. Thus, the antioxidant scavenging properties of polyphenols make
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them advantageous. These are the most predominant antioxidants in the diet; they are
20 times more prevalent than vitamin E and carotenoids and 10 times more prevalent than
vitamin C. Nicotinamide-adenine-dinucleotide phosphate (NADP) oxidase and xanthine
oxidase are two ROS-producing enzymes that polyphenols can inhibit [22]. Listed in Table 1
are polyphenol-rich plant foods.
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Table 1. Polyphenol-rich plant foods.

Plant Food Latin Name Edible Part Concentration
mg/100 g Major Polyphenols References

Apple Malus domestica
Peel 50–120 y

Phlorizin, quercetin, phenolic acids
(chlorogenic acid) [23,24]Flesh 0.2–0.9

Total 5–50

Blackberry Rubus fruticosus Whole 130–405 Anthocyanins, flavanols (EC),
phenolic acid (ellagic acid) [25]

Blueberry Vaccinium
corymbosum Whole 160–480 Anthocyanins, flavonols (quercetin),

phenolic acids (chlorogenic acid) [25]

Coffee Coffea arabica Beverage, filtered 90 Phenolic acids (chlorogenic acid) [25]

Chestnut (raw) Castanea sativa Whole nut 547–1960 Hydroxybenzoic acids (gallic acid,
ellagic acid), tannins [25]

Cacao Theabroma cacao Beans, powder 300–1100 x Flavanols (EC) [25]

Green tea Camellia sinensis Extract 29–103 x Flavanols (EC, EGCG) [25]

Grapefruit Citrus x paradisi Flesh 15–115 Flavonoids, phenolic acids [25]
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Table 1. Cont.

Plant Food Latin Name Edible Part Concentration
mg/100 g Major Polyphenols References

Olive oil, extra virgin Olea europaea Whole oil 4–200
Tyrosols, lignans (pinoresinol),

phenolic acids,
hydrolyzable tannins

[25]

Potato Solanum tuberosum
Peel 180–5000

Phenolic acids (chlorogenic acid) [25,26]Flesh 1–1000
Total 10–50

Plum Prunus domestica Total 130–240 Phenolic acids (chlorogenic acid),
procyanidins, anthocyanins [25]

Pomegranate Punica granatum Juice 240 x Punicalagin (and ellagitannin) [27]

Grapes, Red wine Vitis vinifera Final product 25–300 x Phenolic acids, anthocyanins,
tannins, stilbenes (resveratrol) [25]

Wheat Triticum aestivum Whole grain 85–220 Phenolic acids (hydroxybenzoic
acids, hydroxycinnamic acids) [25]

Spinach Spinacia oleracea Leaf 30–290 Flavonols [25]
Abbreviations: EC = epicatechin; EGCG = epigallocatechin gallate. x = In juices, wine, and other beverages:
mg/100 mL. y = Concentration in mg/cm2. Note that the polyphenol content in purple potatoes is approximately
five times higher than that in other varieties.

3. Classification of Polyphenols

Polyphenols are divided into several categories, including phenolic acids (hydroxyben-
zoic and hydroxycinnamic acids), flavonoids (flavones, flavonols, isoflavones, flavanones,
and anthocyanins), stilbenes (resveratrol, piceatannol), lignans (sesamol, pinoresinol, sinol,
enterodiol), and others, including tannins (hydrolyzable, non-hydrolyzable, and condensed
tannins), lignins, xanthones, chromones, and anthraquinones, as shown in Figure 3A [28–30].

Figure 3. (A) Classification of polyphenols. (B) Classification and food sources of phenolic acids.
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3.1. Phenolic Acids

Phenolic acids are a class of organic compounds composed of aromatic rings connected
to a carboxylic acid group. The antioxidant properties of phenolic acids make them
protective against CVD [28,30,31]. Vegetarian food, including seeds, fruits, and green-
colored vegetables, are known to be good sources of phenolic acids. In addition to their
health-promoting benefits, phenolic acids are widely used in a variety of things, including
cosmetics, food, and medicine [32]. Phenolic acids are divided into hydroxybenzoic and
hydroxycinnamic acids.

3.1.1. Hydroxybenzoic Acids

Hydroxybenzoic acids are benzoic acid (C7H6O2) derivatives. The Hydroxybenzoic
acids sub-category includes salicylic acid, protocatechuic acid, vanillic acid, benzoic acid,
gallic acid, and ellagic acid [30,33]; gallic acid may be found in large quantities in tea and
grape seeds [34]. Included within olive products are hydroxybenzoic acids, which exert
anti-inflammatory, antioxidant, and cardioprotective properties, among others [29–31,35].

3.1.2. Hydroxycinnamic Acids

Aromatic acids, which are derived from cinnamic acid are represented by the family
of hydroxycinnamic acids (C6-C3) [29,36]. Adequate sources of hydroxycinnamic acids
include coffee, berries, apples, grains, and kiwi fruit [37,38]. Specifically, coffee contains
chlorogenic acid, and caffeine, berries, and apples contain caffeic acid, while cereals contain
ferulic acid. Most citrus fruits contain caffeine and chlorogenic acid (cinnamic acid) [34].
In addition to having anti-inflammatory properties, phenolic acids can also protect the
body from cell damage, ROS, oxidative stress, and cardiovascular health issues like heart
diseases and diabetes; they have neuroprotective and food-preservative properties that can
help keep food fresh longer [30,34]. Figure 3B depicts the classification of phenolic acids.

3.2. Lignin

Lignin is a category of complex chemical compounds that may be found in a variety
of plant tissues. Lignin is particularly important in plants and trees because it assists in cell
wall formation [39]. Flaxseeds, tomatoes, peaches, apples, and some berries are examples
of foods high in lignin [30].

Silymarin

Lignin silymarin, a kind of flavonolignan, has been shown to possess antioxidant prop-
erties. This kind of lignin may be found in the seeds of milk thistle and other herbaceous
plants [40].

3.3. Stilbenes

Stilbenes are phenol-derived metabolites (C14H12). Their biological activity and health-
promoting benefits are a source of research interest and a focal point for many studies.
Studies have focused on their bioavailability, metabolism, and absorption rates, as well as
their overall health benefits [41].

Resveratrol

The most well-known kind of stilbene is resveratrol, which has anti-inflammatory
effects [42]. Resveratrol is mostly found in grapes and red wine. This compound has
also been demonstrated to lower blood pressure. Additionally, studies have indicated
that taking resveratrol as a supplement rather than getting it naturally is more beneficial.
Moreover, findings have indicated that resveratrol may be beneficial to humans, although
its specific mechanism of action is currently being researched [43]. Despite its limited
bioavailability in the body, resveratrol has been shown to protect against CVDs and have a
sun-protective impact, thus protecting against skin cancer [44].
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3.4. Flavonoids

Flavonoids are naturally occurring polyphenolic compounds that are divided into
six primary categories: flavanones, flavones, flavanols, isoflavones, flavan-3-ols, and
anthocyanidins [44]. Figure 4 depicts the chemical structures of important flavonoids.
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3.4.1. Flavones

Flavones are present in foods like garlic, chamomile tea, and celery, which are rich
in luteolin [45]. The advantageous effects of luteolin that have been observed in various
studies include blood pressure reduction in hypertensive rats, improving vasodilation of
the aortic rings, and increasing cAMP accumulation due to the inhibition of cAMP-specific
phosphodiesterase [46]. The activation of the cAMP/PKA cascade increases endothelial
cell nitric oxide levels through the activation of endothelial enzyme nitric oxide synthase.
This encourages the relaxation of the vasculature through nitric oxide, a mechanism carried
out by potassium and calcium channels [47].

3.4.2. Flavonols

Onions, tea, broccoli, and fruit are rich sources of flavonols, which are represented by
kaempferol and quercetin, which are glycosides [48].

Quercetin

Quercetin exerts its antihypertensive effect by improving endothelial function, modu-
lating the renin–angiotensin–aldosterone system (RAAS) by modulating the mechanism of
contraction of smooth muscles in blood vessels [48], producing vasodilation at a renal level
that is protein kinase C-dependent, and lowering blood pressure in patients with diabetes
or metabolic syndrome [49,50]. Quercetin is reported to cause oxidative stress reduction in
the heart and kidneys [51].
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Kaempferol

Kaempferol is present in foods such as broccoli, strawberries, green tea, and beans [52];
its antihypertensive effects are manifested by the activation of endothelial nitric oxide [53].
Besides its antihypertensive effect, kaempferol is reported to reduce proteinuria and al-
buminuria, and it is considered a potential contender for the improvement of these two
conditions [54].

3.4.3. Flavan-3-ols

Flavan-3-ols comprise monomers such as epicatechin, gallocatechin, catechin, and
oligomers (proanthocyanidin) [52]. Catechin monomers are found in apple-, tea-, cocoa-,
pear-, and grape-based products in the form of aglycones (part of non-carbohydrate gly-
cosides). Catechins have been shown to have advantageous effects on vascular function
and to be cardioprotective. Additionally, studies have revealed that they can lower both
systolic and diastolic blood pressure [55,56].

Epicatechin

Epicatechin-rich food results in decreasing both systolic blood and diastolic blood
pressure by 4.2 mmHg and 2.1 mmHg, respectively, showing its antihypertensive effect.
It has also been found to decrease myocardial rigidity in hypertrophic cardiomyopathic
rats [57].

Epigallocatechin-3-gallate

Epigallocatechin-3-gallate is abundant in green tea and has been found to have antiox-
idant, anti-inflammatory, and antiatherogenic properties [58].

3.4.4. Flavanones

Naringenin and hesperetin are the main representatives of this class, which is predom-
inantly found in citrus fruits, especially in their peels [59]. Their antioxidant properties are
due to their free radical scavenging activity [60].

Naringenin

Naringenin has some promising effects; e.g., it reduces mean blood pressure, regulates
nitric oxide levels, and provides a shield against endothelial dysfunction [61,62].

Hesperetin

Hesperetin is one of the dietary flavanones found in citrus fruits [52] which is rapidly
absorbed in the intestine, and the resulting metabolites are responsible for the antihyper-
tensive effect. They can also reduce the progression of atheroma plaque through their
anti-inflammatory activity. In addition to this, the antioxidant effect of hesperetin helps to
increase the amount of nitric oxide and reduces the amount of calcium ions, thus producing
smooth muscle relaxation in the blood vessels [63,64].

3.4.5. Anthocyanidins

Anthocyanidins are key soluble pigments that provide color to fruits and vegeta-
bles like blue, red, or purple fruits, e.g., forest fruits and black currants, etc. [52]. The
endothelium-dependent vasodilatory property has beneficial effects on the cardiovascular
system, thereby reducing the risk of acute myocardial infarction [65].

3.4.6. Isoflavones

Soy is a source of isoflavones, which are structurally similar to mammalian estrogens.
Thus, they can produce their agonistic effect by binding to estrogen receptor agonists.
Diadzein and genistein are the two main isoflavones in this class [66].
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Diadzein

Diadzein has been found to have an anti-damaging effect by reducing oxidative stress,
increasing nitric oxide synthesis, reducing LDL oxidation, and increasing prostaglandin
production [67].

Genistein

Genistein has the property of reducing hypertension [68].

4. Bioavailability of Polyphenols

The bioavailability of phenolic compounds in our food is critical because only the
most bioavailable phenolic compounds in our diet will have the most beneficial effects
on the human body [69]. These will be different for each person depending on their
relationship with food, how cell walls are made, and where glycosides are found. Many
epidemiological studies have shown that phenolic compounds have a lot of health benefits,
such as protecting against the buildup of fat, preventing microorganisms from decaying,
lowering cardiovascular diseases, preventing diabetes, stroke, and cancer, and exerting
anti-inflammatory effects [30].

Recent research has placed a strong emphasis on identifying the processes governing
polyphenol metabolism and bioavailability in humans [70]. A wide array of fruits and
vegetables contain compounds known as phenolics. Some plants contain as much as
750 mg/100 g of fruit, which is a significant amount [19,71]. The highest dietary sources
of polyphenols are dark-colored fruits (especially small berries), chocolate, cereals made
entirely of whole grains, coffee, and red wine, with the latter three accounting for the lion’s
share of overall dietary polyphenol consumption [72]. Among the food groups consumed,
polyphenols are primarily associated with carbohydrates, organic acids, and other food
groups. They combine with arabinose to generate ester linkages in hemicellulose or core
lignin, which allows them to form covalent connections with polysaccharides in the cell
wall of the plant. While flavonoids can be found in the cytosol and endoplasmic reticulum,
where they are formed, they are mostly found in free form in the cytosol and endoplasmic
reticulum. Cell barriers and intracellular compartments must be damaged for the drug to
be bioavailable [71]. Flavonoids found in nature are housed within plants as glycoside and
non-glycosylated conjugate compounds, and as a result, the moiety’s type might affect their
subsequent human bioavailability [73,74]. A summary of the comparative bioavailability
of different polyphenols is shown in Figure 5 [75].
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4.1. Metabolism of Polyphenols
4.1.1. Oral and Gastric Absorption

The most prevalent enzyme in the mouth cavity is amylase, which starts the digesting
process. Due to the brief contact duration, the consequence of enzyme action on polyphenol
release from food is predicted to be negligible [76]. On the other hand, particle size decrease
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occurs, resulting in particles with a diameter ranging from a few hundred microns to several
thousand microns [77], allowing for increased enzyme access throughout the succeeding
stages of digestion due to an increase in the digest volume fraction. Most polyphenols seem
to be formed in the stomach during the digestion process. In the gastric phase digestion with
pepsin, peristaltic movements, and a low pH cause formation of finely powdered digestible
polyphenols with even smaller particle sizes, often less than 500 microns in diameter [78].
Another factor that might contribute to polyphenols remaining in an undissociated form
is the low pH, which may accelerate the movement of polyphenols from the food matrix
to the aqueous phase due to decreased interactions between ionic groups. The pH of
the digestive fluids normally rises from approximately 2–4 to around 7 when digested
food exits the stomach and enters the small intestine. It is possible that the pancreatic
and biliary enzymes can be activated in this manner [79]. A brush border enzyme called
lactase-phlorizin hydrolase (LPH) is thought to be responsible for cleaving polyphenols
from their sugar moiety before cellular absorption [80].

4.1.2. Uptake in Enterocytes

The gastric absorption of some polyphenols has been strongly suggested because of
how soon these polyphenols enter plasma after consumption [81]. After breaking into their
corresponding aglycons, polyphenols can penetrate the intestinal epithelium via passive
transport, active transport, or facilitated transport. Polyphenols with low molecular weight,
like phenolic acids, flavonoid aglycon, herbal tea polyphenols, and the polyphenols in
cocoa (epicatechin, procyanidin B2, catechin), are believed to be absorbed mostly by passive
diffusion (based on tests in Caco-2 cells) [82–84].

The hypothesis that sodium-glucose transport, notably the protein known as “sodium-
glucose-linked transporter 1 (SGLT1)”, actively takes up specific glycoside polyphenols
has been proposed [85]. According to these findings, glycosides may be absorbed by
SGLT1 to a small amount before being re-secreted into the digestive system, or they may
be further broken down by cytosolic glucosidase in the body [86]. Another approach
for polyphenol absorption is the use of monocarboxylic acid transporters to facilitate
the transfer of polyphenolic substances into enterocytes (MCTs). To be recognized as
an absorption substrate, a polyphenol must contain an attached carboxylic acid group
of a monoanionic nature as well as a side chain with a nonpolar nature or an aromatic
group with a hydrophobic nature [87,88]. MCTs have been shown to take up a range of
polyphenols, such as caffeic and ferulic acid (usually utilizing Caco-2 cell models) [89].

4.1.3. Effect of Microbial Fermentation in the Colon

While some nutritional flavonoids are taken in the small intestine, the majority are
taken in the intestinal tract, where the intestinal microbiota additionally degrades the decon-
jugated type metabolites and related compounds into freely accessible compounds such as
phenolic acids, which are subsequently absorbed [90]. Bacteria may have an essential role
in the breakdown of plant polyphenols and phase I/II metabolism conjugates, which are
usually discharged by enterohepatic recirculation. Glycosylation, hydroxylation, demethy-
lation, deconjugation, ring cleavage (typical of the C-ring), hydrolysis, epimerization, and
chain-shortening processes are among the routine occurrences [88,91].

4.1.4. Metabolism in the Enterocytes

Most polyphenols are supposed to be absorbed in the small intestine, where they
are commonly processed by phase II enzymes before they enter systemic circulation [74].
After they have been extensively captivated by the intestinal epithelial cells, before in-
flowing into the systemic flow, they are subjected to phase II enzymatic detoxification,
which results in the creation of various conjugated harvests. These include sulfates pro-
duced by the action of sulfotransferases (SULTs), glucuronides produced by the action of
uridine-5′-diphosphate glucuronosyltransferases (UGT), and some methylated derivatives
produced by catechol-O-methyltransferase (COMTs) action [19,92]. Aspects of polyphenol
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bioavailability and accumulation in tissues are also strongly related to the action of some
proteins, mainly “multidrug resistance-associated proteins” such as MRP-1/MRP-2. These
are efflux transporters that are ATP-dependent for their action, and together, they are
referred to as phase III metabolism [93]. Aglycones undergo further phase II metabolism
after being oxidatively degraded in hepatocytes, particularly in the Golgi apparatus and
the peroxisome [92,94].

4.1.5. Distribution in Body and Excretion

Polyphenolics can be carried in the bloodstream in three different ways: (1) in free
form, (2) when coupled to proteins, and (3) when lipoprotein (lipids)-bound. Polyphenols
appear to be coupled to proteins in most cases [95,96]. In the end, via the portal blood flow,
they make their way into the liver, where they move through a second phase of metabolism
(phase II) before entering the systemic blood flow and peripheral bodily tissues, where they
are eliminated by the kidneys [97].

Polyphenols are believed to mostly be excreted through urinary excretion, espe-
cially those with greater hydrophilicity. The percentage of polyphenols retrieved in
urination (including conjugates) varies greatly, with gallic acid and isoflavones having
the largest amounts (over 60%) of polyphenols recovered [19,98,99]. Figure 6 shows a
schematic diagram of the route of absorption, metabolism, and excretion of polyphenols,
and Table 2 shows a summary of the most prevalent dietary polyphenols and their major
colonic metabolites.
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Table 2. The most prevalent dietary polyphenols and their major colonic metabolites.

Polyphenol Class Metabolites Bioavailability References

Anthocyanins

Catechol
Glucunoride conjugates
Hydroxyhippuric acid

Methyl conjugates
Propionic acid

Protocatechuic acid
Pyrogallol

Sulphate conjugates
Syringic acid
Vanillic acid

Absorption: A minor amount of glycosylated anthocyanin
product is immediately absorbed in the gut, resulting in

maximal plasma concentrations ranging from 14 to 592 nmol/L
at 4–5 h after intake (doses: 68–1300 mg).

Metabolism: Through glucosidase activity, the gut bacteria
hydrolyze anthocyanins. Cleavage of the C3-ring breaks down

the aglycones, which are then metabolized into various
phenolic and aldehydic components.

Excretion: Urinary excretion is estimated to be between 0.03%
and 4% of the ingested dosage, with elimination

half-lives of 15–3 h.

[92,100–103]

Phenolic acids

Dihydrocaffeic acid
Feruloylglycine

Dihydrofeluric acid
Hydroxybenzoic acid

Vanillic acid
Hippuric acid

Absorption: Approximately 30 min after consumption, the
maximal plasma concentration level is attained, and this is

because its maximum absorption occurs in the small intestine.
Metabolism: These chemicals are metabolized and circulated
in the body as glucuronate, sulfate, and methylated metabolites

with varying degrees of bioactivity.
Excretion: Urinary excretions account for roughly 40% of total

consumption, with excretion peaking after 8 h.

[92,100,104,105]

Flavonols
Hydroxyphenylacetic derivates

Protocatechuric acid
Propionic acid

Absorption: Small intestine absorption is poor.
Metabolism: The flavonol skeleton is broken down by gut

microbiota microbial enzymes, resulting in the production of
low-molecular-weight polar metabolites.

Excretion: The clearance of epicatechin metabolites relies
heavily on urine excretion.

[92,100,106]

Flavan-3-ols and
Proanthocyanidins

Benzoic acids
Hippuric acids

Phenilvalerolactones
Phenylacetic acids

Phenylpropionic acids
Phenylvaleric acids

Absorption: The small intestine absorbs between
8 and 17 percent of monomeric-3-ols.

Metabolism: The leftover unabsorbed portion reaches the
other end of the large intestine practically intact, and their gut

bacteria cause the breakdown of the flavonoid skeleton,
producing several low-molecular-mass metabolites.

[19,92,100,107]

Ellagitanninis
Dimethyl-ellagic acid

Urolithin A and B
Urolithin D

Absorption: Ellagitannins are hydrolyzed in the
gastrointestinal lumen after intake, yielding a

free form of ellagic acid.
Metabolism: The gut microbiota degrades ellagic acid in the
large intestine, resulting in a variety of derivative chemicals

known as urolithins, all of which have the same nucleus.
Urolithins are substantially absorbed and metabolized as

glucuronidated and sulfated products by
hepatic and intestinal cells.

[92,108,109]

Stilbenes
3,4′-dihydro-trans-stilbene

Dihydroresveratrol
3,4′-dihydroxybibenzyl

Absorption: The upper gastrointestinal tract
absorbs resveratrol.

Metabolism: Enterocytes and hepatocytes both metabolize it,
producing glucuronide and sulfate forms.

[92,100,110–114]

5. Role of Vascular Endothelium in the Regulation of Vascular Homeostasis

A monolayer of cells produces the endothelium, which makes up the interior of blood
vessels. Vascular endothelium regulates the tone and homeostasis of the vasculature, as well
as the morphological changes that occur in pathological circumstances. The endothelium
regulates the balance of opposing processes such as vasodilation and constriction, pro-
coagulant and antithrombotic actions, and cell proliferation and apoptosis [115,116].

Endothelial cells minimize the interaction of the bloodstream with the basal pro-
thrombotic arterial wall due to their selective position [117]. The primary function of
Endothelial cells is to regulate vascular tone by producing vasodilator and vasoconstrictor
chemicals. The endothelial NO synthase (eNOS) enzyme produces NO from L-arginine,
exerting a vasodilatory effect. NO can easily diffuse into the cells of vascular smooth
muscle, where it triggers guanyl cyclase, thus accumulating cyclic guanosine monophos-
phate (cGMP), which ultimately activates the protein kinase G and causes endothelial
vasorelaxation (Figure 7). The endothelium-derived hyperpolarizing factor (EDHF) plays
its role in vasodilation by targeting the K+ channels in the blood vessels. Furthermore,
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prostacyclin (PGI2) produced during the cyclooxygenase (COX) pathway has vasodilatory
effects. Some other factors can be produced by the endothelium having vasoconstrictive ef-
fects on blood vessels such as angiotensin II (Ang II), endothelin-1 (ET-1), and thromboxane
A2 (TXA2) [15].

Figure 7. Normal regulation of vascular homeostasis. Vascular homeostasis is regulated in part
by endothelium-derived NO. The endothelial NO synthase (eNOS) enzyme produces NO from
L-arginine, exerting a vasodilatory effect. NO can easily diffuse into the cells of vascular smooth
muscle, where it triggers guanyl cyclase, thus accumulating cyclic guanosine monophosphate (cGMP),
which ultimately activates the protein kinase G and causes vasorelaxation in endothelial.

Regarding blood–tissue contact, the endothelium does play a crucial role, interacting di-
rectly with a variety of circulating substances, including antioxidants, oxidized LDLs, and pro-
inflammatory cytokines such as tumor necrosis factor (TNF) and interleukins (IL) [115,116].
These variables can cause vasomotricity or the manufacturing of endothelial agents like
nitric oxide (NO). Their role in a variety of physiological processes has been reported to
influence biological processes such as the apoptosis, proliferation, and migration of endothe-
lial cells [15,118,119]. Thus, endothelial dysfunction can have several detrimental effects
on vascular cells and surrounding tissue, resulting in the development of cardiovascular
disorders such as atherosclerosis and hypertension [120].

Diets like the Mediterranean diet have been linked to better cardiovascular health [121],
which might be due to the high consumption of polyphenol-rich drinks and foods, as well
as fruits and vegetables. Polyphenol-rich foods, including red wine, chocolate, green tea,
and berries, also help to promote cardiovascular health [122,123]. Polyphenols have been
linked to improving cardiovascular health in various ways. Their advantages include an
improvement in lipid profiles. They also have direct effects on endothelial cells and have
anti-atherosclerotic, anti-hypertensive, and anti-inflammatory properties (Figure 8).
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6. Pathophysiology: Oxidative Stress and CVD

In healthy cells, antioxidant defense systems such as superoxide dismutase (SOD), cata-
lase (CAT), and glutathione reductase (GSR) limit the generation of radicals during various
physiological activities such as metabolism and cellular respiration [1,124,125]. Long-term
exposure to stress [126], pollution [127], smoking, and excessive drinking [128,129], as well
as aging [130], can cause an imbalance of oxidative species (also known as reactive oxygen
species; ROS) in comparison to endogenous defenses, resulting in oxidative stress [1,124].
ROS can bind to proteins, lipids, and DNA, thus oxidizing them and changing a healthy
state into a diseased one. An increase in the level of ROS results in oxidative stress, and the
cell’s antioxidant system may become overburdened, endangering the health and integrity
of the cell [131].

A similar pathological mechanism, atherosclerosis, underpins cardiovascular illnesses
such as coronary artery disease, ischemic stroke, and peripheral artery disease [132].
Atherosclerosis is a multifactorial, degenerative ailment of the medium and great conduit
arteries that is fueled by lipid buildup in the artery wall [133,134]. The risk factors of this
disease include old age, chronic smoking, hyperlipidemia, hypertension, and a history of
diabetes. The atherogenic process is tightly linked to inflammation and endothelial dysfunc-
tion [132,135]. Endothelial damage due to ROS leads to the development of atherosclerosis,
which may result in myocardial infarction and ischemic reperfusion [136–138]. Oxidative
stress and ROS target all body cells, especially smooth muscle cells and endothelial cells,
with the help of neutrophils, macrophages, and platelets [139].

ROS has an impact on a variety of endothelium-related processes [2]. The most well-
known is endothelium-dependent vasorelaxation, which has long been marked as a key
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component in the prognosis of cardiovascular health, which is harmed by a decrease in
NO bioactivity and/or bioavailability [140,141]. There are some mechanisms responsible
for reduced NO bioavailability. This can either be caused by a decreased expression of the
enzyme responsible for the NO production in endothelial cells, i.e., endothelial NOS (eNOS),
or a decrease in the existing NO owing to ROS destruction, among other things [141]. NO
is a powerful vasodilator that also inhibits the activation and adherence of inflammatory
cells [142].

In the vasculature, there are several sources of ROS, including mitochondrial enzymes
such as NADH/NADPH oxidase and xanthine oxidase [141,143]. Endothelium-derived
NO reacts quickly with the superoxide radical (O2

−) to create peroxynitrite (ONOO), a
potent oxidant that is equally damaging to endothelial cells [144]. In this respect, studies
have shown that the continued contact of endothelial cells with oxygen and different
oxidants like hydrogen peroxide, ONOO, and/or oxidized LDL (ox-LDL) causes epithelial
damage by promoting apoptosis, leading to cell damage and endothelial cell dysfunction,
which has been reported as a critical early step in atherogenesis. Atherosclerotic lesions
can arise from leaky and dysfunctional endothelium [132,133].

LDL normally diffuses easily in both directions across the compromised endothelium.
Oxidative stress converts LDL to ox-LDL by peroxidation, which has cytotoxic effects and
can cause inflammation [145]. The first step in the formation of atherosclerotic plaques is
the oxidation of LDL and its subsequent passage through the endothelial barrier. Further-
more, the interaction of hypercholesterolemia, oxidative stress radicals, and inflammatory
molecules creates an environment conducive to severe endothelial damage, which is a
characteristic of atherosclerosis development [124,146].

A particular adhesion molecule called VCAM-1, which is crucial for binding mono-
cytes and T cells before they transmigrate into the arterial wall, is produced by wounded
or activated endothelial cells [145]. Reportedly VCAM-1, ICAM-1, and E-selectin enhance
the adherence of leukocytes to the vascular endothelium at the sites of atherosclerotic
lesions, consequently boosting signal transduction cascades [146]. These monocytes de-
velop into macrophages after activation, which then become puffy with the uptake of ox
LDL by scavenger receptor-mediated phagocytosis, resulting in fatty bands in the artery
wall [132,140,147]. Furthermore, lipid-engorged macrophages (foam cells) eventually die
in situ because of necrotic cell death, resulting in the creation of a tender and unstable
core inside the atherosclerotic plaques, which has a high consistency of lipids [148]. This
plaque is stabilized by a protective cap secreted by smooth muscle cells. It consists of a
collagen-rich matrix comprising fibroblasts, which can stop the disease from progressing.
Prolonged inflammation, on the other hand, might result in plaques that are unstable and
prone to rupture [1,148]. Such ruptured plaques cause a fast thrombotic reaction, resulting
in arterial blockage and, depending on the location of the atherosclerotic lesion, potentially
causing heart attacks, ischemic strokes, or peripheral ischemia [133]. Research findings
have linked the plaques in the walls of coronary arteries to chronic atherosclerotic lesions,
which can limit the channel lumen. The current preferred hypothesis is that acute coronary
syndrome (ACS) is caused by a rupture of the fibrous cap of an atherosclerotic plaque,
which facilitates blood contact with extracellular matrix collagen and tissue factors previ-
ously deposited in the plaque, resulting in the formation of a thrombus [149–152]. On the
other hand, increased platelet activation, including the adhesion, secretion, and aggregation
at the site of arterial injury or in atherosclerotic arteries, plays a key part in the etiology of
CVD [153,154]. When an atherosclerotic plaque ruptures, activated platelets can bind to
the endothelium, causing fastening, aggregation, and thrombus development, which leads
to embolism and the constriction of vessels, two features of myocardial infarction [155].

Physiological hemostasis is a natural defense against excessive blood loss that is based
on the creation of a regulated thrombus at the site of the blood vessel injury. Platelets,
the smallest (2–4 m) blood corpuscles, are formed at a rate of 40 × 103/mL/day in the
bone marrow from megakaryocytes and play a key role in hemostasis. Platelets play a
function in hemostasis that extends beyond forming the platelet plug, which also serves
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as the site of fibrin production (at the site of the vessel wall injury), to include a beneficial
influence on vessel wall contraction and participation in clotting responses [8]. Collagen
and tissue factor (TF) located in the sub-endothelial matrix come into contact with the
lowing blood when the endothelium is injured, causing a clot to develop [156]. Denuded
collagen directly promotes platelet pooling and activation, and the denuded tissue factor
starts the synthesis of thrombin, which not only transforms fibrinogen to fibrin but also
activates platelets [150]. The presence of collagen receptors (including integrin a2b1 and
glycoprotein complex GPIb/IX/V) on the platelet surface allows platelets to connect with
the subendothelial layer. Platelet attachment leads them to change shape from discoid to
spherical, resulting in the creation of pseudopodia and the release of chemicals held in
granules (e.g., ADP, P-selectin, von Willebrand factor [vWF], thrombospondin) and, as a
result, platelet aggregation [149,157].

7. Beneficial Effects of Polyphenols on Cardiovascular Disorders
7.1. Polyphenols as Antioxidant Therapy

Antioxidant therapy is becoming better recognized as a strategy for reducing ROS
in the vasculature and, as a result, reducing their harmful effects [158]. Blockers of the
angiotensin-converting enzyme (ACE) that lower circulatory Ang II detoxify in addition to
exhibiting their antihypertensive attributes. In this regard, statins (cholesterol-lowering
drugs) are used for the same intent in addition to their cholesterol-lowering properties
by regulating HMG CoA reductase. Similarly, vitamins E and C are widely used as
dietary supplements in combination with other drugs to reduce oxidative stress [158].
Polyphenols, on the other hand, are gaining attention as possible therapeutic agents for
reducing oxidative stress and thereby protecting people from heart diseases [159,160]. In
the diet, polyphenols are the most prevalent antioxidants, and their consumption is ten
times that of water-soluble vitamin C and one hundred times that of lipid-soluble vitamin
E and carotenoids [15].

Polyphenols have enormous antioxidant features. The presence of catechol groups,
as well as hydroxylation patterns, such as the 3-hydroxy group in flavanols or electron
shortage in anthocyanins, is essential in the antioxidant actions [161,162]. The presence
of a catechol ring in the structure of various polyphenols has been positively linked with
their antioxidant activity, as demonstrated by the ferric-reducing ability power (FRAP).
In one study, further increases in FRAP were achieved by using aliphatic substitution or
a double bond in the aliphatic group conjugated with the catechol ring; there were no
benefits from adding more OH groups [163]. Polyphenols may serve as antioxidants by
scavenging free radicals in a variety of ways. They exert their antioxidant potential either
by inhibiting or potentiating the activity of various enzymes or by direct interaction with
free radicals [164]. ROS that can be extremely toxic to lipids, proteins, and DNA include
superoxide (O2

−), hydrogen peroxide (H2O2) [165], and hypochlorous acid (HOCl) [166],
which are all immediately scavenged by polyphenols like quercetin and catechin. In this
respect, ROS can be made less reactive by the phenolic core acting as a buffer and collecting
electrons [167]. Polyphenols can have indirect effects on cellular detoxification systems such
as catalase (CAT), superoxide dismutases (SODs), and glutathione peroxidases [168,169].
Polyphenols can also inhibit enzymes that produce ROS, such as xanthine oxidase and
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase [170,171]. In addition
to the production of ROS, there is an increase in the quantities of free metal ions. Due to
their low redox potentials, flavonoids can chelate these metal ions, which prevents the
production of free radicals. Research findings have indicated that quercetin is the flavonoid
with the best capacity to chelate metal ions [171–173].

Polyphenols are known to be potent antioxidants due to their health advantages.
Phenolic compounds may easily donate an electron or H atom from an aromatic hydroxyl
group to a free radical, effectively neutralizing its effects. It all comes down to how the
functional groups are arranged in the polyphenol’s core structure [174]. Although polyphe-
nols have been shown to have good antioxidant activity in vitro, their antioxidant capacity
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in vivo is lower than it is in vitro. Several variables play a role, including the metabolism of
polyphenols into compounds with lower antioxidant activity. By inhibiting the –OH group,
metabolism reduces polyphenols’ ability to scavenge radicals [1,175]. Because proteins, uric
acid, vitamin C, and thiols create an antioxidant barrier strong enough to overlook phenolic
contribution in plasma, the polyphenolic antioxidant contribution is low [176]. Taking
this into account, the theory that eating polyphenol-rich foods boosts plasma antioxidant
capacity is debunked. Other dietary components absorbed alongside polyphenols, such
as vitamins C and E, may be to blame for this increase [177]. The recognized interaction
between fructose and uric acid is more likely to cause the antioxidant effect of a fruit- and
vegetable-rich diet [178].

7.2. Polyphenols and Vascular Tone

The significance of endothelium-produced nitric oxide (NO) in controlling vascular
tone and blood pressure is well understood. The central mechanism of NO action is
the activation of the cGMP-protein kinase G cascade in artery smooth muscle cells. The
potassium channels are triggered when the cascade is activated, resulting in membrane
hyperpolarization and preventing intracellular calcium influx, which induces vasodilation.
On the other hand, protein kinase G reduces smooth muscle vasoconstriction in arteries by
phosphorylating myosin light chains [179,180]. NO generation is primarily responsible for
the polyphenols’ effect on the endothelium [181–183].

After ingesting red wine or polyphenols (1 g/kg body weight) circulating NO concen-
trations reach 30 and 40 nM after 30 min in adults. A decrease in blood pressure (11 mmHg)
and an increase in heart rate have also been observed [184]. Research findings have shown
that olive oil can help hypertensive people lower their blood pressure [185], whereas red
wine polyphenolic compounds (RWPC) can produce the endothelium-dependent relax-
ation of isolated arteries such as the rat’s mesenteric artery or aorta [181]. In addition, red
wine polyphenols, polyphenols from grape skin, and quercetin exhibit antihypertensive
effects. In this respect, short-term oral treatment with RWPC lowers blood pressure in
normotensive rats. This hemodynamic effect was correlated with enhanced endothelium-
dependent relaxation and the induction of the genes responsible for inducible NO synthase
and COX-2 inside the artery wall, thus contributing to the maintenance of agonist-induced
contractility [186]. The higher synthesis of NO in consequence to the impact of polyphenols
found in wine extract is linked to the calcium ion-dependent pathway, among several
other things [187]. Resveratrol and quercetin cause an increase in the intracellular ion
concentration of (Ca2+) ions through the opening of potassium channels or the inhibition
of Ca2+ ATP-ase within the endoplasmic reticulum of endothelial cells [188,189]. Simi-
larly, delphinidin, an anthocyanin present in natural foods like red wine, can activate
endothelial cells. This anthocyanin raises intracellular protein-Ca2+ and tyrosin phosphory-
lation, which controls eNOS. Tyrosine kinases and phospholipase C are both involved in
Ca2+ signaling [190]. Furthermore, RWPC might even enhance endothelial NO production
via the redox-responsive PI3/Akt channel, according to another report [191].

In addition, the effect of polyphenolic compounds on endothelial cells in preventing
cardiovascular diseases is not limited to the stimulation of NO production. Because of the
increased production of PGI2, the vasodilating effect is also boosted. In vitro studies on
human endothelial cells exposed to the action of cocoa extract rich in procyanidins at a
concentration of 2 mg/L and in vivo studies on procyanidins contained in chocolate admin-
istered to healthy volunteers showed that the ratio of cysteinyl leukotrienes (LTC4, LTD4,
LTE4) to PGI2 can be reduced by 58 and 52%, respectively [192]. In contrast, isolavonoids,
particularly genistein, limit the procoagulant action of vascular endothelium by, for exam-
ple, lowering ET-1 expression [193]. Finally, polyphenols can affect endothelial cells’ NO
levels by affecting PDE-2 and PDE-4, two phosphodiesterases [194,195]. Taken together,
plant polyphenols may have complex effects on the circulatory system’s NO balance, which
could account for their antihypertensive effects [196].



Molecules 2023, 28, 6403 18 of 31

7.3. Polyphenols and Atherosclerosis

Atherosclerosis is the hardening and narrowing of the arteries, which is triggered by
the buildup of lipids, cholesterol, and other substances in and on the artery walls over time.
This then progresses into the endothelium, where they are oxidized by endothelial smooth
muscle cells and activated macrophages [197,198]. ROS and reactive nitrogen species (RNS)
production can enhance LDL oxidation. This causes a buildup of macrophages in this area,
which clear oxidized LDL and transform them into foam cells. Endothelial dysfunction,
as well as the concentration of monocytes/macrophages in the vascular intima under the
influence of chemokines and adhesion molecules, foam cell development, and vascular
smooth muscle proliferation, are all linked to the inflammatory backdrop of atherosclerotic
lesions [199]. There is also a rise in extracellular matrix buildup surrounding the spot of
inflammation, leading to plaque development which blocks the vessel, resulting in the loss
of the blood artery’s natural capacity to relax [198,199].

Published research has dealt with the potential benefits of polyphenols on atherosclero-
sis. Within this context, various studies have shown that RWPC and purple grape juice slow
down atherosclerosis onset and progression through their anti-LDL oxidation, antioxidant
properties, and inhibition of platelet aggregation properties, as well as an increase in HDL
concentration and delay of vascular smooth muscle cell (SMC) propagation. In conclusion,
polyphenols may be able to maintain “healthy blood vessels” by producing NO, which is
important for vascular tone [200–202]. Recently, researchers found that giving rabbits red
wine polyphenolic compounds (RWPC) orally reduces neointimal growth, lipid buildup,
and inflammation in their iliac arteries. This is because RWPC has an anti-inflammatory
effect [203]. In addition, when hamsters are given red wine, they have less neointimal
hyperplasia, which is caused by a decrease in a protein that helps monocytes enter the
artery wall. This is one of the ways that the artery reopens [204].

7.4. Polyphenols and Anti-Platelet Action

The excessive activation of platelets is linked to several long-term vascular diseases.
This is due to the many adhesion proteins in the granules that, when highly activated,
can lead to different types of thrombotic diseases [205,206]. In this respect, numerous
important things happen in the process of platelet activation. One of them is the conversion
of arachidonic acid to thromboxane A2, an arachidonate metabolite, through the cyclooxy-
genase pathway [207]. In this context, polyphenols are valuable from the perspective of
platelet activation, which includes the adhesion and aggregation of platelets, due to the
antioxidant effect of polyphenols. The first step in platelet activation involves platelets
sticking to the collagen in the body; as a result, the platelets become activated. In this
respect, proteins like fibrinogen and thrombospondin act as adhesion proteins, and platelet
receptors work together to help platelets stick together, leading to the start of a signaling
process inside cells and the activation of platelets [208]. However, it has not been fully
explained how polyphenols make platelets less likely to stick together. It turns out that
extracts rich in polyphenolic compounds, like grape seed and Yucca schidigera extracts,
can help stop platelets from sticking to collagen. These extracts contain resveratrol and its
derivatives, which make platelets less likely to stick together when they are stimulated by
thrombin [153].

Thromboxane A2 (TXA2) is the key compound that is formed from the breakdown of
arachidonic acid (ARA). It has some surface receptors that make platelets clump together.
Evidence from the literature has indicated that the anti-aggregative effect of polyphenols is
linked to numerous complicated molecular processes [209]. The capacity of polyphenols
to hinder the enzymes involved in the formation of TXA2, COX, and LOX is the primary
method by which they exert their anti-platelet aggregate effects on platelets [209,210].
However, they are also antagonists of the thromboxane A2 receptor, which suggests that
flavonoids, through their indirectly suppressive effect on COX1, can lower TXA2 levels
in the blood [211]. In an in vivo dog model, researchers investigated the effects of grape
juice and red and white wine on platelet aggregation activity. The results revealed the
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antiplatelet effects of red wine and grape juice, while white wine does not yet have this
impact [212].

Flavonoids have been shown to lower platelet aggregation because collagen metabolism
is altered by these compounds, in addition to their interference in arachidonic acid metabolism.
This is expressed as the antiplatelet action of collagen in the early stages of the aggregation
of platelets. Moreover, the oxidative stress results in the aggregation of platelet in response
to collagen via the activation of the inositol pathway, boosting intracellular calcium levels
in the process. Flavonoids such as quercetin, catechin, and kaempferol, among others, have
been shown to decrease oxidative stress by impeding the enzyme NADPH-oxidase [205].

7.5. Polyphenols as Anti-Inflammatory Agents

Inflammatory response to injury is a complicated biotic process that happens in
response to a damaging stimulus. Different enzymes, including cyclooxygenase (COX),
lipoxygenase (LOX), tyrosine kinase (TK), phospholipase A2 (PLA2s), and protein kinase
C), are responsible for the proper function of an inflammatory response. Certain flavonoids
have been demonstrated to act directly on several such enzymes, blocking them and
therefore directly affecting inflammation [213,214]. One of the most important elements
in preventing and treating chronic inflammation, according to epidemiological research,
is nutrition. Through ex vivo and in vivo models, researchers have discovered that some
flavonoids exert anti-inflammatory effects. One of the key bodily functions that flavonoids
have an impact on is the synthesis of prostaglandins. Hesperidin and diosmin can reduce
the generation of prostaglandins, according to several in vivo studies [215].

The mobilization of leukocytes is known as a critical stage in the progression of
inflammation that occurs in cardiovascular illnesses and other conditions. The production
of arachidonic acid ultimately results in the generation of cytokines (IL-1) and chemokines
(IL-8) by neutrophils, which is mediated by both COX and LOX. In this regard, quercetin, a
polyphenol, is especially effective in suppressing the formation of prostaglandins (PGs),
leukotrienes (LT), and thromboxanes (TXA) by preventing the enzymes COX and LOX,
respectively [216–218]. Evidence from numerous ex vivo experiments shows that some
flavonoids, for example, bilobetine, morelloflavone, amentoflavone, and those found in
Sophora flavescens, exert their effect by inhibiting the production of arachidonic acid [219].
Furthermore, resveratrol is regarded as a molecule with anti-inflammatory properties, as it
inhibits the production of PGs [220]. Table 3 lists the key cardioprotective mechanisms of
action behind the beneficial effects dietary polyphenols have on human health.

Table 3. Cardioprotective mechanisms of action of polyphenols.

Beneficial Effect Specific Mechanism

Antioxidant Generation of stable flavonoid radicals, increasing the protection of
antioxidant systems and the elimination of ROS [83–103].

Antihypertensive Modulate the RAAS and prompt an increase in the endothelium-derived nitric
oxide concentration [125–143].

Anti-atherogenic

Through their antioxidant action, the diminished oxidation of LDL, and
antiplatelet clumping action, they inhibit the formation and progression of
atherosclerosis. They also, inhibit the oxidative degradation of lipoproteins

and decrease the circulatory lipid levels [123–129].

Antiplatelet Inhibitory effect on excessive platelet activation and produce decreased
platelet adhesion [130–137].

Anti-inflammatory
Blocking inflammatory enzymes (COX, LOX, TK, PLA2s, protein kinase C),

interfering with the production of prostaglandins, and suppressing the
formation of PGs, LT, and TXA [159–166].

8. Interactions between Polyphenols and Nutrients and Drugs

Flavonoids form protein complexes through several nonspecific ways, including hydro-
gen bonds, hydrophobic interactions, and covalent bonds [221–223]. By forming complexes
with proteins, polyphenols can alter their function, structure, solubility, hydrophobicity,
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thermal stability, isoelectric point, and susceptibility to digestive enzymes [223]. These
modifications can influence digestion and the utilization of dietary proteins. In addition,
polyphenols may affect the structure of digestive enzymes such as amylases, proteases,
and lipases, disrupting their function and causing biochemical processes to malfunction.
Furthermore, polyphenols can modify the processes of drug absorption, distribution, and
metabolism. This is achieved via two mechanisms: the inhibition of P450 activity, which
can occur through competitive, non-competitive, or uncompetitive enzyme inhibition, and
the reduction of P450 activity. These alterations in P450 activity directly impact the clinical
outcomes of drugs [221].

Similarly, polyphenols interact with reactive oxygen species, free radicals, and many
other chemical compounds within their immediate environment due to their high concen-
tration of active functional groups. In some cases, specific interactions can have adverse
effects on human health [224]. It is critical to consider the interaction between polyphenols
and pharmacological agents, namely the iron-containing preparations used to treat anemia.
This interaction can significantly affect drug metabolism and pharmacokinetics and may
modify pharmaceutical therapeutic effects [225]. For example, consumers acknowledge that
grapefruit juice and herbal infusions are contraindicated for consuming pharmaceutical
medications concurrently. These modifications can cause an increase in treatment effec-
tiveness or a decrease in effectiveness. Furthermore, polyphenols have been demonstrated
to have a significant effect on the drug-metabolizing enzymes involved in phases I and
II of drug metabolism, although the fundamental rationale for such recommendations
remains undisclosed; these enzymes include cytochrome P450, glutathione S-transferase,
UDP-glucuronosyltransferase, sulfotransferase, N-acetyltransferase, methyltransferase,
epoxide hydrolase, and NAD(P)H, a quinone oxidase transporter [223–225].

9. Adverse Effects of Polyphenols

The human diet contains a vast array of polyphenolic chemicals, about 8000 [226].
However, it has been found that consuming excessive amounts of polyphenols can lead to
side effects [227]. In this regard, green tea extracts that include the well-known catechin
(−)-epigallocatechin-3-gallate (EGCG) are marketed with the intention of facilitating weight
loss; however, hepatotoxicity has been reported in a subset of individuals who consumed
the product [228]. Similarly, chlorogenic acid, a prevalent polyphenol found in coffee,
has been associated with numerous health advantages, as well as cytotoxic and genotoxic
effects [229]. Polyphenols have been found to elicit mutagenic effects, promote the devel-
opment of cancer, and produce genotoxicity. Within this context, multiple investigations
have demonstrated that flavonoids engage in interactions with topoisomerase II and II,
resulting in the induction of DNA cleavage. The present paper provides evidence that
genistein exhibits an augmenting effect on the DNA cleaving activity of both human topoi-
somerase II and II, as reported in a previous study [230]. According to prior studies, it has
been observed that (−)-epigallocatechin gallate (EGCG) [231] exhibits redox-dependent
characteristics as a topoisomerase II toxin through the creation of covalent linkages with
the enzyme. Moreover, numerous studies have shown that polyphenols exert inhibitory
effects on topoisomerase via multiple pathways. Research findings have indicated that
topoisomerase II poisons have an impact on EGCG, a compound that is influenced by redox
reactions. The toxins belonging to the kaempferol and quercetin classes have mechanisms
of action that are dependent on redox processes, as well as additional action mechanisms.
Research findings have shown that the effects of (−)-epicatechin gallate (ECG) and (−)-
epicatechin/EC/ are statistically insignificant [232].

Although polyphenols exhibit potent antioxidant effects, they may demonstrate proox-
idant characteristics in the presence of elevated amounts of metals, pH, and oxygen. Specif-
ically, copper and iron contribute to the heightened prooxidant activity of EGCG. The
chemical exhibits prooxidant characteristics through the formation of a redox complex
with either a transition metal ion or a phenoxyl radical [233]. Phenoxyl radicals produce
reactive oxygen species (ROS) such as O2• and H2O2 in response to the presence of oxygen.
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Consequently, these chemical substances induce DNA damage, lipid peroxidation, and
various signs of molecular oxidation. It has been proposed that the potential pro-oxidant
impacts of polyphenols, specifically regarding EGCG, elicit noteworthy responses [234].
Previous studies have noted that the oxidation of polyphenols possessing small molecular
structures, such as dihydroxycinnamic acids, leads to DNA incision or lipid peroxida-
tion [233]. Zeng et al. [235] conducted a study that revealed that compounds possessing
dihydroxyl groups in the ortho-conformation, such as caffeic acid and chlorogenic acid,
as well as those containing 4-hydroxy-3-methoxyl groups, such as sinapic acid and ferulic
acid, induced a significantly higher level of DNA damage compared to compounds lacking
these functional groups.

10. Materials and Methods
10.1. Literature Search and Methodology

In this current review on Plant polyphenols and their potential benefits on cardiovas-
cular health, different databases, including PubMed, Google Scholar, NIH National Library
of Medicine, Scopus, and Web of Sciences were surveyed to retrieve data using a series of
search terms, namely “cardiovascular system”, “Coronary artery disease”, “Polyphenols”,
“vascular Homeostasis”, “Vascular endothelium”, “Oxidative stress”, “polyphenols as
antioxidants”, and “Atherosclerosis”, without any publication date limit. Research articles
and reviews were included, whereas conference abstracts and non-English publications
were excluded.

10.2. Illustrations and Figures

The chemical assemblies were drawn using ChemDraw 22.0.0 with the assistance
of PubChem. The figures demonstrating mechanisms of action were drawn in Microsoft
PowerPoint 2019 and Biorender (https://biorender.com/, accessed on 25 May 2023).

11. Conclusions

Food and plant-derived natural substances are attractive because they are relatively
safe compared to synthetic drugs, affordable, and widely accessible. At present, people
consume natural food products obtained from fruits and vegetables and other food items
to treat and manage cardiovascular diseases. These food items contain natural compounds,
especially polyphenols, which exhibit antioxidant properties among other things. There is
uncertainty regarding the precise physiological actions of these substances, particularly
regarding their effects on the cardiovascular system. In summary, the findings presented
in this work show that significant amounts of polyphenols can be found in fruits, espe-
cially berries, and drinks such as tea and coffee. Similarly, substantial amounts of these
potential cardioprotective compounds are present in vegetables, leguminous plants, and
grains. In addition, the findings presented in this paper demonstrate the anti-atherosclerotic
properties of dietary polyphenols, including improvements in endothelium and vascular
function, hemostasis and platelet function, and inflammatory biomarkers. Long-term di-
etary intervention research comparing the effectiveness of various dosages of conventional
pharmaceuticals to polyphenol treatments in a range of clinical populations will increase the
clinical acceptance of polyphenol therapies. The scientific community would benefit greatly
from more research into the mechanisms underlying in vivo bioavailability in humans and
the safety implications of consuming foods high in polyphenols. Although there have been
some debates over its absorption, oral polyphenol consumption has shown encouraging
results as a supplemental treatment option in lowering atherosclerosis development in
at-risk patients. However, more extensive studies involving human subjects are required to
establish the efficacy and safety of dietary polyphenols for long-term use in treating human
diseases such as cancer and cardiovascular diseases.

There are numerous mechanisms through which polyphenols can influence the com-
plex pathophysiology of cardiovascular disease (CVD); these include decreasing blood
pressure, reducing cholesterol levels, acting as antioxidants, mitigating inflammation,

https://biorender.com/
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inhibiting cell proliferation and angiogenesis, promoting endothelial function recovery, pre-
venting thrombosis, and providing protection for the myocardium, among other functions.
Nevertheless, there are several significant challenges that prevent the clinical utilization of
polyphenols. These include dosage, specificity, potency, practicality, and the potential short-
or long-term side effects on human subjects. Although natural polyphenols are generally
considered to be safe, their potential adverse effects depend on their distribution and target
cells within the body. It is possible for certain polyphenols to interact with conventional
drugs as well as nutrition, thereby posing potential safety risks. Future animal experi-
ments, large-scale cohort studies, and human intervention trials are required to address
these challenges.
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