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Abstract: Filipendula ulmaria, commonly known as meadowsweet, is a wild herbaceous flowering
plant that is widely distributed in Europe. A range of salicylic acid derivatives and flavonol glycosides
have been previously associated with the antirheumatic and diuretic properties of F. ulmaria. In
the present work, a hydroalcoholic extract from F. ulmaria aerial parts was extensively profiled
using an efficient NMR-based dereplication strategy. The approach involves the fractionation of the
crude extract by centrifugal partition chromatography (CPC), 13C NMR analysis of the fractions,
2D-cluster mapping of the entire NMR dataset, and, finally, structure elucidation using a natural
metabolite database, validated by 2D NMR data interpretation and liquid chromatography coupled
with mass spectrometry. The chemodiversity of the aerial parts was extensive, with 28 compounds
unambiguously identified, spanning various biosynthetic classes. The F. ulmaria extract and CPC
fractions were screened for their potential to enhance skin epidermal barrier function and skin renewal
properties using in vitro assays performed on Normal Human Epidermal Keratinocytes. Fractions
containing quercetin, kaempferol glycosides, ursolic acid, pomolic acid, naringenin, β-sitosterol, and
Tellimagrandins I and II were found to upregulate genes related to skin barrier function, epidermal
renewal, and stress responses. This research is significant as it could provide a natural solution for
improving hydration and skin renewal properties.

Keywords: Filipendula ulmaria; centrifugal partition chromatography; NMR-based dereplication;
liquid chromatography mass spectrometry; epidermal barrier renewal

1. Introduction

Filipendula ulmaria (L.) Maxim., syn. Spiraea ulmaria L. (Meadowsweet) is a wild herba-
ceous flower belonging to the Rosaceae family and is largely distributed on wet European
roads [1–3]. The medicinal use of F. ulmaria dates back to the late 16th and 17th centuries [4]
and has been well-documented in the British Herbal Pharmacopoeia [5,6] as a stomachic,
mild urinary antiseptic, antirheumatic, and antacid. In addition, the British Herbal Com-
pendium [7] describes the action of the Filipendula herb as anti-inflammatory. The herb and
its flowers have been traditionally used as a diuretic and antirheumatic in the treatment
of inflammatory diseases. A number of secondary metabolites belonging to phenolic and
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flavonol glycosides, namely spiraeoside, hyperoside, rutoside, xyloglycoside of methyl
salicylate, and the rare salicylic aldehyde, have been previously reported in Filipendula
species [8–10]. These secondary metabolites and related phytochemical structures could
be responsible for the biological properties described above. Interestingly, recent studies
have reported that α-hydroxy acids, salicylic acid, and its derivatives are responsible for
improving skin hydration by gently peeling the corneocytes of the upper epidermis and
softening the skin while displaying a significant decrease in stratum corneum cohesion as
well as minimally disrupting the skin barrier to water diffusion [11–13]. The aim of the
present study is to delve deeper into the chemical profile of F. ulmaria with a particular
focus on its ability to improve skin barrier functions. The development of modern ana-
lytical platforms based on nuclear magnetic resonance (NMR) or high-resolution liquid
mass spectrometry (LC–MS) have enabled faster detection, identification, and quantifica-
tion of chemically diverse natural products [14–16]. To support the chemical profiling of
complex extracts, many dereplication strategies involving computer tools and metabolite
databases have also been deployed [17,18], mainly to overcome the repetitive isolation
of known compounds and accelerate the identification process [19–22]. Here, a unique
dereplication workflow was used to chemically profile F. ulmaria aerial parts, combining
centrifugal partition chromatography (CPC), NMR, hierarchical clustering analysis (HCA),
and a natural metabolite database [23]. CPC is a rapid liquid–liquid separation technique
that enables the fractionation of complex metabolite mixtures across a large polarity range
without any loss of biomass and with a high injection capacity at the multi-gram scale.
The fraction series produced by CPC is directly analyzed by 13C NMR. Subsequently, the
complete NMR dataset is aligned in a unified table and submitted to HCA to highlight
statistical correlations between groups of 13C peaks detected in successive fractions, cor-
responding to the carbon skeletons of F. ulmaria metabolites. Metabolite identification
is performed with the help of an NMR database dedicated to small natural molecules,
proposing chemical structures that potentially match with the NMR data clusters observed
on the HCA heatmap. Database proposals are rigorously validated or reoriented towards
the correct solution by the manual interpretation of 2D NMR spectra. This approach pro-
vides a detailed chemical profile without discrimination between chemical classes and
without biomass loss, which means that 100% of the starting extract mass can be recovered
at the end of the identification process under the form of a well-characterized fraction
series. One can also note that the mass quantities obtained by CPC for each fraction are
sufficiently high to perform biological tests in parallel. Over the last years, this procedure
has demonstrated its robustness through applications on natural extracts of various origins
including terrestrial plants, microalgae and macroalgae, or cultured cell extracts of a plant
or microbial species [24–30]. This identification process was completed by high-resolution
LC–MS analysis of the crude extract. The fractions were then screened for their potential to
improve skin epidermal barrier function and skin-renewal properties using appropriate
in vitro assays.

2. Results and Discussion
2.1. Chemical Profiling of the Filipendula ulmaria Extract

The chemical profile of the hydroalcoholic extract of F. ulmaria aerial parts was
deciphered using a dereplication strategy named “CARAMEL” (CARActérisation des
MELanges in French, for mixture characterization), which is based on a metabolomic
workflow combining centrifugal partition chromatography, nuclear magnetic resonance,
and computational treatments [23]. This strategy enables the direct identification of sim-
plified mixtures of secondary metabolites (CPC fractions) without the need to purify
individual constituents.

As a first step, the F. ulmaria extract was fractionated by CPC to produce a series of
fractions without a loss of biomass during separation. A biphasic solvent system of medium
polarity composed of methyl ter-butyl ether, acetonitrile, and water (4/1/5, v/v) was
selected. This system was employed in ascending mode to tentatively separate F. ulmaria-
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specialized metabolites during a single elution step while retaining the most hydrophilic
compounds (mainly simple sugars) in the CPC column. A total of 13 final fractions
were obtained. Their high-performance thin-layer chromatography (HPTLC) profile is
demonstrated in Figure 1.
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Figure 1. Mass distribution and HPTLC profile of the 13 CPC fractions (F1–F13 and crude
extract—(a) 254 nm; (b) 366 nm; (c) Visible after vanillin/H2SO4 reagent spraying).

Total recovery of the F. ulmaria extract mass over fractionation was ~95%. Fractions
F01 to F10, which were recovered during the elution step, represented 41.4% of the extract
mass and exhibited a very high chemical diversity, as revealed by HPTLC. The most polar
fractions, F11–F13, obtained at the end of the fractionation process by the extrusion of the
CPC column, represented 53.2% of the extract mass (w/w). In the second step, all CPC
fractions were directly analyzed by 1D and 2D NMR. The mass of each fraction was largely
sufficient to achieve NMR analyses (with 15 mg each, except 8 mg for fraction F10) while
keeping aside fractions for biological evaluation. Automatic peak picking was performed
on 13C NMR spectra, and the collected peaks were aligned across the fraction series using a
bucketing script. The resulting table was made of 13 columns corresponding to the CPC
fractions and 307 rows corresponding to the chemical shift buckets (∆ 0.3 ppm), for which
a 13C peak was detected in at least one fraction. This table was subjected to HCA for the
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recognition of similarities between groups of 13C NMR peaks detected in adjacent CPC
fractions. In this way, 13C NMR peaks belonging to the same compounds are aggregated as
“chemical-shift clusters” in the HCA heatmap, as illustrated in Figure 2. The deeper the
yellow colour in the map, the higher the intensity of 13C NMR peaks.
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Filipendula ulmaria extract and identification of 28 secondary metabolites.

The NMR chemical shift values for each cluster were submitted to our internal natural
product database, comprising predicted NMR data for natural products (n ≈ 8500 records
in July 2023). Database proposals were then systematically examined for all atom positions
by rigorously scrutinizing experimental values, proton/proton, and proton/carbon correla-
tions from the spectra of CPC fractions (1H, 13C, HSQC, HMBC, and COSY spectra). When
experimental data did not exactly match with predicted data, the chemical structures de-
tected in the extract were further elucidated by the manual interpretation of the NMR data
(Supplementary Data). The NMR results were also cross-checked with LC–MS analyses to
reinforce the identification process (Table 1).
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Table 1. Overview of LC/MS data. The crude extract of Filipendula ulmaria was analyzed in the
negative ion mode. * Also identified by NMR using the CARAMEL approach.

Retention Time
(rt in min) Observed m/z Molecular Formula ∆ppm Tentative Identification

1.6 285.0815 C9H17O10 −2.5 Not assigned
1.8 195.0505 [M − H]− C6H11O7 0.0 Hexonic acid
1.9 191.0555 [M − H]− C7H11O6 −0.5 Quinic acid
2.2 341.1089 [M − H]− C12H21O11 1.5 Saccharose *

4.6 331.0664 [M − H]− C13H15O10 0.0 Mono-O-galloyl-hexoside
isomer 1

4.9 331.0665 [M − H]− C13H15O10 −0.3 Mono-O-galloyl-hexoside
isomer 2

5.1 339.1292 C13H23O10 0.3 Not assigned
5.2 169.0137 [M − H]− C7H5O5 0.0 Gallic acid *

5.4 483.0783 [M − H]− C20H19O14 1.7 Di-O-galloyl-hexoside isomer
1

5.8 331.0667 [M − H]− C13H15O10 0.6 Mono-O-galloyl-hexoside
isomer 3

6.1 483.0775 [M − H]− C20H19O14 0.2 Di-O-galloyl-hexoside isomer
2

6.3 315.0715 [M − H]− C13H15O9 −0.3 Dihydroxybenzoic acid
O-hexoside

7.7 319.0423 [M − H]− C15H11O8 −9.7 Dihydromyricetin

7.8 483.0775 [M − H]− C20H19O14 0.0 Di-O-galloyl-hexoside isomer
3

8.0 785.0839 [M − H]− C34H25O22 0.3 Tellimagrandin I * or isomer
8.2 635.0889 [M − H]− C27H23O18 0.8 Tri-O-galloyl-hexoside
8.3 451.1010 [M − H]− C24H19O9 −4.2 Coumaroylepigallocatechin

8.4 375.0694
191.0556 quinic acid fragment

C18H15O9
C7H11O6

−5.9
0.0 Not assigned

8.5 289.0714
909.0999, 785.0842, 454.0461 C15H13O6 0.7 Catechin

8.8
953.0895 [M − H]−
909.0999 [M − COOH]−
785.0837, 465.0367, 454.0460

C41H29O27
C40H29O25
C34H25O22

−0.1
0.0 Chebulagic acid or isomer

8.9 785.0840 [M − H]− C34H25O22 0.4 Tellimagrandin I * or isomer
9.3 319.0431 C15H11O8 Not assigned
9.7 339.0718 C15H15O9 0.6 Not assigned

9.8
359.0745
337.0925 coumaroylquinic acid
191.0556 quinic acid fragment

C18H15O8
C16H17O8
C7H11O6

Not assigned

9.9 785.0845 [M − H]−
481.1118, 491.1403, 625.1407 C34H25O22 1.0 Minor isomer of

Tellimagrandin I

10.1 935.0803 [M − H]−
467.0357 [M − H-3galloyl]− C41H27O26 1.3 Casuarinin or Casuarictin

10.2

1105.1012 [M − H]−
1061.1110 fragment of Rugosin D
936.0874 [M − 2H]2−

530.0513 fragment of rugosin A
541.0423

C48H33O31
C47H33O29

0.5
0.2

Rugosin A
Rugosin D

10.4 937.0955 [M − H]−
959.0774, 479.0345, 468.0435 C41H29O26 0.9 Tellimagrandin II *

10.8

935.0800 [M − H]−
787.1003 [M − H-galloyl]−
467.0357 [M − H-3galloyl]−
303.0485 [M − H-4galloyl]−

C41H27O26 1.0 Casuarinin or Casuarictin

10.9 687.3029 [M − H]− xx xx Not assigned
11.0 609.1450 [M − H]− C27H29O16 −1.0 Rutoside *
11.3 197.0454 [M − H]− C9H9O5 2.0 Syringic acid

11.4 463.0877 [M − H]− C21H19O12 0.0 Quercetin O-hexoside isomer
1

11.5 463.0876 [M − H]−
301.0348 quercetin fragment C21H19O12 −0.2 Quercetin O-hexoside isomer

2

11.9
593.1505 [M − H]−
1087.0900 [2M − H]−
285.0396 kaempferol fragment

C27H29O15 −0.2 Kaempferol-O-hexoside-
rhamnoside

11.9 433.0771 [M − H]− C20H17O11 0.0 Quercetin-O-pentoside
12.1 447.0930 [M − H]− C21H19O11 0.0 Quercetin-O-rhamnoside
12.2 477.1034 [M − H]− C22H21O12 0.2 Methyl-quercetin O-hexoside

12.3 433.0772 [M − H]−
301.0353 quercetin fragment C20H17O11 0.2 Quercetin-O-pentoside

12.4 447.0927 [M − H]− C21H19O11 0.0 Quercetin-O-rhamnoside
12.5 477.1031 [M − H]− C22H21O12 −0.4 Methylquercetin-O-hexoside

12.7 463.0882
301.0353 quercetin fragment C21H19O12 1.1

Spiraeoside *
(Quercetin-O-hexoside isomer
3)

12.8 601.0827 [M − H]−
301.0347 quercetin fragment C27H21O16 −0.5 Quercetin-O-galloyl-

pentoside

13.0 447.0922 [M − H]−
285.0389 kaempferol fragment C21H19O11 −1.1 Kaempferol-4′-O-glucoside *

13.2 519.1136
465.1031

C24H23O13
C21H21O12

−0.6
−0.4 Not assigned

13.4 615.0984 [M − H]− C28H23O16 −0.3 Quercetin-O-galloyl-hexoside
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Table 1. Cont.

Retention Time
(rt in min) Observed m/z Molecular Formula ∆ppm Tentative Identification

13.8 585.0880 [M − H]−
301.0350 quercetin fragment

C27H21O15
C15H9O7

0.9
0.7

Quercetin-O-galloyl-
arabinoside

14.2 297.0399 [M − H]− C16H9O6 −7.1 Not assigned
14.9 301.0348 [M − H]− C15H9O7 1.0 Quercetin *
16.1 271.0606 [M − H]− C15H11O5 0.4 Naringenin *
16.2 285.0399 [M − H]− C15H9O6 1.1 Kaempferol *

16.5 329.2329 C18H33O5 0.3
Tri-HOME
(trihydroxyyoctadecenoic
acid)

16.9 287.222 C16H31O4 1.5 Dihydroxypalmitic acid

Clusters 1, 2, and 3 were observed in fractions F01–F02 and were assigned to the
non-glycosylated flavonoids quercetin (1), naringenin (2), and kaempferol (3), respec-
tively. LC–MS analysis also revealed molecular ions at m/z 301.0348, m/z 271.0606, and
m/z 285.0399 at retention times 14.9, 16.1, and 16.2 min, respectively, thereby correspond-
ing to their respective parent ions [M − H]−. These three flavonoids are well-known
metabolites of F. ulmaria flower extracts [31,32]. Cluster 4 corresponded to β-sitosterol
(4), a very common sterol occurring in many plant species. Clusters 5 and 6 were pen-
tacyclic triterpenes, which were unambiguously confirmed as ursolic acid (5) and po-
molic acid (6) by the manual interpretation of 2D NMR data. These two triterpenes
were previously reported in the roots and aerial parts of F. ulmaria [33]. Cluster 7 corre-
sponded to a group of intense NMR chemical shifts, which were assigned to spiraeoside
(7), a biologically active 4′-O-monoglycosilated flavonol typically occurring in F. ulmaria
flowers [34,35]. This compound was largely present in the major fractions F04 and F05
that together represented ≈17% of the crude extract mass, which was identified as an
important biomarker of F. ulmaria. Its presence was also confirmed by LC–MS with an
intense molecular ion m/z 463.0882 [M − H]− at rt 12.7 min. Cluster 8 corresponded to
kaempferol-4′-O-glucoside (8), which was also detected in Fractions F04 and F05 but as
a minor constituent. This compound was also detected by LC–MS at rt 13.0 min, with
m/z 447.0922 [M − H]−. Clusters 9 and 10 were detected in Fractions F02–F03 and were
assigned to the phenolic acid derivatives, p-anisic acid (9) and ethyl gallate (10). Clusters 11
and 12 were detected in F03–F04 and corresponded to the closely related compounds
salicylic acid (11) and salicyl alcohol (12), which are characteristic constituents of the
genus Filipendula [33,36]. Cluster 13 was detected only in the polar fraction, F10, and
assigned to rutoside (13), while Clusters 14 to 16 were assigned to the phenol glycosides,
(4-methoxyphenyl)-methyl-glucopyranoside (14), monotropitoside (15), and helicin (16),
respectively. The presence of rutoside in the extract was confirmed by LC–MS with the
detection of the molecular ion m/z 609.1450 [M − H]− at rt 11.0 min. Cluster 17 was identi-
fied as glycerol (17), while Clusters 18 and 19 detected in the last fraction F13 corresponded
to two nucleosides, uridine (18) and adenosine (19), which are universal metabolites dis-
tributed in the cells of all living species. Clusters 20 to 25 were unambiguously assigned
to monosaccharides and disaccharides, α-D-fructofuranose (20), β-D-fructopyranose (21),
saccharose (22), β-D-glucose (23), β-D-fructofuranose (24), and α-D-glucose (25). These
simple sugars were the major constituents of the most polar fractions, F11–F12, which to-
gether represented ~45% of the extract mass. Among sugars, only saccharose was detected
by LC–MS at rt 2.2 min, with the corresponding molecular ion observed at m/z 341.1089
[M-H]−. Clusters 26 and 27 were assigned to Tellimagrandin I (26) and Tellimagrandin
II (27), which have been described as biologically active constituents of several Filipendula
species [33,37,38]. These ellagitannins were found to be highly concentrated in fractions,
F04–F07, which together represented ≈23% of the dry extract weight and, therefore, were
also significant constituents of the extract. Two abundant isomers of Tellimagrandin I were
detected by LC–MS in the extract with intense peaks at m/z 785.0839 and m/z 785.0840
[M − H]−, and rt 8.0 min and 8.9 min, respectively, while Tellimagrandin II was confirmed
also by LC–MS with a molecular ion peak at m/z 937.0955 [M − H]− and rt 10.4 min. Free
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gallic acid (28) was also identified by NMR in these fractions and detected by LC–MS at
rt 5.2 min, with m/z 169.0137 [M − H]−.

To summarize, a total of 28 metabolites were unambiguously identified in the F. ulmaria
extract using the NMR-based CARAMEL dereplication platform. Additional minor metabo-
lites were detected by LC–MS in the extract (Figure 3), including, for instance, several iso-
mers of mono-, di- and tri-galloyl hexosides, several glycosylated derivatives of quercetin
and kaempferol, quinic acid, and syringic acid, as well as a diversity of tannins tentatively
assigned to chebulagic acid, casuarinin, Rugosin A, and Rugosin D in accordance with the
literature related to F. ulmaria.
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Figure 3. Effect of F. ulmaria base extract, Fractions F01, F03, F04, F06, and F09 on epidermal barrier
function, epidermal renewal, keratinocyte differentiation, and stress response: (A) RT-qPCR on
CNFN*; (B) RT-qPCR on EREG*; (C) RT-qPCR on HAS3*; (D) RT-qPCR on KRT10*; (E) RT-qPCR on
GPX2*; and (F) RT-qPCR on HMOX1*. * All evaluations were performed in duplicates.

2.2. Biological Results for the Crude Extract and CPC Fractions and Assignment of the Metabolites
Responsible for Skin Barrier Function Improvement

In an attempt to further explore the cosmetic applications of F. ulmaria on epidermal
skin barrier, the crude extract was evaluated for the expression of different sets of genes
involved in epidermal proliferation, differentiation, barrier function, epidermal renewal,
and stress response in normal human epidermal keratinocytes. The selection of normal
human epidermal keratinocytes was conducted to eliminate alterations in gene expression
due to cellular senescence induced as a result of prolonged culturing of immortalized
cell lines, such as HaCaT [39,40]. The F. ulmaria extract was cytotoxic at concentrations
above 0.002 g/L and was, therefore, tested at the maximal safe concentration of 0.002 g/L
and at a lower concentration of 0.0004 g/L. The extract showed moderate modulation of
gene expressions at the selected concentrations. However, several secondary metabolites
reported from F. ulmaria, such as salicylic acid, quercetin and its glycosides, or tannins, are
known to affect the skin barrier function and epidermal regulation. Quercetin is known
to downregulate the Epiregulin Growth Factor Receptor (EGFR) expression levels [41–43],
while kaempferol is known to enhance the Claudin 1 gene expression and enhance the inter-
cellular tight junction capacity in the skin [44]. Naringenin and β-sitosterol are involved in
Glutathione peroxidase regulation [45,46], while ursolic acid and pomolic acid are known
to restore the skin barrier function of the epidermis by preventing the trans-epidermal
water loss, differentiation of keratinocytes, regulation of peroxisome proliferator-activated
receptor-α, and promoting the synthesis of hyaluronic acid and collagen [47,48]. Tellima-
grandins present in F. ulmaria extracts were also reported previously for enhancing the
cornified envelope formation and fillagrin mRNA expression in the HaCaT cell lines [49].

A total of 13 fractions were obtained from the crude F. ulmaria extract. The secondary
metabolite distribution in the fractions is illustrated in Figure 1. Fractions F01, F03, F04,
F06, and F09 were then subjected to epidermal gene expression-modulation tests in the
Normal Human Epidermal Keratinocytes for epidermal proliferation, differentiation, bar-
rier function, epidermal renewal, and stress response. Fractions F02, F05, F07, F08, F10, F11,
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F12, and F13 were not subjected to these tests due to the paucity of the fractions. Fractions
F01, F03, F04, F06, and F09 were evaluated at the maximal concentration of 1 g/L and at
the minimal dose of 0.2 g/L; the modulation of gene expressions is shown in Figure 3.

Fraction F01 of the F. ulmaria extract (4% of the crude extract mass) was found to be rich
in quercetin, naringenin, kaempferol, ursolic acid, pomolic acid, and β-sitosterol as major
constituents. As expected, this fraction showed strong modulation of cornifelin, a tight junc-
tion protein, as well as epiregulin, due to the presence of quercetin [44,47–49]. Additionally,
it was found to enhance the expression of genes involved in hyaluronic acid synthesis 3 and
heme oxygenase 1 at both minimal and maximal concentrations. These results demonstrate
the high efficacy of this fraction in reinforcing the skin barrier function and renewing the
epidermis. Moreover, Fraction F01 showed a significant upregulation of the Glutathione
peroxidase 2 gene, likely due to the presence of naringenin and β-sitosterol, which have
been reported to be involved in regulating glutathione peroxidase activity [45–47]. Fraction
F03, which mainly comprises the glycosides of quercetin (Spiraeoside) and kaempferol
(kaempferol-4′-O-glucoside), along with salicylic acid, salicyl alcohol, ethyl gallate, p-anisic
acid, and tellimagrandins, account for approximately 5.7% of the total crude extract of
F. ulmaria. This fraction shows a similar response in gene expression modulation for bar-
rier function reinforcement and epidermal renewal, similar to F01, but only at a maximal
concentration of 1 g/L. Its efficacy at the minimal dose was not significant. Fraction F04,
which comprises 8% of the total crude extract, contains spiraeoside and tellimagrandins as
major constituents, along with small amounts of salicylic acid, salicyl alcohol, and gallic
acid. This fraction exhibited a strong modulation of cornifelin, kallikrein-related peptidase
7, heparin-binding EGF-like growth factor, Keratin 19, and Keratin 10 genes at a lower
concentration of 0.2 g/L. No significant activity was observed at the maximal dose for
fractions containing spiraeoside and tellimagrandin, suggesting that these compounds
are effective in keratinocyte differentiation, as well as in reinforcing and renewing the
epidermal barrier. Fractions F06 and F09, which comprise 3% and 2% of the crude extract,
respectively, contain mainly tellimagrandins and a mixture of minor ellagitannins. Both
fractions demonstrated efficacy in epidermal renewal and a restoration of the barrier func-
tion at a lower concentration of 0.2 g/L, indicating that ellagitannins play an important
role in their efficacy at lower concentrations. This finding is consistent with previously
reported activity of tellimagrandins in promoting the formation of cornified envelope [49],
as mentioned earlier.

3. Materials and Methods
3.1. Materials and Reagents

The aerial parts of F. ulmaria were collected in 2019 from Somerset County, United
Kingdom and were authenticated by an external taxonomist. A voucher specimen has been
deposited at the herbarium facility at L’Oreal (Advanced Research, Bangalore, India) under
the voucher specimen number ARI 032063/E/B-1/1. HPLC–MS-grade acetonitrile and
methanol were purchased from Merck (Lowe, NJ, USA). Laboratory grade chemicals were
obtained from Sigma–Aldrich Chemical Co. (St Louis, MO, USA) and Merck Millipore
(Darmstadt, Germany). Milli–Q Integral 15 system (Merck Millipore, Burlington, MA, USA)
was used to prepare the HPLC-grade water.

3.2. Extraction Procedure

The aerial parts of F. ulmaria were powdered using the IKA® Pilotina dry-milling
system and sieved through 100-µm mesh to afford a coarse powder. The resulting powder
(200 g) was extracted using 70% aqueous ethanol (1:10 m/v) for three consecutive cycles at
60 ◦C. After three cycles of extraction, each was filtered using GFD filter, and the filtrate
was combined under reduced pressure and concentrated to afford a dry extract with a yield
of 60 g, containing 4.5% of Spiraeoside. The solid crude extract was further defatted using
petroleum ether at 40 ◦C for 1 h to afford a dry residue containing 6% Spiraeoside. To this
crude extract, 2 L of 10% ethanol were added, and the solution was filtered through hyflo
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supercell. The subsequent clear filtrate was then passed through a HP–20 macroporous
resin and eluted with 10 bed volumes of demineralized water and further eluted using
increasing percentages of ethanol ranging from 40% ethanol (5 Bed volume (BV)), 50%
ethanol (5 BV), and, finally, 100% ethanol. The 50% eluate was concentrated and dried to
afford a dry powder highly enriched in Spiraeoside.

3.3. Centrifugal Partition Chromatography (CPC)

CPC was performed on a lab-scale FCPE300® column (Rousselet Robatel Kroma-
ton, Annonay, France) of 301-mL capacity, containing seven circular partition disks and
engraved with a total of 231 partition twin cells (~1 mL for each twin cell). The liquid
phases were pumped with a KNAUER Preparative 1800 V7115 pump (Berlin, Germany).
A two-phase solvent system (3 L in total) was prepared by mixing methyl ter-butyl ether,
acetonitrile, and water in the proportions 4/1/5 (v/v) in a separating funnel. After de-
cantation, the column was filled with the lower phase used as the stationary phase at
50 mL/min and 500 rpm. The column rotation speed was then set at 1200 rpm. The extract
(1.015 g) was dissolved in an 80/20 (v/v) mixture of lower and upper phases and injected
into the CPC column with a 35-mL loop. The upper phase used as the mobile phase was
pumped at a flow rate of 20 mL/min in the ascending mode for 55 min, and then the
column was extruded by switching the mode selection valve for 10 min. Fractions of 20 mL
were collected over the whole experiment (elution and extrusion) by a Pharmacia Superfrac
collector (Uppsala, Sweden), and combined according to their thin layer chromatography
(TLC) profiles. TLC was performed with a CAMAG® Automatic TLC Sampler 4 (ATS4),
a CAMAG® Automatic Developing Chamber 2 (ADC2), and a CAMAG® TLC Visualizer
2. Fractions were deposited on pre-coated silica gel 60 F254 Merck plates, eluted with the
migration solvent system toluene/ethyl acetate/formic acid/acetic acid (30/70/11/11, v/v)
and revealed at 254 nm, at 360 nm, and by spraying the dried plates with 50% H2SO4 and
vanillin, followed by heating. As a result, 13 final fractions were obtained, and their mass
distribution and TLC profile are provided in Figure 1.

3.4. NMR Analyses and Metabolite Identification

All CPC fractions, F01–F13, were dried under vacuum with a rotary evaporator. An
aliquot (up to 15 mg when possible) was dissolved in 600 µL of DMSO-d6 and analyzed by
1H, 13C, HSQC, HMBC, and COSY NMR at 298 K on a Bruker Avance III 600 spectrometer
(Karlsruhe, Germany) equipped with a cryogenic probe. The Bruker TopSpin 4.0.5 software
was used for NMR data acquisition and processing. For 13C NMR analyses, a standard
zgpg pulse sequence was used with an acquisition time of 0.9 s and a relaxation delay of 3 s.
For each sample, 512 scans were co-added to obtain a satisfactory signal-to-noise ratio. The
spectral width was 240 ppm, and the receiver gain was set to the highest possible value.
Spectra were manually phased, baseline corrected, and calibrated on the central resonance
of DMSO-d6 (δ 39.8 ppm). The absolute intensities of 13C NMR signals were collected by
automatic peak picking, and the peak list obtained for each fraction was exported as a
text file. Then, a bucketing was performed using a script written in Python, consisting
in the division of 13C NMR spectral width into chemical shift buckets of 0.3 ppm and
an association of the absolute intensity of each peak to the corresponding bucket. The
resulting table was submitted to HCA using the PermutMatrix 1.9.3 software (LIRMM,
Montpellier, France) for data visualization. In parallel, a literature survey was performed
to obtain the structures of a maximum of metabolites already reported in F. ulmaria (n ≈ 55).
The 13C NMR chemical shifts of these metabolites were predicted (NMR Workbook Suite
2012, ACD/Labs, Toronto, ON, Canada) and stored into an in-house database comprising
~8300 chemical structures of natural molecules. The chemical shift clusters obtained by
HCA were submitted to this database for metabolite identification. Two-dimensional NMR
analyses (HSQC, HMBC, and COSY) were also interpretated to validate or complete the
structural elucidation of the metabolites proposed by the database.
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3.5. Liquid Chromatography—Mass Spectrometry Analyses of the Extract (LC/MS)

The crude F. ulmaria extract was also analyzed by LC–MS in the negative ion mode to
tentatively confirm the identification of a maximum of metabolites. A 5-mg aliquot of each
dried fraction was dissolved in 1 mL of MeOH/H2O (1:1, v/v) and analysed on a SYNAPT
G2–Si High-Resolution Mass Spectrometer from Waters (St Quentin en Yvelines, France).
The chromatographic separation was performed at 1 mL/min on an RP18 reversed-phase
column (Uptisphere C-18 ODB 150 × 4.6 mm, 5 µm, Interchim) with an injection volume
of 5 µL. The column temperature was maintained at 35 ◦C. The solvents were formic acid
0.1% in ultrapure water (A) and formic acid 0.1% in LC/MS grade acetonitrile (B). The
gradient started at 0% (B), increased up to 26% (B) in 9.9 min to 65% (B) at 18.5 min, and
then reached 100% (B) at 18.7 min and remained for 5 min. After that, the gradient returned
back to 0% (B) in 1 min and remained for 2 min. The electrospray source operated in the
negative mode with the following parameters: capillary voltage 3 kV, sampling cone 40 V,
extraction cone 4 V, source temperature 150 ◦C, desolvation 650 L/h, collision energy 4 V.
Accurate mass was ensured using a solution of leu-enkephalin as a standard compound
in the internal lockmass. Ions were detected from m/z 50 to 2000 with scans of 0.2 s. Data
were processed with the MassLynx software version 4.2 from Waters. The resulting BPI
chromatogram and summarized LC/MS data are provided in Figure 4.
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3.6. Biological Assays

A Roche LightCycler480 instrument with 384-well microplates was used for this eval-
uation test of gene expression involved in keratinocytes epidermal physiology. Normal
Human Epidermal Keratinocytes were grown and amplified to produce cells for the eval-
uation. Forty-eight-well microplates were seeded with cells (50,000 cells per well) and
incubated for 48 h in a temperature-, humidity-, and CO2-controlled environment. Samples
were added on the cells while renewing the culture medium and were further incubated
for 24 h. After incubation, the cells were washed and frozen at −80 ◦C to preserve the
RNA. The RNAs were then extracted and quantified, and their quality was checked before
performing their reverse transcription into cDNA. An RT-qPCR was finally performed for
each experimental condition for the quantification of the expression of a set of 16 selected
genes related to the barrier function (Claudin 1, Cornifelin, Desmoglein 1, Kallikrein-related
peptidase 7, Tight junction protein 1), epidermal renewal (Epiregulin, Hyaluronic acid
synthase 3, Heparin-binding EGF-like growth factor, Keratin 19), keratinocyte differenti-
ation (Keratin 10, Small prolin-rich protein A1, Transglutaminase 1), and stress response
(Glutathione peroxidase 2, Heme oxygenase 1) in keratinocytes. The gene expression
was measured on the highest non-toxic dose of each tested sample with a maximal dose
of 0.2 g/L or 0.2 mM. The maximum non-cytotoxic dose was determined prior to the
gene-expression testing at a dose of 0.2 g/L using a biological model under the same



Molecules 2023, 28, 6349 12 of 15

incubation conditions. All samples were evaluated at the same concentration in addition to
a five-times-lower dose in a one-step protocol. The fold changes (FC) were calculated after
a double normalization against the housekeeping genes and non-treated condition. Fold
changes of gene expression were considered as modulated over 1.5 (induction) or under
0.5 (repression).

4. Conclusions

The application of CPC fractionation, 13C NMR de-replication, and liquid chromatog-
raphy hyphenated with mass spectrometry led to the rapid identification of 28 secondary
metabolites from the aerial parts of F. ulmaria. This study showcased the agile capability
of our metabolomic workflow as sensitive and convenient for the chemical profiling of
natural resources. This analytical approach offers a disruptive route for discovering and
developing new cosmetics with biologically active secondary metabolites from F. ulmaria.
By subjecting CPC fractions of F. ulmaria to an in vitro screening, quercetin, kaempferol
glycosides, ursolic acid, pomolic acid, naringenin, β-sitosterol, and Tellimagrandins I and II
were identified as key secondary metabolites involved in upregulated genes related to the
skin-barrier function, epidermal renewal, and stress responses in normal human epidermal
keratinocytes. This research could provide a natural solution for improving skin hydration
with epidermal-renewal properties. This new screening strategy, without the need for any
purification step, should find widespread application where plants have not been widely
studied for the discovery of new natural products, as these platforms serve as a future
strategic discovery tool.
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COSY Correlated Spectroscopy
LC-MS Liquid Chromatography Mass Spectra
FC Fold Changes
CLDN1 Claudin 1
CNFN Cornifelin
DSG1 Desmoglein 1
KLK7 Kallikrein-related peptidase 7
TJP1 Tight junction protein 1
EREG Epiregulin
HAS3 Hyaluronic acid synthase 3
HBEGF Heparin-binding EGF-like growth factor
KRT19 Keratin 19
KRT10 Keratin 10
SPRR1A Small prolin-rich protein A1
TGM1 Transglutaminase 1
GPX2 Glutathione peroxidase 2
HMOX1 Heme oxygenase 1
PPAR Peroxisome proliferator-activated receptor-α
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