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Abstract: In this study, activated carbons were produced through the chemical activation of caraway
seeds using three different activators: Na2CO3, K2CO3, and H3PO4. A 1:2 weight ratio of precursor to
activator was maintained in every instance. Comprehensive analyses were conducted on the resultant
activated carbons, including elemental analysis, textural parameters determination, Boehm titration
for surface oxygen functional groups, pH assessment of aqueous extracts, and quantification of ash
content. The produced materials were subjected to adsorption tests for methylene blue and methyl
red sodium salt from the liquid phase and the effects of adsorbent dosage, pH of the aqueous dye
solution, process temperature, and adsorbent–adsorbate contact time on sorption capacity obtained.
To characterize the adsorption model of the examined pollutants, both the Langmuir and Freundlich
equations were employed. In addition, the sorption capacity of the obtained carbon materials against
an iodine aqueous solution was assessed. The specific surface area of the obtained adsorbents
ranged from 269 to 926 m2/g. By employing potassium carbonate to chemically activate the starting
substance, the resulting activated carbons show the highest level of specific surface area development
and the greatest sorption capacity against the tested impurities—296 mg/g for methylene blue and
208 mg/g for methyl red sodium salt. The adsorption rate for both dyes was determined to align with
a pseudo-second-order kinetic model. The experimental adsorption data for methylene blue were
well-described by the Langmuir model, whereas the Freundlich model was found to be congruent
with the data pertaining to methyl red sodium salt.

Keywords: activated carbon; caraway seeds; chemical activation; methylene blue; methyl red

1. Introduction

Dyes are a group of complex organic substances containing unsaturated (chromophore)
bonds in their structure, which grant them the ability to absorb radiation in the visible light
range (400 to 700 nm). Consequently, the color is perceived by the fraction of light that the
dye does not absorb but instead reflects back [1].

Historically, color has held paramount importance in human societies. From prehis-
toric periods, it has served not only as a means of communication but also as a pivotal
medium of artistic expression. Pigments, initially derived from mixtures of soil or other
substances with water, saliva, or animal fat, were used to color both human skin and
commonplace objects. Throughout history, pigments have been used in cave paintings,
ceramics, and writing, and their use has increased with the development of human civ-
ilization [2]. Notably, a breakthrough came with the synthesis of the first artificial dye,
Mauvein, by Henry Perkin in 1856 [3]. This innovation fueled the exponential growth of
the textile industry, which, astonishingly, stands at an annual output of 8 × 105 tonnes
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today [4]. Given its vast scale, the environmental implications of the textile industry
are profound. It is responsible for generating approximately 55% of the world’s colored
wastewater, amounting to nearly 200 × 105 tonnes annually. This is followed by the dyeing
industry at 21%, while the tanning and paper and pulp industries represent 8% and 9%,
respectively [4,5]. The rampant utilization of dyes, therefore, is contributing significantly to
environmental degradation, endangering ecosystems worldwide.

Presently, synthetic dyes dominate the colorant market, with estimates suggesting
the commercial use of over 100,000 different synthetic dyes [6]. In the textile sector, fibers
are spun into yarns, which are subsequently woven or knitted into fabrics [7]. However,
during the dyeing process, up to 75% of the introduced dye is washed away by water [8].
Huge amounts of pollutants such as heavy metals, organic dyes, and surfactants enter the
environment. Such contamination, especially in aquatic environments, is posing a growing
threat to all living organisms and presents a significant challenge to scientists with each
successive year. Moreover, a large number of the dyes used decompose slowly or not at
all, which contributes to the difficulty of implementing biological wastewater treatment
methods [6].

In light of these challenges, recent years have witnessed the emergence of innovative
dyeing wastewater treatment methods specially designed to tackle dyes that are hard to
degrade due to their intricate chemical structures. Adsorption techniques, in particular,
have gained traction due to their efficacy and cost-effectiveness. Among conventional
adsorbents, activated carbon is widely used due to its excellent adsorption properties [9].
In recent years, there has been increased interest in researching the production of activated
carbons from agricultural and industrial wastes [10].

Activated carbon is a highly porous adsorbent lauded for its expansive surface area
and potent surface reactivity. It finds applications across various industries including
drinking water purification, air and gas filtration, and even the food industry [8]. In 2020,
the global activated carbon market was valued at nearly $3 billion, and projections indicate
a potential surge to $4.5 billion by 2028 [8]. The efficacy of activated carbon in remov-
ing contaminants from drinking water, such as organic substances, colorants, and trace
chemicals, is widely recognized [10]. In 2009, Stavropoulos et al. [11] documented vary-
ing production expenses and additional economic metrics associated with the production
processes of physically and chemically activated carbon. These processes were dependent
on precursor materials like used tires, wood, petroleum coke, carbon black, coal, and lig-
nite. The researchers determined production costs as follows: 2.23 USD/kg, 2.49 USD/kg,
1.08 USD/kg, 1.22 USD/kg, 1.25 USD/kg, and 2.18 USD/kg for the respective precursors.
We are of the opinion that the manufacturing of activated carbons from biomass caraway
seeds has the potential to lower the expenses associated with carbon adsorbent production.

Typically, commercial activated carbon is derived from coal, a depleting non-renewable
resource. In response to this, there is a push to identify alternative precursors and sources.
Raw materials rich in carbon, like lignocellulosic materials, lignite, polymers, and carbona-
ceous waste, can be utilized to produce activated carbon [12]. The use of biowaste has a
positive impact on environmental protection by reducing solid waste, as well as producing
low-cost activated carbons capable of removing pollutants [10]. Although many scientific
papers are published each year on the preparation of carbon adsorbents from plant residues,
there are currently not many papers discussing the preparation of activated carbons from
caraway seeds [10].

Therefore, the aim of the study was to produce a range of activated carbons through
the chemical activation of caraway seeds. Subsequently, the physicochemical attributes and
sorption capabilities of the resulting carbon adsorbents towards aqueous-phase pollutants
were assessed. Methylene blue and methyl red sodium salt were selected as representative
organic pollutants to gauge the adsorption traits of the activated carbons.
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2. Results and Discussion
2.1. Chemical Composition of the Activated Carbons

Elemental analysis was carried out for the precursor and the activated carbons ob-
tained by chemical activation with sodium carbonate (CANa), potassium carbonate (CAK),
and 50% orthophosphoric acid(V) (CAP). As the data presented in Table 1 shows, the
dried caraway seeds contained 52.72 wt.% carbon, 36.54 wt.% oxygen, 7.41 wt.% hydrogen,
2.89 wt.% nitrogen, and 0.44 wt.% sulfur. The weight content of ash in the caraway seeds
was 4.67 wt.%. Elemental analysis of the adsorbents obtained shows that the adsorbent
obtained by chemical activation of the precursor with sodium carbonate had the highest ele-
mental carbon content (76.25 wt.%). In addition, the CANa sample also contained 4.39 wt.%
nitrogen, 1.60 wt.% hydrogen, 0.55 wt.% sulfur, and 36.54 wt.% oxygen. The mineral con-
tent of this activated carbon was 2.09 wt.%. The adsorbent obtained by chemical activation
of caraway seeds with orthophosphoric acid(V) had the lowest content of elemental carbon
(73.76 wt.%) and nitrogen (1.71 wt.%), and the highest content of hydrogen (2.66 wt.%),
sulfur (0.58 wt.%), and oxygen (21.29 wt.%). Chemical activation of the precursor with
potassium carbonate leads to a sample with the lowest mineral content (0.53 wt.%). Ana-
lyzing the results shown in Table 1, it can be concluded that chemical activation of caraway
seeds results in a significant increase in elemental carbon, which is due to a decrease in
hydrogen and oxygen content compared to the starting material.

Table 1. Elemental composition and content of ash of the obtained adsorbents (wt.%).

Sample % N % C % H % S % O * % Ash

Caraway
seed 2.89 52.72 7.41 0.44 36.54 4.67

CANa 4.39 76.25 1.60 0.55 17.21 2.09

CAK 2.83 74.89 1.91 0.23 20.14 0.53

CAP 1.71 73.76 2.66 0.58 21.29 9.79
*—By difference; method error ≤0.3%.

Ash is an impurity that can limit the adsorption capacity of activated carbon [12].
The decrease in mineral content in the CANa and CAK activated carbons compared to the
precursor is due to the use of washing the obtained carbon material with hydrochloric acid
solution. This step was skipped in the preparation of the CAP sample, therefore the % ash
content in its structure is the highest at 9.79 wt.%.

X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for
Chemical Analysis (ESCA), was used to determine the surface composition of the tested
material both qualitatively and quantitatively. The spectra shown in Figure 1 confirm
the results of the elemental analysis. The carbon obtained by chemical activation of the
precursor with sodium carbonate exhibited the highest peak intensities originating from
C1s, N1s, and O1s. This aligns with the elemental analysis results, as the CANa sample
displayed the highest weight percentage of these elements. In the case of CAP carbon, no
peak corresponding to nitrogen was observed. However, a peak can be observed from
phosphorus groupings, which are formed when the starting material is impregnated with
orthophosphoric acid(V) and annealed in an inert atmosphere [13].
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2.2. Physiochemical Properties of the Obtained Activated Carbons

Table 2 shows the textural parameters of the obtained activated carbons. The carbon
obtained by chemical activation of caraway seeds with potassium carbonate had the most
developed specific surface area. The surface area of this carbon measured 926 m2/g, and the
volume of micropores was 0.65 cm3/g. In contrast, the average pore diameter of the CAK
sample was 2.80 nm. The least-developed specific surface area is that of carbon obtained by
chemical activation of the starting material with sodium carbonate—269 m2/g. Further
analysis of the data summarized in Table 2 also allows us to conclude that CANa carbon was
characterized by the smallest volume of micropores and the largest average pore diameter.
On the basis of the textural parameters of the tested activated carbons, it can be assumed
that sodium carbonate did not allow effective development of the specific surface area. In
contrast, the specific surface area of the carbon obtained by chemical activation with a 50%
solution of orthophosphoric acid(V) was 46% larger than that of CANa carbon and almost
63% smaller than that of CAK carbon.

Table 2. Textural parameters and iodine number of the obtained activated carbons.

Sample
Surface Area 1 (m2/g) Pore Volume (cm3/g)

Vm/Vt
Average Pore

Size (nm)

Iodine
Number
(mg/g)Total Microporous Total Microporous

CANa 269 224 0.55 0.12 0.22 7.61 278

CAK 926 865 0.65 0.47 0.73 2.80 1107

CAP 580 411 0.67 0.23 0.34 4.15 1103

1 Error range between 2–5%.

Comparing the textural parameters of adsorbents obtained from caraway seeds and
materials obtained in an analogous way from fennel seeds [14], it can be observed that
CANa and CAK samples had a less developed specific surface area compared to samples
obtained from fennel. The adsorbent obtained by chemical activation of fennel seeds with
potassium carbonate exhibited a specific surface area that was 124 m2/g higher than that of
the CAK sample. For activation of the precursor with potassium carbonate, the difference
was 76 m2/g. In contrast, the CAP sample obtained by activating the precursor with a
50% solution of orthophosphoric acid(V) had a specific surface area that was 62 m2/g
higher than the material obtained in an analogous manner from fennel seeds. Thus, it can
be concluded that sodium and potassium carbonates allowed the specific surface area of
adsorbents obtained from fennel seeds to be developed more efficiently than those obtained
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from caraway seeds. However, orthophosphoric acid(V) more effectively developed the
surface area of the adsorbent when caraway seeds were the precursor.

In contrast, a study by Khan et al. [13] showed that activation of custard apple fruit
shell with orthophosphoric acid(V) in a weight ratio of 1:1.5 (precursor:activator) at 700 ◦C
produced an adsorbent with a specific surface area as high as 1065 m2/g. This is almost
twice the surface area of the CAP sample. Meanwhile, activated carbon, obtained by
González-García et al. [15] by activating water hyacinth stems with potassium carbonate
at a weight ratio of precursor:activator of 1:2 at 550 ◦C, had a specific surface area of
only 235 m2/g, which is significantly lower than the result obtained for a CAK sample
obtained with the same activator at an identical weight ratio but activated at 700 ◦C. This
suggests that the use of a higher activation temperature may lead to an adsorbent with a
better-developed specific surface area.

The iodine numbers of the obtained activated carbons showed correlations with the
textural parameters, as shown in Table 2. The iodine adsorption number was found to be
278 mg/g for CANa carbon, 1107 mg/g for CAK carbon, and 1103 mg/g for CAP carbon.
Such a high iodine adsorption number for carbon obtained by chemical activation of
caraway seeds with a 50% solution of orthophosphoric acid(V) was most likely due to the
presence of phosphorus groups on its surface, the presence of which on the surface of the
CAP sample is confirmed by XPS studies (Figure 1). Due to the presence of phosphorus and
carboxyl functional groups on the surface of CAP carbon, the efficiency of activated carbon
in adsorbing inorganic pollutants such as iodine increases [16]. A similar relationship
occurred with activated carbon obtained in an analogous way from fennel seeds [14].

Figure 2 presents SEM images of the activated carbon samples, confirming the textural
and morphological differences between them. Depending on the applied activator, the
samples differ in pore size, shape, and number. The brighter fragments observed for
activated carbons may be due to the presence of ash.
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Figure 2. SEM images.

Figure 3 presents the low-temperature nitrogen adsorption/desorption isotherms
(A) and pore distribution (B) for the obtained activated carbons. These isotherms can be
assigned to type IV(a) according to the International Union of Pure and Applied Chemistry
(IUPAC) classification [17]. Type IV(a) adsorption isotherms are typical of mesoporous
materials. This type of isotherm is characterized by capillary condensation in pores with
diameters in the mesoporous range (from 2 to 50 nm). The shape of the curves is confirmed
by the data summarized in Table 2. The IUPAC classification defines six types of hysteresis
loops, which are closely correlated with the characteristics of the pore structure and the
adsorption mechanism. For all samples, the hysteresis loops shown in the graph are
classified as type H4, which is typical of materials having narrow, gaping pores [17]. Type
H4, according to the IUPAC classification, describes a hysteresis known as “ink-bottle”
hysteresis. This is a type of hysteresis that is characteristic of materials in which narrow
openings lead to much wider spaces.
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Figure 3. Low-temperature N2 adsorption-desorption isotherms (A) and pore size distribution (B) of
the obtained activated carbons.

The acid–base nature of the surface of activated carbons is of fundamental importance
for the adsorption of contaminants from the aqueous phase due to the interactions occurring
between the adsorbate and the adsorbent [16]. The acid–base characteristics of the produced
activated carbons and precursor are presented in Table 3. To make these determinations,
the pH of the aqueous extracts of these substances was measured, and the number of
surface oxygen functional groups was determined using the Boehm method. Based on
the data obtained, it can be concluded that caraway seed showed a slightly acidic pH of
the aqueous extract with a value of 6.6 and a predominance of acidic (5.19 mmol/g) over
basic (3.34 mmol/g) groups. Moreover, all the adsorbents obtained had a predominance
of acidic over basic groupings on their surface, as confirmed by the pH values of their
aqueous extracts. The most acidic character of the surface was shown by carbon obtained
by activating the precursor with a 50% solution of orthophosphoric(V) acid. The pH value
of this adsorbent was 3.0, while the content of acidic and basic oxygen functional groups
was 2.05 and 0.35 mmol/g, respectively. The pH values for the aqueous extract were 5.3 for
the CAK adsorbent and 6.3 for the adsorbent activated with sodium carbonate. The surface
of the CAK and CANa samples contained acidic oxygen functional groups amounting to
1.60 and 2.15 mmol/g, respectively, and basic functional groups amounting to 0.35 and
0.70 mmol/g, respectively.

Table 3. Acid–base properties of the obtained activated carbons.

Sample Acidic Oxygen Functional
Groups (mmol/g)

Basic Oxygen Functional
Groups (mmol/g) pH

Caraway seed 5.19 3.34 6.6

CANa 2.15 0.70 6.3

CAK 1.60 0.35 5.3

CAP 2.05 0.35 3.0

2.3. Adsorption of Dyes

Adsorption tests were carried out for the obtained activated carbons against aqueous
solutions of two organic dyes: methylene blue (MB) and methyl red sodium salt (MR).

The pH value of an aqueous solution of a dye has a significant effect on its adsorp-
tion efficiency. Due to differences in structure, organic dyes can be divided into cationic
(methylene blue) and anionic (methyl red sodium salt) dyes. The presence of hydrogen
and hydroxyl ions in the aqueous solution changes the charge present on the surface of
the adsorbent, which can have a positive or negative effect on the sorption capacities of
activated carbons. Figure 4 shows the effect of the pH of the aqueous dye solution on the
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sorption capacities of activated carbons obtained by the chemical activation of caraway
seeds. Analyzing the data shown in the graph, it can be concluded that for the cationic
dye (methylene blue), higher pH values have a positive effect on the obtained sorption
capacities. However, for the sodium salt of methyl red, a definite decrease in the % removal
of the dye and sorption capacities was observed with increasing pH values. An identical
relationship was reported in a previous study [18]. A decrease in the sorption capacities
of activated carbons against an aqueous solution of methyl red was also demonstrated
in a study by Rajoria et al. [19]. This may be due to the fact that at low pH values of the
solution, the surface of the adsorbent is positively charged and there are electrostatic inter-
actions between the surface of the activated carbon and the dye molecules that enhance the
phenomenon of adsorption of an anionic pollutant such as MR on the surface of activated
carbons. Conversely, at higher pH values, excess hydroxyl ions can compete with MR
molecules and thus block active sites present on the adsorbent surface. In the case of the
second dye, the relationship observed was the opposite.
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Figure 4. Influence of pH value on the adsorption (A) and efficiency of removal (B) of methylene
blue and methyl red sodium salt (activated carbon mass: 25 mg, initial dye solution concentration
for methylene blue: 20 mg/L for CANa, 145 mg/L for CAK, and 50 mg/L for CAP, initial dye
concentration for methyl red sodium salt: 20 mg/L for CANa, 110 mg/L for CAK, and 50 mg/L for
CAP, dye solution volume: 50 mL, temperature: 23 ± 1 ◦C).

Figure 5 shows the effect of the dosage of activated carbon on its sorption capacities
against the tested contaminants. The data presented in Figure 5B demonstrate that for
each adsorbent, the maximum percentage of pollutant removal occurred when the mass
of activated carbon was 30 mg. This fact can be explained by the greater availability of
active sites due to the increased surface area of the adsorbent. Increasing the mass of the
adsorbent at a constant dye concentration provides more available adsorption sites for the
adsorbate and thus increases the removal rate [20]. Nonetheless, there was a reduction in
the dye quantity per unit mass of adsorbent, leading to a decrease in sorption capacity as
depicted in Figure 5A. Therefore, in order to optimize the results, an adsorbent mass of
25 mg was assumed for further studies.

Figure 6 shows the adsorption isotherms and sorption capacities for the obtained
samples against the tested dyes. The presented data indicate that the CAK carbon obtained
by chemically activating caraway seeds with potassium carbonate demonstrated the best
sorption abilities against the tested pollutants. The sorption capacities of this sample
against an aqueous solution of methylene blue and methyl red sodium salt were 296 mg/g
and 203 mg/g, respectively.
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tion capacity of the CANa sample was the lowest of all the obtained carbon adsorbents—
37 and 28 mg/g for MB and MR, respectively. The CAP carbon obtained by chemical 

Figure 5. Effect of adsorbent dosage (A) and adsorption efficiency (B) on adsorption of methyl red
sodium salt and methylene blue (volume of dye solution: 50 mL, initial dye solution concentration
for methylene blue: 20 mg/L for CANa, 145 mg/L for CAK, and 50 mg/L for CAP, initial dye
concentration for methyl red sodium salt: 20 mg/L for CANa, 110 mg/L for CAK, and 50 mg/L for
CAP, temperature: 23 ± 1 ◦C).
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Figure 6. Effect of initial concentration (A) (activation carbon mass: 25 mg, dye concentration:
for methylene blue: 15–30 mg/L for CANa, 120–155 mg/L for CAK, and 20–55 mg/L for CAP,
dye concentration for methyl red sodium salt: 10–40 mg/L for CANa, 90–120 mg/L for CAK, and
20–65 mg/L for CAP, dye solution volume: 50 mL, temperature: 23 ± 1 ◦C) and experimental
maximal sorption capacities (B) of the obtained activated carbons against methylene blue and methyl
red sodium salt.

These values far exceed the results obtained for the other two adsorbents. The sorption
capacity of the CANa sample was the lowest of all the obtained carbon adsorbents—37 and
28 mg/g for MB and MR, respectively. The CAP carbon obtained by chemical activation of
the precursor with orthophosphoric acid(V) had better adsorption capacity for methyl red
sodium salt than for methylene blue (qe = 98 mg/g for MR, qe = 87 mg/g for MB). This is
due to the fact that orthophosphoric acid(V) leads to an adsorbent with a distinctly acidic
pH of the aqueous extract (Table 3), resulting in a strongly acidic system that favors the
adsorption of methyl red sodium salt [16].

Comparing the method of obtaining and sorption capacities of the obtained materials
against MB and MR using various adsorbents described in the literature (Table 4), it can
be concluded that chemical activation of fennel seeds [14] leads to materials with higher
sorption capacities against methylene blue than chemical activation of caraway seeds under
identical conditions. In the case of the activation of caraway seeds with orthophosphoric
acid(V), an adsorbent with a better-developed specific surface area was obtained than in
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the case of the activation of fennel seeds under identical conditions. However, the material
obtained from caraway seeds, despite a better-developed specific surface area, has been
found to have a much lower sorption capacity. Comparing CAP carbon with the adsorbent
obtained by chemical activation of corn stigmata [21] using the same activator, precursor-
to-activator ratio, and temperature, it can be observed that the adsorbent obtained from
corn stigmata has a specific surface area that is 240 m2/g higher. Moreover, the sorption
capacity of this adsorbent against methylene blue is almost 3.5-fold higher than that of
the CAP sample. In contrast, activated carbon obtained from custard apple fruit shell by
chemical activation with orthophosphoric acid(V) at 700 ◦C [13] shows a sorption capacity
against methyl red of 435 mg/g, which is almost 4.5 times higher than the sorption capacity
of CAP carbon. Such a large difference between the sorption capacities is due to the better-
developed specific surface area of the adsorbent obtained from the custard apple fruit shell,
which is probably the result of using a higher activation temperature.

Table 4. Comparison of the activated carbons obtained from various reported adsorbents.

Precursor Activator Precursor:
Activator Ratio

Activation
Temperature

(◦C)

Total Surface
Area (m2/g) Dye Sorption Capacity

(mg/g) Source

Caraway seed

Na2CO3 1:2 700 269
MR 28

This study

MB 37

K2CO3 1:2 700 926
MR 203

MB 296

H3PO4 1:2 500 580
MR 98

MB 87

Fennel seed

Na2CO3 1:2 700 345 MB 77

[14]K2CO3 1:2 700 1052 MB 474

H3PO4 1:2 500 518 MB 122

Pineapple peel KOH 1:3 700 1160
MR 95

[12]
MB 165

Green tea leaves Na2CO3 1:2 700 254
MR 70

[18]
MB 85

Corn Stigmata H3PO4 1:2 500 820 MB 331 [21]

Custard apple
fruit shell H3PO4 1:1.5 700 1065 MR 435 [13]

Comparing the carbon obtained by the chemical activation of caraway seeds with
potassium carbonate with the adsorbent obtained by the chemical activation of pineapple
peel with KOH [22] at the same temperature, it can be observed that despite the better
developed specific surface area of 1160 m2/g, it shows weaker sorption capacities against
MB and MR, which are 165 and 95 mg/g, respectively. Chemical activation of waste after
supercritical extraction of green tea leaves with sodium carbonate [17] leads to adsorbents
with sorption capacities towards MR and MB that are 50 and 48 mg/g higher, respectively,
than those of CANa carbon. It is worth noting that the adsorbent obtained from green tea
leaves was obtained under identical conditions to those of the CANa sample and has a
specific surface area that is 15 m2/g less.

The experimentally obtained isotherms for methylene blue and methyl red sodium
salt were used to calculate the characteristic parameters for two models—Langmuir and
Freundlich. The fitting graphs obtained for the linear Langmuir and Freundlich models
are shown in Figure 7. Comparison of the experimental data with the predictions of a
particular model provides information on the mechanism of adsorption and interactions
between the adsorbent and adsorbate. Based on the values shown in Table 4, it can be
seen that a better fit to the Langmuir model (R2 = 0.997–0.999) than to the Freundlich
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model (0.973–0.898) is observed for methylene blue. Therefore, adsorption of an aqueous
solution of methylene blue on the obtained activated carbons followed the Langmuir
isotherm, and thus an adsorption monolayer was formed on the surface of the adsorbents.
However, when an aqueous solution of methyl red sodium salt was adsorbed onto the tested
samples, a completely different relationship was observed. Therefore, it can be concluded
that the adsorption process occurs with the formation of an adsorption multilayer [23].
Further analysis of the data summarized in Table 5 allows us to conclude that in the case
of MB adsorption, the calculated values of qmax were very close to the values obtained
experimentally. The Langmuir constant (KL) was highest for CANa carbon on which
methylene blue adsorption occurs (13.24 L/mg). This means that the strongest interactions
occur between the MB dye molecule and CANa carbon during the adsorption process. In
contrast, for the adsorption of methyl red sodium salt on the same adsorbent, the Langmuir
constant was only 0.48 L/mg.

Molecules 2023, 28, x FOR PEER REVIEW 10 of 21 
 

 

supercritical extraction of green tea leaves with sodium carbonate [17] leads to adsorbents 
with sorption capacities towards MR and MB that are 50 and 48 mg/g higher, respectively, 
than those of CANa carbon. It is worth noting that the adsorbent obtained from green tea 
leaves was obtained under identical conditions to those of the CANa sample and has a 
specific surface area that is 15 m2/g less. 

The experimentally obtained isotherms for methylene blue and methyl red sodium 
salt were used to calculate the characteristic parameters for two models—Langmuir and 
Freundlich. The fitting graphs obtained for the linear Langmuir and Freundlich models 
are shown in Figure 7. Comparison of the experimental data with the predictions of a 
particular model provides information on the mechanism of adsorption and interactions 
between the adsorbent and adsorbate. Based on the values shown in Table 4, it can be seen 
that a better fit to the Langmuir model (R2 = 0.997–0.999) than to the Freundlich model 
(0.973–0.898) is observed for methylene blue. Therefore, adsorption of an aqueous solution 
of methylene blue on the obtained activated carbons followed the Langmuir isotherm, and 
thus an adsorption monolayer was formed on the surface of the adsorbents. However, 
when an aqueous solution of methyl red sodium salt was adsorbed onto the tested sam-
ples, a completely different relationship was observed. Therefore, it can be concluded that 
the adsorption process occurs with the formation of an adsorption multilayer [23]. Further 
analysis of the data summarized in Table 5 allows us to conclude that in the case of MB 
adsorption, the calculated values of qmax were very close to the values obtained experi-
mentally. The Langmuir constant (KL) was highest for CANa carbon on which methylene 
blue adsorption occurs (13.24 L/mg). This means that the strongest interactions occur be-
tween the MB dye molecule and CANa carbon during the adsorption process. In contrast, 
for the adsorption of methyl red sodium salt on the same adsorbent, the Langmuir con-
stant was only 0.48 L/mg. 

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05

 CANa MB
 CANa MR
 CAK MB
 CAK MR
 CAP MB
 CAP MR1/

q e

1/Ce

A

 

-1.0 -0.5 0.0 0.5 1.0 1.5
1.25

1.50

1.75

2.00

2.25

2.50

 CANa MB
 CANa MR
 CAK MB
 CAK MR
 CAP MB
 CAP MR

lo
gq

e

logCe

B

 

Figure 7. Linear fitting for methylene blue and methyl red sodium salt on obtained activated carbons 
to Langmuir (A) and Freundlich (B) models. 

The weakest adsorbent–adsorbate bonds occur for CAP-MR, with a KL constant of 
only 0.28 L/mg. It can also be noted that for each of the adsorbents, the Langmuir constant 
for methylene blue was higher than that for methyl red sodium salt. The RL for each of the 
tested materials ranges from 0 to 1, which means that the adsorption of the tested pollu-
tants on activated carbons is favorable [23]. The KF parameter present in the Freundlich 
isotherm equation determines the selectivity of the adsorption process [24]. According to 
the data presented in Table 5, it can be inferred that the CAK sample exhibited the highest 
selectivity for the aqueous solution of the organic dye. The KF constant values for MB and 
MR were 272.79 and 176.81 mg/g(L/mg)1/n, respectively. In contrast, the lowest values of 
this parameter were recorded for the CANa sample. It is worth noting that the KF value 

Figure 7. Linear fitting for methylene blue and methyl red sodium salt on obtained activated carbons
to Langmuir (A) and Freundlich (B) models.

Table 5. Values of constants determined for linear Langmuir and Freundlich models for methylene
blue and methyl red sodium salt.

Sample Dye qe (mg/g)
Langmuir Freundlich

R2 qmax
(mg/g)

KL
(L/mg)

Reduced Chi-
Square RL R2 KF

(mg/g(L/mg)1/n) 1/n Reduced Chi-
Square

CANa

MB

36 0.999 36 13.24 6.87 × 10−10 6.02 × 10−3 0.973 34.72 0.02 4.66 × 10−6

CAK 296 0.997 298 1.36 5.96 × 10−11 4.80 × 10−3 0.898 272.79 0.05 2.53 × 10−5

CAP 94 0.997 94 1.91 3.28 × 10−8 1.04 × 10−2 0.967 69.18 0.01 5.34 × 10−4

CANa

MR

28 0.948 30 0.48 6.60 × 10−7 4.91 × 10−2 0.993 18.97 0.10 1.43 × 10−5

CAK 202 0.907 208 3.72 3.14 × 10−9 1.32 × 10−3 0.998 176.81 0.05 8.44 × 10−7

CAP 87 0.935 120 0.28 1.28 × 10−7 5.25 × 10−2 0.999 73.40 0.10 5.95 × 10−6

The weakest adsorbent–adsorbate bonds occur for CAP-MR, with a KL constant of
only 0.28 L/mg. It can also be noted that for each of the adsorbents, the Langmuir constant
for methylene blue was higher than that for methyl red sodium salt. The RL for each of the
tested materials ranges from 0 to 1, which means that the adsorption of the tested pollutants
on activated carbons is favorable [23]. The KF parameter present in the Freundlich isotherm
equation determines the selectivity of the adsorption process [24]. According to the data
presented in Table 5, it can be inferred that the CAK sample exhibited the highest selectivity
for the aqueous solution of the organic dye. The KF constant values for MB and MR
were 272.79 and 176.81 mg/g(L/mg)1/n, respectively. In contrast, the lowest values of
this parameter were recorded for the CANa sample. It is worth noting that the KF value
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correlates with the experimental sorption capacity, and in the case of CANa and CAK
carbons, it was higher for methylene blue, while in the case of CAP carbon, it was higher
for methyl red sodium salt. The highest 1/n coefficient was recorded for MR adsorption
on CANa carbon, indicating the greatest heterogeneity of the system. The values of the
constant for the other systems were in the range of 0.01–0.05.

The next phase of the research involved assessing how temperature influenced the
effectiveness of removing methylene blue and methyl red sodium salt. To determine the
nature of the adsorption process, three temperature variants were used: 298 K, 318 K, and
338 K. From the data shown in Figure 8, it can be concluded that the temperature has little
effect on the adsorption of MB/MR on the obtained activated carbons, which is beneficial
from an economic point of view.
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Figure 8. Influence of temperature on the removal of methylene blue and methyl red sodium salt
(activated carbon mass: 25 mg, initial dye solution concentration for methylene blue: 20 mg/L for
CANa, 145 mg/L for CAK, and 50 mg/L for CAP, initial dye concentration for methyl red sodium
salt: 20 mg/L for CANa, 110 mg/L for CAK, and 50 mg/L for CAP, dye solution volume: 50 mL).

Within the temperature range of 298 K to 338 K, a rise in the % removal of the tested
dyes was noted, ranging from 1.2 to 10 percentage points. Notably, in the context of the
adsorption of methyl red sodium salt on CANa carbon, an exceptional increase in dye
removal by 24 percentage points occurred specifically between 298 K and 338 K.

The data obtained experimentally were used to calculate the thermodynamic param-
eters (Table 6). Based on the compiled results, it can be concluded that the adsorption of
the dye on all the obtained adsorbents is spontaneous, as confirmed by the values of ∆G0

and Kd [25]. Considering the positive enthalpy values of ∆H0, it can be inferred that the
reactions occurring between the organic dye and the adsorbent are endothermic. More-
over, the adsorbent/methylene blue systems show higher values of ∆H0, indicating that
these systems have higher internal energy than the analogous systems containing methyl
red sodium salt. Based on the entropy value of ∆S0, it can be determined that systems
containing an aqueous solution of methylene blue generally exhibit higher disorder than
analogous systems containing an aqueous solution of methyl red sodium salt. However,
the exception is CAK carbon, where the opposite relationship is observed.
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Table 6. Thermodynamic parameters of adsorption of aqueous solution of methylene blue and methyl
red sodium salt on the obtained carbon adsorbents.

Sample Dye Temperature (K) Kd ∆G0 (kJ/mol) ∆H0 (kJ/mol) ∆S0 (J/mol × K)

CANa

MB

298 20.85 −7.34
217.16 753.96318 5.17 × 103 −23.04

338 6.67 × 105 −37.44

CAK

298 177.36 −12.83
28.06 137.20318 361.54 −17.22

338 677.42 −15.93

CAP

298 29.05 −8.82
25.54 113.70318 55.55 −9.55

338 98.37 −13.50

CANa

MR

298 3.00 −2.98
27.93 102.88318 6.10 −4.20

338 11.40 −7.17

CAK

298 18.61 −7.11
47.63 184.15318 62.36 −11.23

338 181.09 −14.44

CAP

298 12.10 −6.07
6.12 41.26318 14.13 −7.24

338 16.20 −7.69

The study also investigated the effect of the contact time between the adsorbent and
the adsorbate on the efficiency of organic dye removal by the obtained activated carbons.
Based on the data shown in Figure 9, it can be concluded that the adsorption equilibrium is
established after about 120–150 min from the start of the process. This is advantageous from
an economic point of view. The obtained results were used to determine the mechanism of
adsorption of dyes on the obtained samples (Table 7).
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Figure 9. Influence of adsorbent–adsorbate contact time on the sorption capacities of the activated
carbons obtained (activated carbon mass: 25 mg, initial dye solution concentration for methylene
blue: 20 mg/L for CANa, 145 mg/L for CAK, and 50 mg/L for CAP, initial dye concentration for
methyl red sodium salt: 20 mg/L for CANa, 110 mg/L for CAK, and 50 mg/L for CAP, dye solution
volume: 50 mL, temperature: 23 ± 1 ◦C).
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Table 7. Kinetic model parameters for methylene blue and methyl red sodium salt.

Sample Dye
qe

(mg/g)

Pseudo-First-Order Kinetic Pseudo-Second-Order Kinetic

k1
(1/min) R2 qe/cal

(mg/g)

Reduced
Chi-

Square

k2
(g/mg × min) R2 qe/cal

(mg/g)

Reduced
Chi-

Square

CANa
MB

37 5.94 × 10−6 0.956 17 6.19 × 10−3 1.90 × 10−3 0.998 33 4.02 × 10−2

CAK 277 1.74 × 10−5 0.970 47 1.42 × 10−2 7.32 × 10−3 0.999 279 1.47 × 10−4

CAP 73 1.33 × 10−5 0.986 26 9.76 × 10−3 2.54 × 10−3 0.999 73 6.62 × 10−3

CANa
MR

23 3.83 × 10−6 0.938 11 2.87 × 10−3 3.32 × 10−3 0.997 18 4.70 × 10−2

CAK 201 2.38 × 10−3 0.949 67 1.77 × 10−2 2.93 × 10−3 0.999 199 6.23 × 10−4

CAP 76 7.86 × 10−6 0.770 23 2.76 × 10−2 9.01 × 10−3 0.999 74 9.30 × 10−3

The resulting graphs for the pseudo-first-order, pseudo-second-order, Elovich, and
intraparticle diffusion linear kinetic models are shown in Figure 10. The constants for
the four kinetic models—pseudo-first-order, pseudo-second-order (Table 7), Elovich, and
intraparticle diffusion (Table 8)—were determined. The correlation coefficient R2 for
the pseudo-first-order model is in the range of 0.770–0.986, for Elovich 0.886–0.995, for
intraparticle diffusion 0.830–0.968, while for the pseudo-second-order model, the value is
not less than 0.997.
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Table 8. Elovivch and intraparticle diffusion model parameters for methylene blue and methyl red
sodium salt.

Sample Dye

Elovich Intraparticle Diffusion Model

α (mg/g ×
min) R2 β (g/mg)

Reduced
Chi-

Square

kid (mg/g ×
min1/2) R2 C (mg/g)

Reduced
Chi-

Square

CANa
MB

0.267 0.948 28.72 1.13 0.763 0.927 16.12 18.81

CAK 0.080 0.886 351.28 26.62 2.78 0.920 228.49 18.81

CAP 0.124 0.995 143.16 0.48 1.73 0.930 40.99 1.28

CANa
MR

0.623 0.927 207.50 0.29 4.63 0.897 114.50 68.62

CAK 0.046 0.978 431.06 15.11 0.33 0.847 11.44 0.56

CAP 0.202 0.941 11.49 1.80 0.968 0.830 60.65 5.34

Based on this, it can be concluded that for all activated carbons, the adsorption of
each dye occurs according to the pseudo-second-order model. This conclusion is further
supported by the theoretically calculated values of sorption capacities, which, in the case
of the pseudo-second-order model are closer to the experimental results. This suggests
that for MR and MB adsorption on the activated carbons obtained, the rate of filling the
available active sites by adsorbate is proportional to the square of the number of unfilled
sites [26].

2.4. Mechanism of Adsorption

To elucidate the mechanism of adsorption of methylene blue and methyl red sodium
molecules on the obtained activated carbons, it is first necessary to determine the acidity
dissociation constant (pKa) for each dye. These values are 3.14 and 4.80 for MB and MR,
respectively [27,28]. This is crucial because the pH of the solution plays a key role in the
electrostatic interaction between the adsorbent surface and the adsorbed dye molecule.
The net charge on the adsorbent surface is determined by the isoelectric point and has
a key effect on the nature of the interaction [29]. The dye can be adsorbed in one of the
following ways: (i) interactions with either the positively or negatively charged surface
of the adsorbent via electrostatic attraction, (ii) π-π interactions between aromatic rings
present in the structure of both the adsorbate and the adsorbent, (iii) hydrogen bonds, or
(iv) interactions between an aromatic ring and a heteroatom containing free electron pairs
(Figure 11) [29].

3. Materials and Methods
3.1. Materials

Caraway seeds were used as a precursor to obtain activated carbons. The volatile
content of the material used was 6.69 wt.%, moisture was 5.58 wt.%, and ash was 4.67 wt.%.
The precursor was subjected to 24 h of drying. The starting material thus prepared was
subjected to chemical activation using three activating agents: sodium carbonate, potassium
carbonate, and a 50% solution of orthophosphoric acid(V). Methylene blue (MB) and methyl
red sodium salt (MR) were used as examples of organic impurities (Table 9) and iodine
as an example of an inorganic impurity. The analytical grade methylene blue (MB) and
methyl red sodium salt (MR) were obtained from Merck (Darmstadt, Germany). The rest
of the chemicals employed were acquired from Sigma-Aldrich (Burlington, MA, USA) at
analytical grades.
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3.2. Characterization Techniques

Textural properties of the prepared activated carbons were determined from nitrogen
adsorption/desorption isotherms measured at 77 K using an AutosorbiQ analyzer from
Quantachrome Instruments (Boynton Beach, FL, USA). Prior to adsorption measurements,
the carbons were degassed under vacuum for 12 h at 300 ◦C. Specific surface area was
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calculated from nitrogen adsorption isotherm data using the Brunauer, Emmett, and Teller
method. The total pore volume (Vt) was estimated from the volume of nitrogen adsorbed at
a relative pressure of p/p0 = 0.99, which corresponds to the equilibrium pressure divided
by the saturation pressure, and converted to the volume of liquid nitrogen at a specific
temperature. The average pore size (D) was calculated from the formula: D = 4Vt/SBET,
where SBET is the specific surface area of carbon. The pores were assumed to be cylindrical
in shape. Standard ash analysis was performed in accordance with ASTM D2866-94 (2004).
A Thermo Scientific FLASH 2000 Elemental Analyzer (OEA, Thermo Fisher Scientific,
Waltham, MA, USA) was used to determine the elemental composition of the precursor
and activated carbons.

X-ray photoelectron spectroscopy (XPS) was carried out using an ultra-high-vacuum
photoelectron spectrometer based on a Phoibos150 NAP analyzer (Specs, Berlin, Germany).
The analytical chamber was operated under a vacuum at a pressure close to 5 × 10−9 mbar,
and the sample was irradiated with monochromatic Al Kα radiation (1486.6 eV). Any charge
that occurred during the measurements (due to incomplete neutralization of ejected surface
electrons) was compensated for by rigidly shifting the entire spectrum by the distance
needed to set the C1s binding energy assigned to the random carbon to an assumed value
of 284.8 eV.

SEM images were obtained using a scanning electron microscope (PHILIPS, Eind-
hoven, The Netherlands) in the following conditions: working distance of 14 mm, accelera-
tion voltage of 15 kV, and digital image recording by DISS.

For the precursor and activated carbons, the content of surface acidic and basic func-
tional groups was determined using the Boehm method. The pH of the aqueous extracts
for all samples was measured using an Elmetron pH meter, model CP-401 (ELMETRON,
Zabrze, Poland). In addition, the iodine adsorption number was determined for the ob-
tained carbon adsorbents [30].

3.3. Preparation of Activated Carbons

The dried caraway seeds were divided into three parts, each of which was impregnated
with one of three activators: Na2CO3 (CANa), K2CO3 (CAK), or a 50% solution of H3PO4
(CAP). Regardless of the activator used, the ratio of precursor to activator was 1:2. The
impregnated samples were then placed in a tube oven and heated from room temperature
to 500 ◦C for CAP or to 700 ◦C for CANa and CAK. Once the desired temperature was
reached, the samples were thermostated for 45 min. The chemical activation process was
carried out under a nitrogen atmosphere with a flow rate of 330 mL/min. After the process,
the samples were cooled to room temperature. The CANa and CAK samples were both pre-
cleaned with a hot 5% hydrochloric acid solution and then neutralized with approximately
10 liters of boiling distilled water until a neutral pH filtrate was obtained. The CAP sample
was rinsed with boiling distilled water. The activated carbons thus obtained were then
dried to a constant weight before being sieved through a 0.09 mm sieve.

3.4. Adsorption Studies

Stock aqueous solutions of methylene blue and methyl red sodium salt (MB and
MR 1000 mg/L) were prepared, from which solutions with concentrations ranging from
10–200 mg/L were then prepared. For the adsorption process, 25 mg of each type of
carbon was mixed with 50 mL of a dye solution of the specified concentration. The samples
were vigorously mixed for 24 h on a shaker (Heidolph, Schwabach, Germany) at 300 rpm.
After this time, samples were collected with a syringe and centrifuged for 10 min in a
laboratory centrifuge (OHAUS, Parsippany, NJ, USA). The concentration of methylene
blue and methyl red sodium salt in solution was determined spectrophotometrically at
a maximum wavelength λmax of 665 nm for methylene blue and 430 nm for methyl red
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sodium salt, using a Carry 100 Bio spectrophotometer (Agilent, Santa Clara, CA, USA). The
amount (qe) of dye adsorbed on the adsorbents tested was calculated using the formula:

qe =
C0 − Ce

m
× V (1)

where C0—initial concentration of dye solution (mg/L); Ce—concentration of dye remaining
in solution in equilibrium (mg/L); m—weight of sample (g); and V—volume of dye
solution (L).

The effect of activated carbon mass (20–30 mg) on its sorption capacities towards the
dyes tested was investigated. Each sample was flooded with 50 mL of aqueous MB or MR
solution. The concentrations of methylene blue were 20 mg/L for sample CANa, 40 mg/L
for sample CAP, and 145 mg/L for sample CAK. In contrast, for methyl red sodium,
the concentrations for the CANa, CAP, and CAK samples were 20, 50, and 110 mg/L,
respectively. The effect of the pH value (pH values 3–11) of the aqueous methylene blue
solution and methyl red sodium salt on the sorption capacity of the obtained activated
carbons was determined (BlueLine 25 pH electrode (SI Analytics, Weilheim, Germany).
Measurements were carried out for 25 mg samples. Each was flooded with 50 mL of
aqueous MB or MR solution at concentrations analogous to those used to study the effect
of adsorbent dose. The effect of process temperature on the adsorption of methylene blue
by the obtained carbon materials was also investigated. A 25 mg sample was weighed
and flooded with dye solutions at concentrations analogous to those used to study the
effect of the dose and pH value of the aqueous dye solution. MB sorption tests on the
obtained activated carbons were carried out at three different temperatures: 298 K, 318 K,
and 338 K. For the studies of the effect of adsorbent dose, pH of the dye solution, and
process temperature, the samples were shaken for 24 h on a shaker (Heidolph, Schwabach,
Germany) at a rate of 300 rpm/min. Subsequently, spectrophotometric measurements
were performed.

In order to determine the adsorption mechanism of methylene blue and the sodium salt
of methyl red on the obtained activated carbons, two models have been used: Langmuir (2)
and Freundlich (3). The Langmuir isotherm postulates that the surface of an adsorbent has
a limited number of adsorption sites, known as active centers, each of which can adsorb a
single adsorbate molecule, forming an adsorption monolayer. It is assumed that there are no
intermolecular interactions within the adsorbate [31]. In terms of the Freundlich isotherm,
the assumption involves the formation of a multilayer adsorption film on the surface of the
adsorbent. This model is commonly used to describe heterogeneous systems [32].

Ce

qe
=

1
KL × qmax

+
Ce

qmax
(2)

where Ce—concentration of dye remaining in solution in equilibrium (mg/L), qe—amount
of dye adsorbed (mg/g), KL—Langmuir constant (L/mg), and qmax—adsorption capacity
of the monolayer (mg/g).

logqe = logKF +
1
n
× logCe (3)

where qe—amount of dye adsorbed (mg/g), KF—Freundlich constant (mg/g(L/mg)1/n),
1/n—constant related to the affinity of the adsorbate for the adsorbent, and Ce—concentration
of dye remaining in solution in equilibrium (mg/L).

Langmuir’s isotherm model can be characterized using a dimensionless separation
factor RL:

RL =
1

1 + C0×KL
(4)

The value of RL provides information as to whether the adsorption is unfavorable
(RL > 1), favorable (0 < RL < 1), linear favorable (RL = 1), or irreversible (RL = 0) [33].
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3.5. Thermodynamic Study

Sorption tests were also conducted using methylene blue and methyl red sodium salt
on the obtained activated carbons at different temperatures—298 K, 318 K, and 338 K. Ther-
modynamic parameters such as Gibbs free energy, enthalpy, entropy, and thermodynamic
equilibrium constant were determined using the following formulas for the calculations:

∆G0 = −RTlnKd (5)

∆G0 = ∆H0 − T∆S0 (6)

lnKd =
∆S0

R
− ∆H0

RT
(7)

where ∆G0—Gibbs free energy, R—universal constant (8.314 J/mol × K), T—temperature
(K), ∆H0—enthalpy change, ∆S0—entropy change, Kd—is the dimensionless thermody-
namic adsorption constant, Ce—concentration of dye remaining in solution in equilibrium
(mg/L), and qe—amount of dye adsorbed (mg/g) [34].

3.6. Adsorption Kinetics

In order to determine the kinetics of adsorption of an aqueous solution of methylene
blue and methyl red sodium salt on the produced activated carbons, a pseudo-first-order
kinetic model, proposed by Lagergren (8), a pseudo-second-order model, developed by
Ho–McKay (9), an Elovich (10), and an Intraparticle diffusion (IPD) (11) were used. The
Lagergren model is formulated to describe the adsorption rate, which is directly propor-
tional to the difference between the equilibrium and instantaneous concentration of the
adsorbate adsorbed on the adsorbent [26]. Conversely, the Ho–McKay model, as assumed,
supposes that the rate at which available active sites are filled by the adsorbate is pro-
portional to the square of the number of unfilled sites [26]. The Elovich model primarily
focuses on the initial adsorption rate and can provide information about the surface adsorp-
tion process and active site availability [35]. However, the intraparticle diffusion model
provides insights into the rate of mass transfer within the porous adsorbent particles [36].

log (qe − qt) = logqe −
k1

2.303
t (8)

t
qt

=
1

k2qe2
+

t
qe

(9)

qt =
1
β

ln(1 + αβt) (10)

qt = kidt1/2 + C (11)

where qe—amount of dye adsorbed at equilibrium (mg/g), qt—amount of adsorbate ab-
sorbed in a particular time (mg/g), t—time (min), k1—pseudo-first-order adsorption con-
stant (1/min), k2—pseudo-second-order adsorption constant (g/mg × min). α is the Elovich
initial sorption rate constant (mg/g × min), β is the Elovich desorption constant (g/mg); kid
is the intraparticle diffusion constant (mg/g × min1/2), and C is the IPD model’s boundary
layer constant (mg/g) [37].

The experimental uptake capacities were compared to those calculated from the
models by using the Chi-square test:

Reduced Chi − square = ∑
(qe − qe,m)

2

qe,m
(12)
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where qe is the experimental uptake capacity at equilibrium (mg/g) and qe,m is the modeled
uptake capacity at equilibrium (mg/g).

4. Conclusions

The presented study showed that caraway seeds can be used as a precursor of effective
activated carbons obtained by chemical activation. The adsorbents obtained show different
physicochemical and sorption properties depending on the activator used. Elemental
analysis of the carbonaceous materials showed that the chemical activation of caraway
seeds leads to an increase in elemental carbon content. The specific surface area of the
obtained activated carbons ranges from 269 to 926 m2/g and the iodine numbers for the
samples obtained range from 278 to 1107 mg/g. Dose effect studies have established that
with increasing sample mass, the sorption capacity of the adsorbent decreases, while the %
removal of the contaminant from the aqueous solution increases. This is due to the fact
that with a higher mass of carbon, the number of active sites increases, allowing more dye
molecules to be adsorbed. The adsorption of methylene blue on activated carbons obtained
by chemical activation of caraway seeds follows the Langmuir model, while the adsorption
of methyl red sodium follows the Freundlich model. It was found that as the pH value
of the aqueous methylene blue solution increases, the sorption capacity of the activated
carbons tested increases. In contrast, an inverse relationship was observed for an aqueous
solution of methyl red sodium salt. The calculated values of the thermodynamic parameters
established that the adsorption of the dyes on the obtained adsorbents is endothermic and
spontaneous. It was also established that higher entropy values usually occur in systems
containing methylene blue solution. On the basis of kinetic studies, it was determined that
the adsorption of both dyes on the tested activated carbons follows a pseudo-second-order
model. It was shown that chemical activation of the precursor with potassium carbonate
leads to an adsorbent with the most favorable textural parameters and the highest sorption
capacity towards the pollutants tested.
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