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Abstract: Perylenylethynyl derivatives have been recognized as broad-spectrum antivirals that target
the lipid envelope of enveloped viruses. In this study, we present novel perylenylethynylphe-
nols that exhibit nanomolar or submicromolar antiviral activity against Severe Acute Respira-
tory Syndrome Coronavirus-2 (SARS-CoV-2) and feline infectious peritonitis virus (FIPV) in vitro.
Perylenylethynylphenols incorporate into viral and cellular membranes and block the entry of the
virus into the host cell. Furthermore, these compounds demonstrate an ability to generate singlet oxy-
gen when exposed to visible light. The rate of singlet oxygen production is positively correlated with
antiviral activity, confirming that the inhibition of fusion is primarily due to singlet-oxygen-induced
damage to the viral envelope. The unique combination of a shape that affords affinity to the lipid
bilayer and the capacity to generate singlet oxygen makes perylenylethynylphenols highly effective
scaffolds against enveloped viruses. The anticoronaviral activity of perylenylethynylphenols is strictly
light-dependent and disappears in the absence of daylight (under red light). Moreover, these com-
pounds exhibit negligible cytotoxicity, highlighting their significant potential for further exploration
of the precise antiviral mechanism and the broader scope and limitations of this compound class.

Keywords: perylene; photosensitizers; antivirals; singlet oxygen; SARS-CoV-2

1. Introduction

The Coronaviridae family includes numerous medically significant viral pathogens, as
evidenced by the recent outbreak of SARS-CoV-2 (Severe Acute Respiratory Syndrome
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Coronavirus-2), the causative agent of the COVID-19 pandemic, which has resulted in
over 6 million deaths reported to date. In addition, Feline Coronavirus (FCoV), also called
feline infectious peritonitis virus (FIPV), which causes lethal infections in domestic cats and
wild felines, is currently an intensively researched veterinary pathogen. The treatment of
diseases caused by members of the Coronaviridae family continues to be a challenge, making
the development of new effective drugs against acute coronavirus infections an important
research priority [1–4].

The versatile and light-dependent antiviral activity of perylene-related
hypocrellin- [5–9] and hypericin-type [10–14] compounds has been known for decades. The
other main broad-spectrum membrane-targeting perylene compounds are perylenylethynyl
derivatives. Initially, their mechanism was believed to primarily involve biophysical fu-
sion inhibition [15–17], however, more recent evidence has highlighted the significant
role of photosensitization in their mode of action [18–20]. These compounds are effi-
cient photogenerators of singlet oxygen (1O2), which exerts considerable damage on the
unsaturated components of the lipid bilayer, particularly when the photosensitizer and
double bonds are in close proximity (referred to as the contact-dependent pathway) [21].
This effect is based on ene reaction-driven lipid oxidation, followed by the cleavage
of the C-C bond [21,22]. The 1O2-induced formation of short polar lipids dramatically
changes the membrane rheology, and, in the case of virion envelopes, their ability to fuse
with the host cellular membrane [23,24]. Generally, membrane-targeting 1O2-generating
compounds show remarkable antiviral effects in vitro, e.g., arylidene rhodanines (LJ
compounds) [25–28], methylene blue [29–32], riboflavin derivatives [33], iodinated BOD-
IPY [34], fullerene derivatives [35], phthalocyanines [36–38], pheophorbide a [39] and
other porphyrins [40–42], AIE compounds [43], alkyl Rose Bengal derivatives [44], and a
genetically encoded photosensitizer [45].

Perylene [46–48] and its derivatives [19,49–54] have been recognized as singlet oxy-
gen photogenerators. Recently, we determined the quantum yields of 1O2 generation in
methanol for several (het)arylethynylperylenes and thienylperylenes, which have shown
activity against SARS-CoV-2 [20]. Non-nucleoside perylene antivirals are amphipathic com-
pounds that consist of a lipophilic perylene residue and polar functional groups (Figure 1).
They are somewhat soluble in aqueous buffers containing a few percent of DMSO, likely
forming micelles. The antiviral activity of these compounds is influenced by various factors,
impacting not only their capacity to generate singlet oxygen 1O2, but also their ability to
penetrate lipid membranes [20]. The ability of perylene antivirals to penetrate the mem-
brane is strongly influenced by the shape and amphipathicity of the molecule: compounds
with well-balanced amphipathicity had strong affinity for membranes and high anitiviral
activity, whereas compounds with increased polarity or hydrophobicity were less effective
or inactive [20].
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Figure 1. Recently studied perylene antivirals and the parent compound for this study (HOPY11). Figure 1. Recently studied perylene antivirals and the parent compound for this study (HOPY11).

During our investigation of perylene nucleosides, we synthesized the precursor
compound, phenol 3a [55]. Given its structural resemblance to other perylene antivi-
rals (Figure 1), we decided to evaluate its antiviral activity, which yielded promising results.
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Considering the straightforward synthesis process, we proceeded to prepare a small series
of similar compounds with modifications in the hydroxyl position, the perylene substitution
position, and the inclusion of a heavy atom (bromine) into the molecule (Figure 2).
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Our objective was to investigate spectral properties and singlet oxygen (1O2) genera-
tion ability of the synthesized perylenylethynylphenols and to evaluate their cytotoxicity
and antiviral activity against two medically important coronaviruses, SARS-CoV-2 and
FIPV. In addition, we elucidated the mechanism of their antiviral activity and demonstrated
their specific interaction with viral envelopes and cellular and liposomal membranes.
Finally, we have shown that the antiviral activity of perylenylethynylphenols is strictly
light-dependent and is completely eliminated in the absence of excitation light or daylight.
This work follows our previous larger study of the anti-SARS-CoV activities of perylene-
based compounds [20], explains their mechanisms of anti-coronaviral activities in more
detail, and shows that other modifications of the perylenylethynyl scaffold can provide
compounds with improved biological properties.

2. Results and Discussion
2.1. Synthesis

Our objective was to develop novel compounds based on perylene with the following
features: (i) an extended π-system, where the aryl component is connected to the dye
via an ethynyl bridge, (ii) a hydrophilic group and (iii) a “heavy atom”. By expanding
the π-system, the lipophilic portion of the photosensitizer increases in length, enabling
deeper penetration into the viral envelope and facilitating oxidation by singlet oxygen. The
hydrophilic group not only enhances compound solubility, but also influences the dye’s in-
sertion into the lipid bilayer. Introducing a bromine atom into compounds 3c and 3f allowed
us to examine the impact of a “heavy atom” in the structure of perylenylethynylphenols on
the photophysical and biological properties.

A series of novel perylene-based compounds was synthesized using a Sonogashira
reaction (Scheme 1). The starting compounds included 2- and 3-ethynylperylenes 1a,b
and various iodoarenes 2a–c. The reaction was performed under an inert atmosphere
and heating (80 ◦C for 12 h). Compound 3a was obtained using a previously reported
method [55]. To remove residual DMF and catalyst, the reaction mixture was extracted
with ethyl acetate, water and EDTA. The obtained compounds were purified using column
chromatography. In total, six new compounds were obtained with yields ranging from 49%
to 77%, giving the desired compounds as colored crystals.
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Scheme 1. Synthesis of perylenylethynylphenols.

2.2. Spectral Properties and 1O2 Generation

The obtained perylene derivatives 3a–c exhibited absorption maxima in the 463–466 nm
range, while derivatives 3d–f showed absorption at 438 nm (Figure 3). It is worth noting
that perylene compounds substituted at the third position exhibit a bathochromic shift
compared to perylenes substituted at the second position. Although aryl residues in
diarylacetylenes are coplanar in their ground state, the rotation barrier is very low, and a
number of conformations is present in solutions [56–60].
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Compounds 3a–c exhibited fluorescence maxima in the 472–476 nm range, while
compounds 3d–f showed fluorescence in the 440–442 nm range. A comparison of the
absorption and fluorescence maxima between 3-ethynylperylene derivatives 3a–c and 2-
ethynylperylene derivatives 3d–f revealed a red-shift of approximately 25–30 nm for the
former (Table 1). The Stokes shift, representing the difference between the absorption and
fluorescence wavelengths, was significantly lower for the 2-ethynylperylene compounds
(2–4 nm) compared to the 3-ethynylperylene compounds (9–10 nm). Notably, due to the
pronounced absorption peaks in the 430–470 nm range, perylene derivative molecules
can undergo a transition from the excited singlet state to the triplet state, allowing for
interaction with oxygen molecules to form singlet oxygen.

Table 1. Spectral properties, singlet oxygen generation, and biological evaluation of
perylenylethynylphenols 3a–f.

Compound Structure
absλmax,

nm
emλmax,

nm φ∆(1O2)
SARS-CoV-

2 EC50
(µM) a,b

95% CI Vero Cells
CC50 (µM) a SI

3a
(HOPY11)
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To determine the quantum yield of singlet oxygen generation, the absorption spectra
of the photosensitizers and the SOSG indicator were measured (Figure 4). The rate of
singlet oxygen generation was assessed by monitoring the fluorescence increase in SOSG
(Figure 4, inset) and calculating the slope of the initial linear segment. The bleaching rate of
the chemical trap under blue light irradiation in the absence of a photosensitizer was also
considered.
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Figure 4. Normalized absorbance spectra of perylene 3e and SOSG in methanol solution. Region of
LED irradiation for singlet oxygen generation by perylene compounds is shown in blue, wavelength
of SOSG excitation is shown in green. Inset: time course of SOSG fluorescence intensity in a reaction
with 1O2 generated by perylene compound 3e under blue light irradiation.

Based on previous research on perylene antivirals [18–20], it is known that the photo-
sensitizer generates singlet oxygen within the lipid bilayer of the virus envelope, resulting
in its destruction and viral inactivation. Therefore, we conducted measurements to deter-
mine the quantum yield of singlet oxygen generation for compounds 3a–f (Table 1).

2.3. Biological Studies

We first investigated the cytotoxicity and antiviral activity of perylenylethynylphenols
3a–f against SARS-CoV-2 in Vero (African Green Monkey, adult kidney, epithelial) cells
(Figure 5A–D). These initial experiments were performed under normal lighting (i.e., sam-
ple preparation in daylight and cultivation in the dark) (Figure 5A,B). Perylenylethynylphe-
nols 3a–f showed no cytotoxicity to Vero cells up to 10 µM (CC50 > 50 µM) when incubated
with cells at 37 ◦C for 48 h (Figure 5C, Table 1). Interestingly, all compounds, when at the
highest concentration tested (10 µM), caused a slight increase in the intensity of cellular
metabolism, resulting in cell viability values above 100% (Figure 5C). However, no mor-
phological changes were observed after culturing Vero cells with the tested compounds (up
to 10 µM).

Given previously reported perylene derivatives with potent antiviral activity against
TBEV and SARS-CoV-2 [6,7], we conducted further investigations to evaluate the activity
of the newly synthesized compounds 3a–f against SARS-CoV-2 in Vero cells. Derivatives of
3-ethynylperylene (3a–c) exhibited considerably higher activity against SARS-CoV-2 than
derivatives of 2-ethynylperylene (3d–f) (Table 1, Figure 5D, Supplementary Table S1). This
enhanced activity can be attributed to their stronger absorption in the 430–470 nm range
and their structure being more favorable for positioning within the lipid bilayer, in close
proximity to the unsaturated bonds of fatty acids.

Compound 3b, which possesses a hydroxyl group in the m-position to ethynylperylene
and lacks a bromine atom, exhibited the highest activity against SARS-CoV-2. On the other
hand, compound 3c displayed the lowest activity among the 3-ethynylperylene derivatives,
and 3f ranked among the lowest in the series (Table 1, Figure 5D). These results suggest that
the presence of bromine in perylenylethynylphenols either reduces the antiviral activity
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of the compounds or has an insignificant effect on it. Considering the weak conjugation
between the perylene and phenyl moieties of the molecule, it is likely that the bromine atom
does not significantly influence the stabilization of the triplet state of the photosensitizer,
thereby not affecting the yield of singlet oxygen generation, which directly correlates with
antiviral activity.
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Figure 5. Cytotoxicity and anti-coronaviral activity of perylenylethynylphenols in vitro.
(A) Schematic representation of the cytotoxicity assay using Cell Counting Kit-8 (Dojindo Molec-
ular Technologies, Munich, Germany). (B) Schematic representation of the viral titer reduction
assay. (C) Cytotoxicity of perylenylethynylphenols at the indicated concentrations for Vero cells. (D)
Anti-SARS-CoV-2 activity of perylenylethynylphenols at the indicated concentrations in Vero cells.
(E) Anti-FIPV activity of compound 3a in CRFK cells. Data are expressed as the mean ± SD of two
independent experiments, each performed in triplicate. The horizontal dashed line indicates the
minimum detectable threshold of 1.44 log10 PFU/mL.

Compound 3e, among the derivatives of 2-ethynylperylene, showed the highest
activity against the virus, while compound 3b demonstrated the highest activity overall.
This suggests that m-substituted peryleneylethynylphenols exhibit greater antiviral activity
than p-substituted ones (Table 1, Figure 5D). Although the difference in the antiviral
properties of perylene photosensitizers cannot be solely attributed to variations in their
singlet oxygen generation capacity, a correlation can be observed when comparing the
data on singlet oxygen generation with antiviral activity (Table 1). Specifically, structurally
similar perylene derivatives with either 2- or 3-substitution tend to exhibit higher activity
when they have a higher quantum yield of singlet oxygen generation. This indicates that
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some form of affinity to the lipid bilayer may also play a significant role as a prerequisite
for achieving high antiviral activity [20].

Next, we selected a representative compound, 3a, to further investigate the mechanism
of anticoronaviral activity of perylenylethynylphenols. SARS-CoV-2 was pre-incubated
with 3a (10 µM) for 120 min (the mixture of compound and virus was prepared in daylight
and incubated in the dark), and then the viability of compound-treated virus was estimated
using a plaque assay (Figure 6A). Our mechanistic studies revealed that compound 3a
(and probably all synthesized perylenylethynylphenols) exhibited a direct (virucidal, virus-
inactivating) effect on free viral particles and reduced/eliminated the viability of SARS-
CoV-2 virions in the initial stages of the viral replication cycle. The decrease in titer after
the treatment of SARS-CoV-2 with 3a was strictly dependent on the starting virus titer (104,
106, and 107 PFU/mL) and resulted in a decrease in viral titer of more than two orders
of magnitude compared with control (Figure 6B). Thus, similar to other perylene-based
antiviral agents [20], perylenylethynylphenols intercalate into viral membrane envelopes
and act as blockers of the viral entry/fusion process. Blocking of virus–cell fusion was
previously demonstrated for similar perylenylethynyl derivatives using a cell-based fusion
assay [20].

Apart from the viral envelopes, perylenylethynylphenols also showed a strong affinity
for cellular membranes; compound 3a was extensively incorporated into the plasmatic
membranes, nuclear envelopes and intracellular membranes (probably membranes of
lysozomes or endosomes) of porcine stable kidney cells (PS), a model cell line suitable for
efficient viusalisation of compound-cell interactions by confocal microscopy (Figure 6C).
The incorporation of 3a into cellular membranes is not surprising; both viral and cellular
membranes share the same structural features and exhibit similar biophysical properties.
Despite the intense incorporation of the compounds into cell membranes, we observed no
signs of cytotoxicity or morphological abnormalities in PS cells treated with the compound
(Figure 6C).

The affinity of 3a to lipid membranes was further confirmed using a liposomal (protein-
free) membrane model system (Figure 6D,E). Compound 3a (10 µM) dissolved in PBS
showed poor fluorescence capability; however, after the addition of 3a to unilamellar
liposomes (EPC/Chol of 70/30 mol%), the fluorescence significantly increased, indicating
efficient penetration of 3a into liposomal membranes (Figure 6D). The kinetics of liposome
penetration of 3a were measured as the steady-state fluorescence response at 520 nm, which
reached maximal intensity of about 4 × 105 CPE after the complete incubation period
(3500 s) (Figure 6E).

Furthermore, we investigated the mechanism of antiviral activity of perylenylethynylphe-
nols using FIPV, another member of the Coronaviridae family, which is an important veteri-
nary pathogen. Under normal lighting (i.e., sample preparation in daylight and cultivation
in the dark), compound 3a showed nanomolar anti-FIPV potency (EC50 of 0.1958 µM,
95% CI of 0.1185–0.3234 µM) and no cytotoxicity to Felis catus kidney cortex (CRFK) cells
(CC50 > 10 µM), a cell line commonly used for FIPV cultivation and FIPV-based plaque
assays (Figure 5E).

Considering that perylenylethynylphenols are potent 1O2 photogenerators, we inves-
tigated their coronavirus inactivation activity after the irradiation of compound-pretreated
FIPV with blue light (465–480 nm, with an approximate power density of 30 mW/cm2; note:
the 465–480 nm wavelength is close to the excitation maxima of perylenylethynylphenols).
In this experiment, (i) compound 3a and the virus were mixed in daylight and irradiated
with blue light for 10 min (Figure 7D, top panel), or (ii) the compound and virus were
mixed in daylight and incubated in the dark for 10 min (Figure 7D, medium panel). Then,
both samples (irradiated and non-irradiated) were incubated for 1 h at 37 ◦C in the dark,
and the viability of FIPV was determined by a plaque assay. We observed a significant
increase in anti-FIPV activity of 3a after irradiation with blue light (Figure 7E, blue line), as
compared with the control (non-irradiated sample, Figure 7E, black line). We speculate that
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the observed enhancement of antiviral (virus inactivation) activity of 3a is due to increased
1O2 photogeneration during sample irradiation.
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Figure 6. Interaction of compound 3a with viral envelopes, cellular membranes and liposomal
mebranes. (A) Demonstration of direct (virucidal) activity of 3a against SARS-CoV-2 and its interac-
tion with the viral envelope. Schematic representation of the experiment (virucidal plaque assay).
(B) Quantification of the virucidal activity of 3a using Vero E6 cells. The virus at the indicated titers
was incubated with the compounds (10 µM) for 120 min. Viral titers were then quantified by plaque
assays. (C) Penetration of 3a into PS cells. Cells were seeded on slides for 24 h, then treated with 3a
(10 µM) and incubated for 1 h. Photomicrographs were taken using confocal microscopy. (D) Ex-
citation and emission spectra of 3a (10 µM) in DMSO. (E) Fluorescence spectra of free compound
3a in PBS (10 µM, dashed line) and a mixture of 3a and LPS in PBS. (F) Kinetics of the penetration
of 3a (10 µM) into liposomes, measured at 520 nm. Data are expressed as the mean ± SD of two
independent experiments, each performed in triplicate.
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Figure 7. Light-dependent cytotoxicity and antiviral activity of perylenylethynylphenols. (A) De-
termination of photocytotoxicity (schematic representation of experiments). (B) Cytotoxicity of
perylenylethynylphenols under normal light conditions (sample preparation in daylight, incubation
of compounds with CRFK cells in the dark). (C) Cytotoxicity of perylenylethynylphenols after irradi-
ation with blue light for 10 min at RT with LEDs (465–480 nm, 30 mW/cm2). (D) Light-dependent
anti-FIPV activity of compound 3a (schematic representation of the experiments). (E) FIPV was
treated with 3a, as described in (D), and the viability of the compound-treated virus was determined
by plaque assays. Data are expressed as the mean ± SD of two independent experiments, each
performed in triplicate. The horizontal dashed line indicates the minimum detectable threshold of
1.44 log10 PFU/mL.

Interestingly, compound 3a showed some FIPV-inactivation activity even in the non-
irradiated sample (Figure 7E, black line). It is evident that the anti-FIPV activity of the
perylenylethynylphenols is inducible by daylight, and even the brief exposure of the
compounds to daylight during sample preparation and pipetting of the samples onto
microtiter plates is sufficient to activate the photosensitizers and manifest their light-
dependent antiviral activity. These results are consistent with the observed antiviral
activity of 3a and other perylenylethynylphenols under normal lighting, as described above
(Figures 5D,E and 6B).

To completely eliminate the influence of daylight on the anti-FIPV activity of
perylenylethynylphenols, we performed a parallel experiment in a dark room. In this
experiment, all manipulations, including sample preparation and plaque assays, were
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performed under red light (624 ± 20 nm) (Figure 7D, bottom panel). As expected, the
anti-FIPV activity of 3a (up to 10 µM) completely disappeared (Figure 7E, red line).

Finally, we examined the photocytotoxicity of 3a and other perylenylethynylphenols,
to CRFK cells. The compounds (0 to 10 µM) were added to CRFK monolayers and ir-
radiated with blue light (465–480 nm, 30 mW/cm2) for 10 min (Figure 7A, top panel).
After another 48-h incubation, cell viability was measured and compared with that of
non-irradiated cells (controls, Figure 7A, bottom panel). Interestingly, we observed no
increase in the cytotoxicity of the studied compounds in irradiated compound-treated cells
(CC50 > 10 uM) compared with controls. The irradiation led to the increased metabolic
activity of compound-treated cells (cell viabilites > 100%), which was particularly true for
compounds 3b and 3e. It is likely that metabolically active cells, unlike viruses, are more
resistant to the deleterious effects of the compounds by undergoing metabolic restructuring
and replacing oxidized membrane lipids, thereby restoring the physiological rheology
of cell membranes [16]. In our previous study [20], some perylenylethynyl derivatives
were highly cytotoxic for Vero cells after irradiation with blue light. It is apparent that the
photocytotoxicity of perylene compounds depends not only on the compound structure
and its ability to generate 1O2, but also on the cell type.

Due to the unusual mechanism of antiviral action based on membrane targeting
and 1O2 photogeneration, perylenylethynylphenols, together with other perylene-based
compounds, represent broad-spectrum antiviral agents active against a variety of enveloped
viruses. In agreement with this claim, perylenylethynyl compounds have been previously
described as potent inhibitors/inactivators of numerous phylogenetically unrelated viral
pathogens, such as herpes simplex virus 1 and 2 [17], influenza A virus [16], human
parainfluenza virus type 3 [61], African swine fever virus [62], human respiratory syncytial
virus [61], and some members of the Flaviviridae family (TBEV, hepatitis C virus) [16,63].

3. Materials and Methods
3.1. General Methods

3- and 2-Ethynylperylenes [55] were obtained as described. 4-Iodophenol (Fluka)
was recrystallized from n-hexane before use. Copper (I) iodide, bis(triphenylphosphine)
dichloropalladium (Aldrich, St. Louis, MO, USA), trimethylamine (Acros, Shanghai, China),
and other reagents (Chimmed, Moscow, Russia) were used without additional purification.
All solvents were purified according to the Armarego and Chai guide [64].

1H and 13C NMR spectra were referenced to CDCl3 (7.26 ppm for 1H and 77.16 ppm
for 13C). 1H NMR coupling constants are reported in hertz (Hz) and refer to apparent
multiplicities. UV spectra were recorded on a Varian Cary 100 spectrophotometer. Flu-
orescence spectra were recorded using a Perkin Elmer LS 55 fluorescence spectrometer.
Electrospray ionization high resolution mass spectra (ESI HRMS) were recorded using a
Thermo Scientific Orbitrap Exactive mass spectrometer in positive ion mode and processed
with mMass 5.5.0 software. Thin-layer liquid chromatography was performed using TLC
Silica gel 60 F254 aluminium sheets (Merck, Rahway, NJ, USA).

3.2. Rate of Singlet Oxygen Measurement

The ROS generation rate was estimated using the spectrofluorimetric method, based on
the fluorescense changes of Singlet Oxigen Sensor Green (SOSG®, Lumiprobe, Cockeysville,
MD, USA) in methanol solution. Oxidation of SOSG by singlet oxygen results in peroxide
formation enhancing SOSG fluorescence.

Spectrophotometric measurements were performed in a Qpod 2e thermostated cuvette
holder (Quantum Northwest, Liberty Lake, WA, USA) at 25 ◦C and with magnetic stirring
(500 rpm). Absorption spectra were recorded using a MayaPro spectrophotometer (Ocean
Optics, Orlando, FL, USA) and a stabilized white light source with a SLS201L tungsten lamp
(Thorlabs, Newton, NJ, USA). The fluorescence of SOSG was measured with a Flame CCD
spectrometer (Ocean Optics, Orlando, FL, USA) in StripChart mode (530 nm), excitation of
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the SOSG fluorescence was carried out with a PLS-510 LED laser (InTop, St. Petersburg,
Russia) in CW mode at the wavelength of 510 nm.

To study photosensitized 1O2 generation, we used a white MCWHLP1 LED (Thorlabs,
USA) with filters to limit the radiation to the 430–450 nm range (5.5 mW/cm2). Illumination
was uniform over the entire volume of the cuvette, to prevent artifacts associated with
the diffusion of non-reacted components from entering into the illuminated volume of the
cuvette. Illumination was performed in pulsed mode, with 1 s of illumination followed by
5 s of dark adaptation, during which the fluorescence spectrum of the photosensitizer-SOSG
solution was recorded.

Singlet oxygen generation quantum yield for compounds 3a–3f in methanol was
calculated according to Equation (1):

ϕ∆ = ϕ0
∆ ∗

r
r0

(
1− 10−A0

)
(1− 10−A)

, (1)

where r is the rate of SOSG fluorescence increase in solution of the photosensitizer (PS), A
is the PS absorbance in the region of illumination, and index 0 represents reference PS (we
used perylene compound C1T11 [65] with ϕ0

∆ = 0.59 in methanol [20]).
General procedure for the synthesis of (perylen-3-ylethynyl)-(3a–c) and (perylen-2-

ylethynyl)-(3d–f) arenes. 3- or 2-Ethynylperylene (1.2 eq.), the corresponding iodophenol
(1 eq., see Table 1), bis(triphenylphosphine)dichloropalladium (0.05 eq.), and copper(I)
iodide (0.1 eq.) were dissolved in dry DMF (~100 mL). The mixture was evacuated and
purged with argon 5 times, then triethylamine (5 eq.) was added. The reaction mixture was
heated up to 80 ◦C and stirred overnight. Then, the mixture was diluted with ethyl acetate
(150 mL), washed with 1% aq. EDTA (200 mL), water (3 × 200 mL), and brine (200 mL),
dried over anhydrous sodium sulphate, filtered off, and evaporated in vacuo to give a raw
solid. The residue was purified by column chromatography in the appropriate solvent
system on silica gel. The corresponding fractions were pooled and evaporated to yield
desired compounds as colored solids.

4-(Perylen-3-ylethynyl)phenol (3a). 1H and 13C NMR and HRMS had been described
before [55]. UV-Vis (96% EtOH, λmax, nm): 228, 257, 334, 438 and 466. Fluorescence (96%
EtOH, λmax, nm) (ex., for em. at 520 nm): 258, 334, 440, 468; (em., for ex. 420 nm): 476,
510, 539.

3-(Perylen-3-ylethynyl)phenol (3b) was prepared from 3-iodophenol (220 mg, 1 mmol)
and 3-ethynylperylene, purified in 0→2% EtOAc in DCM, yield 241 mg (65%). Orange
solid. Rf 0.40 (DCM); dec. > 200 ◦C (toluene). 1H NMR (500 MHz, DMSO-d6) δ 9.74 (s,
1H), 8.45 (d, J = 7.5 Hz, 1H), 8.40 (s, 1H), 8.37–8.29 (m, 2H), 8.00 (s, 1H), 7.88–7.74 (m, 3H),
7.62–7.50 (m, 3H), 7.27 (t, J = 7.9 Hz, 1H), 7.08 (d, J = 7.3 Hz, 1H), 7.02 (s, 1H), 6.91–6.82 (m,
1H). 13C NMR (126 MHz, DMSO-d6) δ 157.34, 134.17, 134.08, 131.14, 130.69, 130.67, 130.45,
129.91, 129.83, 129.79, 129.45, 128.46, 128.43, 128.18, 128.14, 127.75, 127.67, 127.64, 127.56,
127.52, 127.34, 126.81, 126.76, 123.06, 122.38, 122.28, 121.38, 120.92, 120.68, 117.81, 117.79,
116.38, 89.88, 88.85. APCI HRMS m/z 369.1286 [M+H]+ (calcd. for C28H17O+, 369.1274).
UV-Vis (96% EtOH, λmax, nm): 220, 257, 330, 435 and 463. Fluorescence (96% EtOH, λmax,
nm) (ex., for em. at 520 nm): 256, 330, 437, 463; (em., for ex. 420 nm): 472, 505, 537.

4-(Perylen-3-ylethynyl)-2-bromophenol (3c) was prepared from 2-bromo-4-iodophenol
(150 mg, 0.33 mmol) and 3-ethynylperylene, purified in toluene, yield 95 mg (64%). Red
solid. Rf 0.70 (DCM); dec. > 200 ◦C (toluene). 1H NMR (500 MHz, DMSO-d6) δ 10.88 (s,
1H), 8.44 (d, J = 7.5 Hz, 1H), 8.42–8.30 (m, 3H), 8.24 (d, J = 8.2 Hz, 1H), 7.91–7.85 (m, 1H),
7.86–7.78 (m, 2H), 7.75 (d, J = 7.8 Hz, 1H), 7.68 (t, J = 7.9 Hz, 1H), 7.59–7.50 (m, 3H), 7.04
(d, J = 8.4 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ 155.12, 135.76, 134.17, 133.74, 132.26,
131.08, 130.96, 130.87, 130.12, 129.84, 128.56, 128.28, 127.85, 127.76, 127.60, 126.96, 126.92,
125.75, 121.53, 121.35, 121.21, 120.26, 119.49, 116.56, 114.27, 109.45, 94.56, 86.81. APCI HRMS
m/z 447.0386 [M+H]+ (calcd. for C28H16BrO+, 447.0379). UV-Vis (96% EtOH, λmax, nm):
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229, 257, 335, 438, and 466. Fluorescence (96% EtOH, λmax, nm) (ex., for em. At 520 nm):
258, 335, 439, 468; (em., for ex. 420 nm): 475, 508, 539.

4-(Perylen-2-ylethynyl)phenol (3d) was prepared from 4-iodophenol (220 mg, 1.0 mmol)
and 2-ethynylperylene, purified in 0→2% EtOAc in DCM, yield 204 mg (55%). Brownish
solid. Rf 0.36 (DCM); dec. > 200 ◦C (toluene). 1H NMR (500 MHz, DMSO-d6) δ 9.97 (s,
1H), 8.42 (d, J = 7.5 Hz, 1H), 8.37–8.29 (m, 3H), 7.94 (s, 1H), 7.84–7.73 (m, 3H), 7.58–7.50
(m, 3H), 7.48 (d, J = 8.3 Hz, 2H), 6.86 (d, J = 8.3 Hz, 2H).13C NMR (126 MHz, DMSO-d6) δ
158.13, 134.16, 134.13, 133.04, 131.02, 130.41, 130.15, 129.95, 129.50, 128.37, 128.11, 127.75,
127.57, 127.46, 127.11, 126.76, 122.34, 121.26, 121.15, 120.86, 115.75, 112.37, 90.49, 87.52. APCI
HRMS m/z 369.1285 [M+H]+ (calcd. For C28H17O+, 369.1274). UV-Vis (96% EtOH, λmax,
nm): 228, 259, 337, 295, 390, 412, and 438. Fluorescence (96% EtOH, λmax, nm) (ex., for em.
At 520 nm): 258, 296, 337, 390, 413, 439, 467; (em., for ex. 420 nm): 442, 471, 503.

3-(Perylen-2-ylethynyl)phenol (3e) was prepared from 3-iodophenol (220 mg, 1.0 mmol)
and 2-ethynylperylene, purified in 0→2% EtOAc in DCM, yield 179 mg (49%). Brownish
solid. Rf 0.42 (DCM); dec. > 200 ◦C (toluene). 1H NMR (500 MHz, DMSO-d6) δ 9.74 (s,
1H), 8.45 (d, J = 7.5 Hz, 1H), 8.40 (s, 1H), 8.37–8.29 (m, 2H), 8.00 (s, 1H), 7.88–7.74 (m, 3H),
7.62–7.50 (m, 3H), 7.27 (t, J = 7.9 Hz, 1H), 7.08 (d, J = 7.3 Hz, 1H), 7.02 (s, 1H), 6.91–6.82 (m,
1H). 13C NMR (126 MHz, DMSO-d6) δ 157.34, 134.17, 134.08, 131.14, 130.69, 130.67, 130.45,
129.91, 129.83, 129.79, 129.45, 128.46, 128.43, 128.18, 128.14, 127.75, 127.67, 127.64, 127.56,
127.52, 127.34, 126.81, 126.76, 123.06, 122.38, 122.28, 121.38, 120.92, 120.68, 117.81, 117.79,
116.38, 89.88, 88.85. APCI HRMS m/z 369.1282 [M+H]+ (calcd. For C28H17O+, 369.1274).
UV-Vis (96% EtOH, λmax, nm): 226, 261, 283, 322, 333, 389, 412, and 438. Fluorescence (96%
EtOH, λmax, nm) (ex., for em. at 520 nm): 258, 283, 334, 390, 412, 439; (em., for ex. 420 nm):
440, 470, 504.

4-(Perylen-2-ylethynyl)-2-bromophenol (3f) was prepared from 2-bromo-4-iodophenol
(150 mg, 0.33 mmol) and 2-ethynylperylene, purified in toluene, yield 116 mg (77%). Yellow
solid. Rf 0.72 (DCM); dec. > 200 ◦C (toluene). 1H NMR (500 MHz, DMSO-d6) δ 10.87 (s,
1H), 8.44–8.28 (m, 4H), 7.94 (s, 1H), 7.84–7.71 (m, 4H), 7.56–7.45 (m, 4H), 7.04 (d, J = 8.4 Hz,
1H).13C NMR (126 MHz, DMSO-d6) δ 155.09, 135.86, 134.24, 134.15, 132.16, 131.15, 130.50,
130.42, 129.99, 129.56, 128.53, 128.25, 127.81, 127.74, 127.60, 127.31, 126.86, 122.49, 121.39,
121.36, 121.00, 120.88, 116.58, 114.17, 109.38, 88.88, 88.65. APCI HRMS m/z 447.0390 [M+H]+

(calcd. for C28H16BrO+, 447.0379). UV-Vis (96% EtOH, λmax, nm): 233, 258, 295, 326, 391,
412, and 438. Fluorescence (96% EtOH, λmax, nm) (ex., for em. at 520 nm): 258, 295, 337,
391, 413, 439, 469; (em., for ex. 440 nm): 442, 471, 503.

3.3. Biological Studies
3.3.1. Cells and Viruses

SARS-CoV-2 (strain SARS-CoV-2/human/Czech Republic/951/2020) was isolated
from a clinical specimen at the National Institute of Health, Prague, Czech Republic, and
was kindly provided by Dr. Jan Weber, Institute of Organic Chemistry and Biochemistry,
Prague, Czech Republic. In our antiviral and mechanistic assays, we also used FIPV (ATCC
VR990). Experiments using authentic SARS-CoV-2 and FIPV were performed in our BSL-3
and BSL-2 facilities, respectively.

Vero cells (ATCC CCL-81) were used for SARS-CoV-2 propagation and for anti-SARS-
CoV-2 assays, whereas Vero E6 cells (ATCC CRL-1586) were used for plaque assays. CRFK
cells (ATCC CCL-94) were used for anti-FIPV assays and FIPV-based plaque assays. PS
cells [66] were used for studies of penetration of the compounds into cell membranes. PS
cells were provided by the National Reference Laboratory for Tissue Cultures, National
Institute of Public Health, Prague, Czech Republic. Vero, Vero E6, and CRFK cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM), whereas PS cells were cultured
in Leibovitz’s (L-15) medium. The media were supplemented with 3% (L-15) or 10%
(DMEM) newborn calf serum, 100 U/mL penicillin, 100 µg/mL streptomycin, and 1%
glutamine (Sigma-Aldrich, Prague, Czech Republic). Vero and Vero E6 cells were cultured at
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37 ◦C under 5% CO2, whereas PS cells were cultivated at 37 ◦C under a normal atmosphere
(without CO2 supplementation).

3.3.2. Cytotoxicity Assay

Vero cells were cultured for 24 h in 96-well plates to form a confluent monolayer, and
then were treated with the tested compounds at concentrations of 0–10 µM. After 48 h of
cultivation in the dark at 37 ◦C under 5% CO2, the cell culture medium was aspirated. The
potential cytotoxicity of the tested derivatives was determined based on cell viability using
Cell Counting Kit-8 (Dojindo Molecular Technologies, Munich, Germany) according to the
manufacturer’s instructions (Figure 5A).

3.3.3. Virus Titer Reduction Assay

Virus titer reduction assay was performed as described previously [20]. Briefly, Vero
cells were seeded in 96-well plates and incubated for 24 h to form a confluent monolayer.
The virus in DMEM (MOI of 0.1) was mixed with each compound (0–2 µM) and incubated
in the dark at 37 ◦C for 30 min and then used for infection of the cells. At 48 h post-infection
(p.i.), the culture medium was collected and viral titers were determined by plaque assays
(expressed as PFU/mL) (Figure 5B) as previously described [67] and used to estimate
the 50% effective concentration (EC50) (Table 1). We also calculated EC50 values from
log-transformed virus titers (App. EC50) (Supplementary Table S1) to better visualize the
biological activity of the compounds.

3.3.4. Determination of the Virucidal (Virus-Inactivating) Activity of the Compounds

To determine the virucidal activity of compound 3a (10 µM), SARS-CoV-2 in DMEM
(titers of 107, 106, and 104 PFU/mL) was mixed with the compound and incubated in the
dark at 37 ◦C for 120 min. Subsequently, the viability of the compound-treated virus was
estimated using a plaque assay, as previously described [67]. Viral titers were expressed as
PFU/mL (Figure 6A).

3.3.5. Confocal Microscopy

Confocal microscopy was used to study the penetration of compound 3a into cellular
membranes. PS cells were treated with 3a (10 µM) in a µ-Slide 8 Well (IbidiGmbH, Gräfelf-
ing, Germany) in the dark for 60 min at 37 ◦C. The samples were analyzed for fluorescent
signal distribution and intensity using a Leica SP8 confocal microscope (Leica, Wetzlar,
Germany) as described previously [20].

3.3.6. Interaction of the Compounds with Liposomes

The samples’ steady-state fluorescence characteristics were measured in L-format
using a Chronos DFD Fluorescence spectrometer (ISS, Baltimore, MD, USA) equipped with
a 300 W Cermax xenon arc lamp (ISS, Baltimore, MD, USA), a concave holographic grating
monochromator, and a PMT detector. The required amount of each sample was diluted
in DMSO and measured in a 1-cm quartz cuvette, at a constant temperature of 25 ◦C. The
resulting data were evaluated using Vinci software version 2 (ISS, Baltimore, MD, USA)
and correlated to the utilized optical configuration.

The kinetics of the incorporation of compounds into liposome membrane models
were determined using steady-state fluorescence spectroscopy at a constant excitation
and emission wavelength, according to the corresponding sample excitation and emission
maxima. We added 50 µL of LNP suspension to 10 µM of the analyte in PBS and monitored
the increase in fluorescence intensity over the time range 0–2500 s.

3.3.7. Studies of Photodynamic Inactivation of FIPV Virions

Virus in DMEM (titer of 106 PFU/mL) was mixed with 3a (0–10 µM) in a microtiter
plate in daylight and irradiated for 10 min at RT with LEDs (465–480 nm) at an approximate
power density of 30 mW/cm2 (Figure 7D, top panel). As a negative control, the virus was
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mixed with 3a (0–10 µM) in daylight and incubated with the compound for 10 min in the
dark at RT (Figure 7D, middle panel). Subsequently, both irradiated and non-irradiated
virus samples were incubated in the dark at 37 ◦C for an additional 60 min. Viral titers
were determined by plaque assays (also in daylight). To eliminate the influence of daylight
on compound activity, the entire experiment, including all manipulations with the samples,
was performed in a dark room under red light only. The virus sample was mixed with 3a
(0–10 µM), incubated at 37 ◦C for 60 min, and the viability of the virus was assessed by
plaque assays (Figure 7D, bottom panel). The plaque assays were also performed under
red light.

3.3.8. Studies of Light-Induced Cytotoxicity (Photocytotoxicity)

To determine the light-induced cytotoxicity of the compounds, CRFK cells were
cultured in 96-well plates for 24 h to form a confluent monolayer and then treated with the
tested compounds at concentrations ranging from 0 to 10 µM in daylight. Subsequently,
cells treated with the compounds were irradiated with LEDs (465–480 nm, 30 mW/cm2) for
10 min at RT (Figure 7A, top panel). As a negative control, CRFK cells were treated with the
compounds in daylight and then incubated in the dark at RT for 10 min (Figure 7A, bottom
panel). Subsequently, both irradiated and non-irradiated cell monolayers were incubated
for 48 h in the dark at 37 ◦C. After incubation, the potential photocytotoxicity of the
compounds was determined using Cell Counting Kit-8 (Dojindo Molecular Technologies,
Munich, Germany) according to the manufacturer’s instructions.

4. Conclusions

In conclusion, this study investigated the spectral properties and 1O2 generation
capability of a series of novel perylene-based compounds. Antiviral activity against two
important coronaviruses, SARS-CoV-2 and FIPV, was studied in vitro to elucidate their
mechanism of antiviral action based on (i) specific interaction with the viral envelope
and (ii) photosensitization and 1O2-mediated impairment of viral particles. The results
revealed that 3-ethynylperylene derivatives exhibited higher antiviral activity compared
to 2-ethynylperylene derivatives. Compound 3b showed the strongest potency against
SARS-CoV-2 in the whole series. Interestingly, the presence of a bromine atom in the
compounds did not significantly affect their antiviral activity.

Analysis of singlet oxygen generation and antiviral activity data suggests that the
differences in antiviral properties among perylene photosensitizers could not be attributed
solely to variations in their singlet oxygen generation capacity. However, a trend was
observed, indicating that compounds with a higher quantum yield of singlet oxygen gener-
ation generally exhibited higher antiviral activity. These findings highlight the importance
of both structural factors and affinity to the lipid bilayer for determining the antiviral
activity of perylene derivatives.

The anti-SARS-CoV-2 and anti-FIPV activities of the perylenylethynylphenols were
strictly dependent on the excitation light and disappeared when the experiments were
performed under red light (with a wavelength far from the excitation maxima of the com-
pounds). Exposure of the virus–compound mixture to daylight (normal lighting conditions)
during sample preparation was sufficient for the induction of the light-dependent antiviral
activity of the perylenylethynylphenols. Thus, all of the observed antiviral effects of these
compounds were induced exclusively by daylight and were even enhanced by light of the
excitation wavelength. The light-dependent antiviral activity of perylenylethynylphenols
is closely related to 1O2 photogeneration. In fact, 1O2 itself is responsible for the antivi-
ral (or virucidal/virus-inactivating) activity of the compounds via the peroxidation of
membrane lipids and destruction of viral envelopes, leading to blockage of the virus-cell
fusion machinery.

Perylenylethynylphenols and other amphipathic perylene compounds hold promise
as potential candidates for the development of effective antiviral agents against enveloped
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viruses. Further research is warranted to explore the scope and limitations of these com-
pounds, paving the way for their potential application in the field of antiviral therapeutics.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28176278/s1, Figures S1–S5: NMR spectra of compounds
3b–f, Table S1: EC50 values calculated from the log-transformed viral titers.
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