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Abstract: Developing efficient and sensitive MOF-based luminescence sensors for bioactive molecule
detection is of great significance and remains a challenge. Benefiting from favorable chemical and
thermal stability, as well as excellent luminescence performance, a porous Zn(II)Ho(III) heterometallic–
organic framework (ZnHoMOF) was selected here as a bifunctional luminescence sensor for the early
diagnosis of a toluene exposure biomarker of hippuric acid (HA) through “turn-on” luminescence
enhancing response and the daily monitoring of NFT/NFZ antibiotics through “turn-off” quenching
effects in aqueous media with high sensitivity, acceptable selectivity, good anti-interference, excep-
tional recyclability performance, and low detection limits (LODs) of 0.7 ppm for HA, 0.04 ppm for
NFT, and 0.05 ppm for NFZ. Moreover, the developed sensor was employed to quantify HA in
diluted urine samples and NFT/NFZ in natural river water with satisfactory results. In addition, the
sensing mechanisms of ZnHoMOF as a dual-response chemosensor in efficient detection of HA and
NFT/NFZ antibiotics were conducted from the view of photo-induced electron transfer (PET), as
well as inner filter effects (IFEs), with the help of time-dependent density functional theory (TD-DFT)
and spectral overlap experiments.

Keywords: antibiotics detection; bifunctional luminescence sensor; biomarker detection; heterometallic
metal–organic framework; sensing mechanism

1. Introduction

The increasing focus on environmental concerns in contemporary society has led to
heightened attention toward toluene, an essential volatile solvent in paints and polymer
coatings, a crucial organic chemical raw material, and a significant high-octane gasoline
additive. Its extensive utilization in the chemical industry and everyday life has been
well-documented. Extensive research has demonstrated that toluene not only presents a
substantial environmental hazard but also has the potential to diminish human immunity
upon prolonged exposure, thereby potentially resulting in childhood leukemia, chronic
kidney failure, and irreversible damage to the nervous system [1,2]. In contrast to the
variety and practicality of toluene detection methods employed in environmental settings,
the options available for detecting absorbed toluene within the human body are limited.
Nevertheless, given the inherent disparities among individuals, the detection of toluene
levels in humans holds greater significance and relevance than that of toluene in the environ-
ment. Research indicates that approximately 80% of absorbed toluene undergoes metabolic
transformation into the biomarker known as hippuric acid (HA) in the liver and kidneys,
subsequently being excreted through urine [3]. As the exposure biomarker of toluene,
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the HA level in urine, thus, can well reflect the level of toluene exposure in the human
body [4]. Meanwhile, the environmental and health issues caused by antibiotics are going
from bad to worse. The judicious utilization of antibiotics is crucial in the management and
prevention of diseases, safeguarding the body against bacterial infections and significantly
enhancing human well-being. Regrettably, the inappropriate and excessive application
of antibiotics in both medical and livestock sectors transforms beneficial practices into
detrimental ones. Ultimately, recalcitrant antibiotics accumulate in humans via the water
cycle and food chain, resulting in profound adverse effects, substantial impairment of liver
and kidney functions, and the emergence of drug-resistant superbugs [5,6]. Considering
the cost and broad antibacterial issues, nitrofuran antibiotics, especially nitrofurantoin
(NFT) and nitrofurazone (NFZ), are the most commonly used antibiotics in the fields of
animal husbandry, poultry farming, and fisheries. Ultimately, the overused or misused
nitrofuran antibiotics accumulate in the human body through the water cycle and food
chain, leading to serious problems, such as liver and kidney damage, decreased immunity,
and increased bacterial resistance [7,8]. Thus, the rapid and sensitive detection of nitrofu-
ran antibiotics in natural water is also crucial. From the viewpoints of human health and
environmental protection, it is urgent to design a simple, sensitive, and stable monitoring
method for the biomarker, HA, of toluene exposure and nitrofuran antibiotics in water
media. Current methods for detecting HA in urine and monitoring nitrofuran antibiotics in
water media typically involve colorimetry, gas chromatography, spectrophotometry, high-
performance liquid chromatography (HPLC), electrochemical analysis, or a combination of
ultra-high-performance liquid chromatography and mass spectrometry (UPLC-MS). These
traditional detection methods, while effective, are characterized by the use of cumbersome
and expensive instruments, which present operational challenges and result in increased
costs and time for detection. Consequently, these factors hinder the feasibility of daily
monitoring of antibiotics in water and the early diagnosis of HA in urine [9,10]. To fill this
gap, there is an urgent need to develop sensitive, efficient, and environmentally friendly
sensors. Benefiting from the advantages of advanced optical technology, an efficient optical
detection method, uncomplicated equipment, and visually interpretable outcomes, the
rapidly expanding field of fluorescent sensors has emerged as a promising avenue for
achieving a significant breakthrough.

As a booming class of organic–inorganic hybrid porous materials, the stable skele-
ton, larger specific surface area, as well as modifiable active sites, thereby enable their
widespread applications in the fields of storage and separation, heterogeneous catalysis,
proton conduction, and so on [11–20]. Leveraging the advantages of multiple emitting
sources, MOFs also provide excellent platforms as luminescence sensors in the detection of
heavy metal ions, highly oxidized anions, hazardous organic molecules, or even bioactive
molecules [21–28]. Returning to the subject, since Zhou and Li reported the first example of
an MOF-based sensor for nitrofurazone antibiotic detection through luminescent quenching
effects in 2016 [27], more and more MOFs have been designed to achieve more sensitive
detection results [29,30]. Turning to MOF-based HA sensors, it is easy to find that there
are only seven reports when searching Web of Science [31–34]. According to the theory of
hard and soft acid and base (HSAB), rare-earth ions and transition-metal ions often exhibit
distinct coordination preferences in the construction of MOFs. When both rare-earth ions
and transition-metal ions were introduced into the framework as inorganic nodes, the
self-assembled MOFs not only exhibited novelty in structures but also displayed unique
performances. There is no doubt that heterometallic–organic frameworks (HMOFs) have
great potential as luminescence sensors in the detection of pollutants. Nevertheless, there
are only a few samples of identical HMOF-based chemosensors to detect antibiotics or
biomarkers that have been reported up to now [35,36].

Our group has been engaged in developing MOF-based sensors for detecting bioactive
molecules in recent years [37,38]. Inspired by the above considerations and following our re-
search interests of constructing MOF-based luminescence sensors, herein, an ultra-stable lu-
minescent Zn(II)Ho(III) heterometallic–organic framework of {(Me2NH2)[ZnHo(TDP)(H2O)]
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·3DMF·3H2O}n (ZnHoMOF) was fabricated under solvothermal conditions by using the
ligand of 2,4,6-Tri(2′,4′-dicarboxyphenyl)pyridine (H6TDP) to react with ZnCl2 and Ho2O3
(Scheme 1). The 3D ZnHoMOF is a {ZnHo(COO)3} SBU-based 3D {46·64} fng net, in which
it contains two kinds of channels and up to 60.4% potential available cavities. Lumines-
cence sensing studies showed that ZnHoMOF is an efficient bifunctional luminescence
sensor for HA biomarker detection in diluted urine samples through “turn-on” lumines-
cence enhancing response and NFT/NFZ antibiotics detection in natural water through
“turn-off” luminescent quenching effects. Furthermore, sensing mechanisms were also
conducted here.
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Scheme 1. The preparation process of the heterometallic ZnHoMOF.

2. Result and Discussion
2.1. Simple Structural Description of ZnHoMOF

To better understand the structure of ZnHoMOF, its crystal structure was analyzed in
detail here. ZnHoMOF is an anionic porous framework (Figure 1a) that contains two kinds
of channels. The aperture of channel A is about 12.8 Å, with the inter surface decorated by
uncoordinated carboxyl O atoms (Figure 1b), while channel B holds an aperture of about
11.4 Å, with coordination-unsaturated metal cations evenly located on the inner surface
(Figure 1c). The total potential available volume of ZnHoMOF is 15,979.4 Å3, 60.4% of
per-unit cell volume (26,443.9 Å3). The host framework of ZnHoMOF can be simplified
into a uninodal five-connected fng net with a point (Schlafli) symbol of {44.62} (Figure 1d).
The large porosity as well as the size-suitable channels of ZnHoMOF provide a place for
host–guest interactions during the sensing process, while the complicated inter surfaces of
those channels provide a variety of active sites, which can further deepen the host–guest
interaction intensity.

2.2. Chemical and Thermal Stability of ZnHoMOF

As we all know, material practicality depends on chemical stability. Therefore, the
chemical stability of ZnHoMOF was checked firstly by immersion in water under different
acid and alkali intensities, with pH ranging from 3 to 11 for 6 h. A PXRD profile comparison
illustrated ZnHoMOF possessing excellent chemistry stability under the aforementioned
harsh conditions (Figure S1). Moreover, the thermal stability of sensing materials also
determines, to some extent, the scenarios in which they are used. The thermal stabilities of
the as-synthesized and the activated ZnHoMOF samples were investigated in the range
of room temperature to 980 ◦C by using TG-DTG simultaneous measurements under
a N2 atmosphere (Figure S2). The results show that the first weight loss at 50–230 ◦C
corresponds to the departure of the guest and coordinated molecules; then, the following
platform illustrates that the main framework of ZnHoMOF can be well maintained until
the temperature reaches 390 ◦C.
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2.3. Detection of the HA

The biomarkers, which reflect the changes in organs, tissues, and cells, have a very
wide range of applications in the fields of disease diagnosis, disease staging, or evaluating
the safety and effectiveness of new drugs [39,40]. As the exposure biomarker of toluene,
HA is usually metabolized from the intake of toluene by the kidney and liver and then
excreted in urine. Thus, it is suitable and convenient to monitor the HA level in urine to
reflect the absorbed toluene in the human body. Before the luminescent sensing of the HA
biomarker, the solid-state luminescence properties of ZnHoMOF, as well as the free H6TDP
ligand, were first tested with an excitation wavelength of 325 nm at room temperature.
As shown in Figure S3, the samples of ZnHoMOF exhibit strong blue emission at 406 nm,
blue-shifted 60 nm from the emission peak of free H6TDP, which is predominantly due to
the metal-to-ligand charge transfer (MLCT) [41–43]. After being fully grounded and evenly
dispersed in the aqueous solutions of urine chemicals, such as (sodium chloride (NaCl),
sodium sulfate (Na2SO4), potassium chloride (KCl), ammonium chloride (NH4Cl), urea,
glucose (Glu), uric acid (UA), creatinine (Cre), creatine, and HA, Scheme 2) using ultrasonic
treatment, the ZnHoMOF suspensions were transferred to detect the luminescent spectra.
The results show that the HA displayed more than a quadruple fluorescence enhancement,
while the other urine chemicals exhibited little to no changes in the luminescent intensities
(Figures 2 and S4).
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To further learn the intrinsic relationships between the luminescent intensities and the
concentrations of HA, series titration trials were carried out by gradually adding 10 mM HA
to the testing aqueous solutions. A comparison of the fluorescence spectra showed that the
intensities of ZnHoMOF suspensions were remarkably enhanced with the concentrations
of HA increasing (Figures 3a and S5). Based on the results of gradient experiments, the
relationship between the concentration of HA and the intensities of ZnHoMOF suspensions
was obtained and could be well fitted with a linear equation of I/I0 = 2074.29[M] + 0.85625
(I/I0 = 1 + KE[M]) (Figure 3b), with the obtained KE equivalent or even better than the
reported ones (Table 1) [33,34]. On the basis of the equation of LOD = 3σ/KE (here, σ is the
standard deviation for ten cycles of blank luminescence tests), the limit of detection (LOD)
of ZnHoMOF for detecting HA is about 0.7 ppm. Moreover, it should be pointed out that
the fitting equation exhibits large errors at lower concentrations (0–0.05 mM), and the actual
linear detection range is 0.05–1.0 mM. According to ACGIH, the recommended standard of
the biological exposure limit of HA in urine is 2.0 mg mL−1, indicating ZnHoMOF holds
great potential in the detection of HA in actual urine.

ZnHoMOF is an excellent fluorescence sensor with high sensitivity for the detection of
the HA biomarker. Meanwhile, the anti-interference performances of other urine chemicals
were also investigated to research the selectivity of ZnHoMOF to detect the HA biomarker.
When 10 mM disturbed urine chemicals were injected into the dispersions of ZnHoMOF
containing 1 mM HA, the luminescence intensities of these dispersions only showed slight
changes. By comparing the red and the green cylinders in Figure 3c, the results showed that
the disturbed urine chemicals only have minimal effects on the detection of HA, confirming
that ZnHoMOF shows high selectivity in detecting HA, even in the presence of disturbed
urine chemicals. Moreover, recyclability, as a significantly important factor in practical
application, was also explored here by using the recycled crystalline samples of ZnHoMOF
to retest the luminescent sensing for the HA biomarker for five cycles (Figure 3d). The
results indicated that the luminescent property of ZnHoMOF can be well maintained, and
ZnHoMOF exhibits extraordinary stability and remarkable recyclability.

We further explored the possibility of detecting HA in real human urine samples,
a more complex physiological environment. Urine samples were collected from healthy
volunteers; after being centrifuged and diluted 1000-fold, the samples were prepared by
adding different amounts of HA. Considering that the actual linear detection range is
0.05–1.0 mM, here, three parallel experiments of 50, 100, 150, and 200 µM were performed
to conduct a comprehensive evaluation of relative standard deviations (RSDs) and recov-
ery. As expected, the luminescence intensities of treated suspensions were significantly
quenched with an increase in HA concentrations. The results of the internal standard
method are given in Table 2. Considering that the actual urine contains a certain amount
of HA [44,45], to accurately reflect the actual detection effect, the actual concentration
of HA in 1000-fold-diluted urine was measured using the HPLC method, and the mean
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value of 2.38 µM (n = 3) was used to calculate the following recoveries. High recoveries of
96.7–101.0% as well as the low relative standard deviations (RSDs) in a range of 1.53–2.56%
both indicated that ZnHoMOF can serve as a chemosensor for detection in real samples.
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Table 1. Comparison of MOF-based “turn-on” sensors for HA detection in aqueous media.

MOFs Detection Signal KE (M−1) LODs Reference

[Co3(ndc)(HCOO)3(µ3-OH)] 421 nm 1.219 × 103 4.6 ppm [33]
[Ni(H2TPTA)(bimb)] 441 nm 8.22 × 103 4.1 ppm [34]

ZnHoMOF 406 nm 2.074 × 103 0.7 ppm This work

Table 2. ZnHoMOF results for quantitatively detecting HA in 1000-fold-diluted urine samples (n = 3).

Added (µM) Found (µM) RSD (%) Recovery (%)

50 50.63 2.23 96.7
100 102.19 1.68 99.8
150 153.87 1.53 101.0
200 198.73 2.56 98.2

2.4. Detection of Nitrofuran Antibiotics

Antibiotics are an important class of drug molecules, serving as security guards to pro-
tect humans from harmful viruses, bacteria, and fungi. However, the overuse and misuse of
antibiotics often lead to high doses of antibiotics being enriched in our bodies and seriously
endangering our human health. The nine most commonly used antibiotics, including
sulfamethazine (SMZ), chloramphenicol (CMR), sulfadiazine (SDZ), ronidazole (RND), 1,2-
dimethyl-5-nitroimidazole (DND), metronidazole (MND), nitrofurantoin (NFT), ornidazole
(OND), and nitrofurazone (NFZ), were selected here as the representatives of antibiotics
(Scheme 3). Different from the HA biomarker, the antibiotics show different degrees of
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“turn-off” effects in the fluorescence of ZnHoMOF suspensions. The order of quenching
rates is NFT > NFZ > DND > MND > RND > OND > SMZ > CMR > SDZ, indicating that
nitrofuran antibiotics show stronger fluorescence quenching effects than nitroimidazole an-
tibiotics and other antibiotics. The above-mentioned results demonstrated that ZnHoMOF
can sense nitrofuran antibiotics with remarkable selectivity (Figures 4 and S6).
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Then, the quantitative detection of nitrofuran antibiotics was also conducted through
a series of gradient tests. As shown in Figures 5 and S7, serial titration experiments
proved that the luminescence intensities of ZnHoMOF steadily decreased when nitro-
furan antibiotics were continuously added. There are linear correlations between the
intensities of ZnHoMOF and the concentrations of nitrofuran antibiotics, which both
fit well with the Stern–Volmer equations of I0/I = 114,270[NFT] + 0.99797 for NFT and
I0/I = 54,060[NFZ] + 0.99163 for NFZ (Figure 6). The R values of two linear fitting equa-
tions indicated that the detection ranges of ZnHoMOF in detecting NFT/NFZ antibiotics
are both 0–10 µM. Calculated by LOD = 3σ/S, where S means KQ here, the KQ and the LOD
values are 1.143 × 105 mol−1 and 0.04 ppm for NFT and 5.406 × 104 mol−1 and 0.05 ppm
for NFZ, respectively, which are comparable to or better than those of some reported
MOFs [46–49] (Table 3). Moreover, the recyclable experiments of ZnHoMOF for the sensing
of nitrofuran antibiotics were also performed. The results demonstrated that the quenching
effects of two nitrofuran antibiotics on the luminescent intensities of ZnHoMOF showed
no significant decrease after five cycles (Figure S8). It should be pointed out that other
antibiotics, especially nitro-containing antibiotics, also have a certain degree of lumines-
cence quenching with respect to the luminescence intensity of the ZnHoMOF, which will
inevitably lead to a decrease in selectivity in the actual detection process. Moreover, when
NFT and NFZ antibiotics exist simultaneously in the aqueous solutions, they will affect
each other, leading to a significant deviation in the detection results. Considering that
the actual samples, especially the diluted samples, may contain very few antibiotics, the
selectivity is, thus, acceptable here. These performances demonstrated that ZnHoMOF is
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an efficient luminescence sensor in detecting aqueous nitrofuran antibiotics in laboratory
environments.
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Table 3. Comparison of MOF-based “turn−off” sensors for NFT/NFZ detection in aqueous media.

MOFs Analyte KQ (M−1) LODs Reference

[Cd(tptc)0.5(bpz)] NFT 3.87 × 104 0.06 ppm [46]
[Cd(tptc)0.5(bpy)] NFT 7.63 × 103 0.18 ppm [46]

[Cd10(DDB)4(bpz)8] NFT 1.88 × 105 0.02 ppm [47]
[Zn(tptc)0.5(bimb)] NFT 1.273 × 105 0.02 ppm [48]
[Zn(NH2−TCB)] NFT 6.59 × 104 0.07 ppm [49]

ZnHoMOF NFT 1.143 × 105 0.04 ppm This work
[Cd10(DDB)4(bpz)8] NFZ 1.05 × 105 0.03 ppm [47]
[Zn (tptc)0.5(bimb)] NFZ 9.556 × 104 0.03 ppm [48]

[Zn(NH2−TCB)] NFZ 4.85 × 104 0.06 ppm [49]
ZnHoMOF NFZ 5.406 × 104 0.05 ppm This work

In order to achieve practical application in real scenarios, the detection capability of
NFT/NFZ in Fen River water was investigated. The fluorescence titration experiments were
carried out by adding the powdered ZnHoMOF samples into the filtered Fen River water
and were well dispersed to prepare the suspensions. Here, the NFT/NFZ concentrations in
the Fenhe River water determined using the HPLC method were close to 0. Thus, the added
concentrations of above-mentioned antibiotics were considered as the actual concentrations.
By adopting an internal standard method and conducting three tests, a series of results
were achieved with satisfactory recoveries (99.33–103.00% for NFT and 98.50–105.00% for
NFZ) as well as low RSDs (1.88–2.16% for NFT, 1.87–2.17% for NFZ), as shown in Table 4;
both indicated that ZnHoMOF can serve as a luminescence sensor for detecting NFT/NFZ
antibiotics in real natural waters.
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Table 4. ZnHoMOF results for quantitative detecting NFT/NFZ in real Fen River water (n = 3).

Analyte Added (µM) Found (µM) RSD (%) Recovery (%)

NFT

1 1.03 2.04 103.0
2 1.99 1.88 99.5
3 2.98 2.15 99.9
4 3.97 2.16 99.3
5 5.02 2.12 100.4

NFZ

1 1.05 2.05 105.0
2 1.97 1.87 98.5
3 2.96 2.17 98.7
4 3.95 2.13 98.8
5 5.04 2.08 100.8

2.5. Possible Mechanism for Luminescence Sensing

A deeper understanding of the sensing mechanisms is crucial for further research
and the development of more effective luminescence sensors. Prior studies have indicated
that luminescent quenching effects are mainly caused by electron and energy transfer,
as well as structure collapse [50,51]. As the first and foremost evaluation indicator, the
stability of frameworks plays a crucial role and directly determines the actual values and
application scenarios [52–55]. Fortunately, the structure collapse of ZnHoMOF can be
excluded by comparing the PXRD profiles of reused crystalline materials with the original
ones (Figure S9). Brunauer–Emmett–Teller (BET) tests of the recycled ZnHoMOF samples
also proved that the pore structure of ZnHoMOF was well maintained during the sensing
process (Figure S10). Moreover, comparisons of the ZnHoMOF IR spectra before and after
the sensing process also confirmed the stability of the framework (Figure S11). Secondly, the
luminescence decay lifetimes of the ZnHoMOF samples before and after sensing nitrofuran
antibiotics (NFT and NFZ) were further measured and performed, as shown in Figure S12,
with only a slight change compared with the original one, indicating the occurrence of
the static quenching process. Subsequently, the mechanisms underlying the luminescence
response of the photo-induced electron transfer (PET) in ZnHoMOF were investigated
through theoretical calculations. It was observed that the excited electrons were transferred
from the lowest unoccupied molecular orbitals (LUMO) of ZnHoMOF to the LUMO of
nitrofuran antibiotics, rather than its highest occupied molecular orbitals (HOMO). This
transfer resulted in the “turn-off” effect of ZnHoMOF’s luminescence. Additionally, the
excited electrons were found to transfer from the LUMO of HA to the LUMO of ZnHoMOF,
leading to the “turn-on” effect of ZnHoMOF’s luminescence [56,57]. This conjecture was
verified by calculating the LUMO and HOMO energy levels of HA, NFT/NFZ antibiotics,
and free H6TDP with the help of Gaussian 09 software at a 3LYP/6-31 + G* theoretical level.
Figure 7 illustrates that the LUMO energy levels of nitrofuran antibiotics are lower than
that of the H6TDP ligand, and the HOMO energy level of HA is higher than that of the
H6TDP ligand, giving the answer to the “turn-on” enhancing effect of HA and the “turn-off”
quenching effects of nitrofuran antibiotics on the luminescence of ZnHoMOF. Finally, inner
filter effects (IFEs) also play a crucial role in the nitrofuran-antibiotics-caused quenching
processes. As displayed in Figure 8, a large overlap exists between the absorption spectra
of the NFT/NFZ antibiotics and the excitation spectrum of ZnHoMOF, implying that the
UV-visible absorption of nitrofuran antibiotics hinders the normal excitation energy transfer
process of ZnHoMOF, which causes light-competitive absorption [58,59].
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3. Materials and Methods
3.1. Reagents and Apparatus

The 2,4,6-Tri(2′,4′-dicarboxyphenyl)pyridine (H6TDP) ligand and holmium oxide
(Ho2O3) were bought from Jinan Henghua Technology Co., Ltd. (Jinan, China); the organic
small biological molecules (including urea, creatine, Glu, Cre, and HA) and antibiotics
(including SDZ, MND, SMZ, CMR, OND, RND, DND, NFZ, and NFT) were purchased
from Shanghai Macklin Biochemical Technology Co., Ltd. (Shanghai, China); and the
metal salts (NaCl, Na2SO4, KCl, NH4Cl, and ZnCl2), N,N-dimethylformamide (DMF), and
concentrated HNO3 were purchased from Aladdin Chemistry Co., Ltd. (Shanghai, China).
All reagents were commercially obtained for direct use with no further purification. A
Nicolet NEXUS-670 FT-IR spectrometer (Thermo Nicolet Corporation, Madison, WI, United
States) was used to record the FT-IR spectrum by using the KBr pellet. The PXRD patterns
were obtained using a RigakuD/Max-2500 PC diffractometer (Rigaku Corporation, Tokyo,
Japan) with Cu-Kα radiation (λ = 1.54056 Å). A Hitachi U-5100 spectrophotometer was
used to measure UV/Vis absorption spectra. A PerkinElmer DTA 6000 thermogravimetric
analyzer (Platinum Elmer Inc., Waltham, MA, USA) was used to carry out thermogravi-
metric analyses (TGA) at 980 ◦C at 10 ◦C per minute under nitrogen conditions. The
luminescence spectra and luminescent lifetime were recorded by using a Hitachi F-4600
spectrophotometer and Edinburgh FS5 spectrophotometer, respectively. HPLC results
were obtained from a Shimadzu Prominence LC-20A liquid chromatograph (Shimadzu
Scientific Instruments, Inc., Kyoto, Japan). BET surface areas were measured at 77 K via N2
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adsorption/desorption by using an ASAP 2020 Plus instrument (Micromeritics Instrument.
Corp., Atlanta, GA, USA).

3.2. Preparation of ZnHoMOF

ZnHoMOF was prepared according to a previously reported study [60]. In the feasible
synthesis of ZnHoMOF, 0.10 mmol ZnCl2·H2O, 0.05 mmol Ho2O3, 0.06 mmol H6TDP,
0.2 mL concentrated HNO3, 2 mL H2O, and 7 mL DMF were mixed and thoroughly stirred
in a 25 mL autoclave. Colorless crystals of ZnHoMOF were prepared by heating at 140 ◦C
for 96 h, then gradually cooling to room temperature at 10 ◦C per hour. The fresh ZnHoMOF
samples were obtained after further filtration, cleaning, and drying. FT-IR (cm−1): 3441 (vs),
2356 (s), 1655 (vs), 1601 (s), 1559 (s), 1389 (vs), 1251 (m), 1102 (w), 831 (w), 788 (m), 672 (w),
480 (w).

3.3. Luminescent Sensing Experiments

A thorough grinding of the prepared samples was required before the sensing tests
could be conducted. Then, 2 mg well-ground samples of ZnHoMOF were added to 2 mL
aqueous solutions containing 0.01 M urine chemicals (NaCl, Na2SO4, KCl, NH4Cl, urea,
creatine, Glu, Cre, and HA) or 0.1 mM antibiotics (SDZ, MND, SMZ, CMR, OND, RND,
DND, NFZ, and NFT). After ultrasonic treatment for 30 min, the prepared suspensions
were transferred to a 1 cm width quartz cell to achieve fluorescence emission spectra.

3.4. Luminescent Titration and Recyclable Experiments

To further explore internal relationships between the concentrations of analytes and
fluorescence intensities, luminescent titrations were conducted by adding different amounts
of analytes to 2 mL suspensions of ZnHoMOF (2 mg) in quartz cell; then, the emission
spectra of suspensions were tested. Next, the ZnHoMOF sample was processed through
filtration, cleaning, and drying processes to obtain the recovered sample and underwent
subsequent gradient testing in the next cycle. Moreover, the anti-interference performances
of analytes were also checked by testing the emission spectra of the dispersions of ZnHo-
MOF in a certain amount of analytes and the mixture dispersions of equimolar analytes
and analytical interferences in sequence.

4. Conclusions

In summary, a chemo-robust luminescent Zn(II)Ho(III) heterometallic –organic frame-
work was chosen as the luminescence sensor here based on its robust framework in harsh
environments and excellent luminescence. Benefiting from the photo-induced electron
transfer (PET) from HA to the framework, the prepared ZnHoMOF exhibited an unprece-
dented “turn-on” response to HA in urine with high sensitivity and selectivity and a low
LOD of 0.7 ppm. Meanwhile, it can also act as an efficient sensor in sensitively detect-
ing NFT/NFZ antibiotics with acceptable selectivity, good anti-interference, exceptional
recyclability performance, large detection ranges (0–10 µM), and low LODs of 0.04 ppm
for NFT and 0.05 ppm for NFZ. Furthermore, the luminescence quenching mechanism of
NFT/NFZ toward ZnHoMOF can be attributed to the synergistic effects of photo-induced
electron transfer (PET) and inner filter effects (IFEs). The high recoveries of the developed
ZnHoMOF sensor in quantifying the HA biomarker and NFT/NFZ antibiotics in real
samples provided a meaningful sample in developing efficient and sensitive MOF-based
luminescence sensors for bioactive molecule detection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28176274/s1, Figure S1: PXRD patterns of ZnHoMOF
after soaking in different pH values; Figure S2: TG DTG curves of as synthesized and activated
ZnHoMOF samples; Figure S3: Luminescent spectra of free H6TDP and ZnHoMOF in solid state
at room temperature; Figure S4: Luminescence of ZnHoMOF dispersed in 0.01 M urine chemicals
aqueous solutions; Figure S5: Enhanced emission spectra of ZnHoMOF in water with the incremental
addition of HA biomarker; Figure S6: Luminescence of ZnHoMOF dispersed in the 0.1 mM antibiotics
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aqueous solutions; Figure S7: Emission spectra of ZnHoMOF in aqueous solutions with incremental
addition of NFZ (a), and NFT (b); Figgure S8: Recyclable behavior of ZnHoMOF when sensing of
NFZ (a), and NFT (b); Figure S9: PXRD patterns of recycled ZnHoMOF after sensing HA, NFT, and
NFZ; Figure S10: The luminescence decay lifetimes of ZnHoMOF samples before and after sensing
nitrofuran antibiotics; Figure S11: The FTIR spectra of ZnHoMOF before or after sensing of HA, NFT
and NFZ; Figure S12: The BET tests of ZnHoMOF before or after sensing of HA, and nitrofuran
antibiotics (NFT and NFZ) at 77 K.
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