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Abstract: The reactions of group 14 tetrafluorides (SiF4, GeF4, and SnF4) and group 15 pentafluorides
(PF5, AsF5, and SbF5) with the CAAC-based trifluoride reagent [MeCAACH][F(HF)2] led to the isola-
tion of salts containing discrete 5- or 6-coordinated fluoroanions. The syntheses of [MeCAACH][SiF5],
[MeCAACH][GeF5], [MeCAACH][(THF)SnF5], and the structurally related [MeCAACH][(dioxane)SnF5],
[MeCAACH][PF6], [MeCAACH][AsF6], and [MeCAACH][SbF6] are effective, selective and in high
yield. All compounds were characterized by X-ray single-crystal structure analysis, NMR and Ra-
man spectroscopy. It is worth noting that the synthesized [MeCAACH][GeF5] is a rare example of a
structurally characterized compound with discrete [GeF5]− anion, while [MeCAACH][(THF)SnF5] and
[MeCAACH][(dioxane)SnF5] represent the first compounds with discrete octahedrally coordinated tin
fluoride anions with incorporated solvent molecules. Finally, the aldiminium-based cation [MeCAACH]+

proved to be suitable for the stabilization of rare discrete main group fluoride anions.

Keywords: aldiminium-based salts; CAAC-precursors; fluorination; pentafluorosilicate; pentafluo-
rogermanate; synthesis

1. Introduction

Cyclic (alkyl)(amino)carbenes (CAACs) are a class of compounds that have been
extensively studied since their discovery in 2005 [1]. They have been shown to be among
the most nucleophilic and electrophilic stable carbenes known to date [2]. Their electronic
and steric properties make them suitable ligands for the stabilization of highly reactive
and unusual main group and transition metal species in their low or high oxidation
states [2–4]. CAACs can be prepared from the corresponding aldiminium-based salts
by deprotonation. Nowadays, several methods for the preparation of CAAC precursors
are known [2]. It all started with the discovery of aldiminium-based triflate salts by
Bertrand’s group [1] and was extended with the synthesis of aldiminium-based chloride
salts [5]. Both salts can be effectively deprotonated to form CAACs. Interestingly, CAAC
complexes could also be prepared starting from CAAC(H)OH in aqueous solution [6]. Later,
aldiminium-based tetrafluoroborate salts also found their use as CAAC precursors [7].
They are usually prepared by ion exchange from the corresponding chloride derivatives
using KBF4 [8]. Recently, [MeCAACH][BF4] was prepared by Jana’s group from CAAC:
carbene and NO[BF4] [9]. The MeCAAC: carbene, which acted as a one-electron reducing
agent, was chemically oxidized with NO[BF4] to form a transient radical cation, which
was subsequently converted to [MeCAACH][BF4] by hydrogen abstraction [9]. The same
method led to the formation of [MeCAACH][SbF6] when NO[SbF6] was used [9].

Aldiminium-based triflate and chloride salts can be used not only as CAAC precursors
but also as unusual group transfer reagents in the chemistry of aluminum hydrides [10].
Recently, we have prepared a series of aldiminium-based fluoride and poly(hydrogen fluo-
ride) compounds that can be used as nucleophilic fluorination reagents [11]. In particular,
the aldiminium-based trifluoride salt [MeCAACH][F(HF)2] proved to be very effective
in organic transformations due to its ability to convert benzyl bromides, 1- and 2-alkyl
bromides, sulfonyls, and silanes to the target fluorides [11].
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In this work, we tested the reactivity of the recently developed [MeCAACH][F(HF)2]
with inorganic fluoride compounds, in particular with group 14 and 15 elements. Our
main goal was to extend the knowledge of aldiminium-based compounds and to prepare
a series of compounds that could potentially exhibit group transfer properties analogous
to the corresponding triflate and chloride salts. It is well known that cations have a
strong influence on the form of the anions. For example, it has been shown that the steric
bulkiness of the [IPrH]+ cation is suitable for the stabilization of discrete [SiF5]−, and
[GeF5]− anions, while less sterically demanding cations preferentially form octahedrally
coordinated [SiF6]2− species [12]. With this in mind, we were particularly interested in
whether the aldiminium-based reagent would allow the stabilization of discrete group
14 fluoroanions.

2. Results and Discussion
2.1. Synthesis and Structural Characterization

In our work, we tested the reactivity of group 14 tetrafluorides (SiF4, GeF4, and SnF4)
and group 15 pentafluorides (PF5, AsF5, and SbF5) using the CAAC-based trifluoride
reagent [MeCAACH][F(HF)2]. Since the properties of the starting compounds differ signifi-
cantly even within the same group, slightly different synthesis procedures were required to
prepare salts with 5- or 6-coordinated fluoroanions. The synthesis and characterization of
all salts are systematically presented in the following chapters. Crystallographic data for
all newly characterized compounds are compiled in the Supporting Information.

2.1.1. Group 14

SiF4 and GeF4 in the gaseous state react with a solution of [MeCAACH][F(HF)2] in
MeCN to form [MeCAACH][SiF5] or [MeCAACH][GeF5] in quantitative yield, as shown in
Scheme 1. In the past, our group used a similar procedure to prepare the compounds with
discrete anions—[IPrH][SiF5] and [IPrH][GeF5] [12]. Both newly prepared salts are stable
at room temperature and can be stored under inert atmosphere for long periods of time.
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Scheme 1. Synthesis of [MeCAACH][SiF5] and [MeCAACH][GeF5].

Single crystals of [MeCAACH][SiF5] and [MeCAACH][GeF5] were prepared by vapor
diffusion crystallization using DCM as solvent and cyclopentane as antisolvent. The crystal
structures of [MeCAACH][SiF5] and [MeCAACH][GeF5] are shown in Figure 1. Both salts
crystallize in the monoclinic space group P21/n and their asymmetric units consist of a
heterocyclic cation [MeCAACH]+ and a discrete pentacoordinated anion. The [SiF5]− and
[GeF5]− anions have a trigonal bipyramidal geometry with disordered positions of the
fluorine atoms. Two preferred orientations were modeled and refined, with domain A and
B occupancies in [SiF5]− of 75% and 25%, respectively, and domain A and B occupancies in
[GeF5]− of 67% and 33%, respectively. The crystal structures with disordered anions are
shown along with separate images of domains A and B in Figures S31 and S32 in the Sup-
porting Information. The crystal structures of [SiF5]− anions are often disordered and rarely
well determined [13,14]. The structural features of our [SiF5]− anion in [MeCAACH][SiF5]
are consistent with the previously reported structures [15–17], but their bond lengths and
angles are not compared with the previously reported structures due to the heavy disor-
der of the anion. The structural features of our [GeF5]− anion in [MeCAACH][GeF5] are
also consistent with the previously described [IPrH][GeF5] [12]. It is worth noting that
[IPrH][GeF5] represents the first example in which the discrete [GeF5]− anion is present,
while [MeCAACH][GeF5] is only the second example. To stabilize discrete [SiF5]− and
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[GeF5]− anions, large cations must be used [12,17], and the sterically demanding cation
[CAACH]+ was found to be suitable for this purpose.
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Figure 1. Structure of the asymmetric unit of (a) [MeCAACH][SiF5] and (b) [MeCAACH][GeF5].
The ellipsoids are drawn at 50% probability. The positions of the fluorine atoms in both anions are
disordered. For clarity, only the fluorine atoms in domain A are shown and all hydrogen atoms
except those on the aldiminium ring are omitted.

The SnF4 reacted with [MeCAACH][F(HF)2] in anhydrous HF with quantitative for-
mation of [MeCAACH][SnF5], as shown in Scheme 2. Removal of the volatiles resulted
in the formation of a brown solid that could not be crystallized despite several attempts.
Several attempts have been made in the past to crystallize the monomeric [SnF5]− anion,
but none of them was successful [18]. Since tin preferentially forms octahedrally coordi-
nated units in the presence of fluoride, [SnF5]− units usually form oligomeric or polymeric
structures [19]. Octahedrally coordinated discrete tin fluoride anions, such as [SnF6]2−, are
more common and better studied [20–22]. However, only a limited number of structurally
characterized [SnF6]2− anions with organic cations are known. To date, there are only
12 discrete structures in the CCDC crystal structure database [23].
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Scheme 2. Synthesis of [MeCAACH][(THF)SnF5].

In our work, we wanted to demonstrate the presence of [SnF5]− units in a discrete
form. Fortunately, [MeCAACH][SnF5] dissolved in THF and reacted with it to form a
new compound. Immediately, a white solid precipitated from the THF solution, which
was later characterized as a salt containing octahedrally coordinated [(THF)SnF5]− an-
ions. Single crystals of [MeCAACH][(THF)SnF5] suitable for X-ray analysis formed by
vapor diffusion crystallization using THF as solvent and hexane as antisolvent. When
[MeCAACH][SnF5] was suspended in dioxane, it reacted in the same way as with THF
to form [MeCAACH][(dioxane)SnF5]. The latter compound was crystallized by vapor
diffusion crystallization, using dioxane as solvent and hexane as antisolvent and formed
single crystals of [MeCAACH][(dioxane)SnF5]·dioxane. The crystal structures of the two
compounds are shown in Figure 2.
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heterocyclic ring are omitted.

[MeCAACH][(THF)SnF5] crystallizes in the monoclinic space group C2/c, while
[MeCAACH][(dioxane)SnF5]·dioxane crystallizes in the triclinic space group P−1. The
asymmetric units of both compounds contain a heterocyclic cation [MeCAACH]+ and a
discrete octahedrally coordinated anion. In addition, the asymmetric unit of [MeCAACH]-
[(dioxane)SnF5]·dioxane also contains two halves of the solvent dioxane (see Figure S33 in
the Supporting Information). As far as we know, similar discrete structures with solvents
have not been published before. So far, only the structurally related [RSnF5]− anions
(R = (Me2N)2C and C5H10N2) have been described by Röschenthaler’s group, with a car-
bene attached to the [SnF5]− unit at the sixth coordination site [24]. Nevertheless, the
structures of the [(THF)SnF5]− and [(dioxane)SnF5]− anions are consistent with the two
structurally related species. The trans Sn–F distances of 1.945(2) Å and 1.941(2) Å for
[(THF)SnF5]− and [(dioxane)SnF5]− anions, respectively, are slightly shorter but still in the
range of the trans Sn–F distances of the related [RSnF5]− anions (1.972(2) Å and 1.955(3)
Å [24]). The same is true for the average cis Sn–F distances of 1.944 Å and 1.929 Å for
[(THF)SnF5]− and [(dioxane)SnF5]− anions, respectively, which are shorter but still in agree-
ment with the cis Sn–F distances of the related [RSnF5]− anions (1.976 Å and 1.973 Å [24]).
The difference from the literature data can be attributed to the higher electronegativity
of the O-donor ligands, which strengthen the Sn–F bonds. The Sn–O bond distances of
2.167(2) Å and 2.177(2) Å for [(THF)SnF5]− and [(dioxane)SnF5]− anions, respectively, are
also in agreement with the Sn–O distances of other structurally characterized compounds
(2.134(2) Å [25], 2.1530(13) Å [26]).

2.1.2. Group 15

The one pot syntheses of [MeCAACH][PF6] and [MeCAACH][AsF6] are shown in
Scheme 3. First, [MeCAACH][F(HF)2] was generated in situ by the reaction of [MeCAACH]-
[Cl(HCl)0.5] in aHF. MF5 gases (M = P, As) were then added in excess to the reaction mixture,
which was stirred overnight. After removal of volatiles, [MeCAACH][MF6] (M = P, As)
was formed in quantitative yield. We were also able to prepare [MeCAACH][SbF6] using
a similar procedure (Scheme 4). In this case, the SbF5 was first freshly prepared in situ
from SbF3 and F2 in aHF. Then, [MeCAACH][F(HF)2] was added to the reaction mixture.
To avoid the presence of chlorine atoms in the reaction mixture, [MeCAACH][F(HF)2]
was used. Similar procedures have been used in the past for the synthesis of compounds
containing [AsF6]−, and [SbF6]− anions [27]. [MeCAACH][SbF6] was previously prepared
and structurally characterized by Jana’s group [9]. Our results agree well with the reported
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data and provide a simple alternative approach for the formation of [MeCAACH][SbF6] in
high yields.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 16 
 

 

mixture, [MeCAACH][F(HF)2] was used. Similar procedures have been used in the past for 
the synthesis of compounds containing [AsF6]−, and [SbF6]− anions [27]. [MeCAACH][SbF6] 
was previously prepared and structurally characterized by Jana’s group [9]. Our results 
agree well with the reported data and provide a simple alternative approach for the for-
mation of [MeCAACH][SbF6] in high yields.  

 
Scheme 3. Synthesis of [MeCAACH][PF6] and [MeCAACH][AsF6]. 

 
Scheme 4. Synthesis of [MeCAACH][SbF6]. 

Single crystals of all three compounds were prepared by vapor diffusion crystalliza-
tion using DCM as solvent and cyclopentane as antisolvent. [MeCAACH][PF6] and 
[MeCAACH][AsF6] both crystallize in the orthorhombic space group Pbca and their crystal 
structures are shown in Figure 3.  

 

(a) (b) 

Figure 3. Structure of the asymmetric units of (a) [MeCAACH][PF6] and (b) [MeCAACH][AsF6]. The 
ellipsoids are drawn at 50% probability. For clarity, all hydrogen atoms except those on the hetero-
cyclic ring are omitted. 

The two compounds are isostructural, with the hexafluoroarsenate compound hav-
ing only a slightly larger unit cell. The asymmetric units of both compounds contain a 
heterocyclic cation [MeCAACH]+ and a discrete octahedrally coordinated anion [MF6]– (M = 
P, As). The structural features of the anions agree well with the structures of the previ-
ously described species. The average P–F distance of 1.591 Å of [MeCAACH][PF6] is con-
sistent with the average P–F distances of 1.570 Å [28], 1.588 Å [29], or 1.600 Å [29] reported 
elsewhere. Similarly, the slightly longer average As–F distance of 1.710 Å of 

Scheme 3. Synthesis of [MeCAACH][PF6] and [MeCAACH][AsF6].

Molecules 2023, 28, x FOR PEER REVIEW 5 of 16 
 

 

mixture, [MeCAACH][F(HF)2] was used. Similar procedures have been used in the past for 
the synthesis of compounds containing [AsF6]−, and [SbF6]− anions [27]. [MeCAACH][SbF6] 
was previously prepared and structurally characterized by Jana’s group [9]. Our results 
agree well with the reported data and provide a simple alternative approach for the for-
mation of [MeCAACH][SbF6] in high yields.  

 
Scheme 3. Synthesis of [MeCAACH][PF6] and [MeCAACH][AsF6]. 

 
Scheme 4. Synthesis of [MeCAACH][SbF6]. 

Single crystals of all three compounds were prepared by vapor diffusion crystalliza-
tion using DCM as solvent and cyclopentane as antisolvent. [MeCAACH][PF6] and 
[MeCAACH][AsF6] both crystallize in the orthorhombic space group Pbca and their crystal 
structures are shown in Figure 3.  

 

(a) (b) 

Figure 3. Structure of the asymmetric units of (a) [MeCAACH][PF6] and (b) [MeCAACH][AsF6]. The 
ellipsoids are drawn at 50% probability. For clarity, all hydrogen atoms except those on the hetero-
cyclic ring are omitted. 

The two compounds are isostructural, with the hexafluoroarsenate compound hav-
ing only a slightly larger unit cell. The asymmetric units of both compounds contain a 
heterocyclic cation [MeCAACH]+ and a discrete octahedrally coordinated anion [MF6]– (M = 
P, As). The structural features of the anions agree well with the structures of the previ-
ously described species. The average P–F distance of 1.591 Å of [MeCAACH][PF6] is con-
sistent with the average P–F distances of 1.570 Å [28], 1.588 Å [29], or 1.600 Å [29] reported 
elsewhere. Similarly, the slightly longer average As–F distance of 1.710 Å of 

Scheme 4. Synthesis of [MeCAACH][SbF6].

Single crystals of all three compounds were prepared by vapor diffusion crystal-
lization using DCM as solvent and cyclopentane as antisolvent. [MeCAACH][PF6] and
[MeCAACH][AsF6] both crystallize in the orthorhombic space group Pbca and their crystal
structures are shown in Figure 3.
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The two compounds are isostructural, with the hexafluoroarsenate compound hav-
ing only a slightly larger unit cell. The asymmetric units of both compounds contain a
heterocyclic cation [MeCAACH]+ and a discrete octahedrally coordinated anion [MF6]–

(M = P, As). The structural features of the anions agree well with the structures of the
previously described species. The average P–F distance of 1.591 Å of [MeCAACH][PF6]
is consistent with the average P–F distances of 1.570 Å [28], 1.588 Å [29], or 1.600 Å [29]
reported elsewhere. Similarly, the slightly longer average As–F distance of 1.710 Å of
[MeCAACH][AsF6] is comparable to the average As–F distances of 1.715 Å [30] and the
range of 1.691(2)–1.757(2) Å reported for other [AsF6]– anions [27].
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2.1.3. CAAC Precursors

Finally, we prepared the [MeCAACH][BF4] salt by the same procedure described
for [MeCAACH][PF6] and [MeCAACH][AsF6]. The in situ prepared [MeCAACH][F(HF)2]
reacted with BF3 gas and quantitatively formed [MeCAACH][BF4], as shown in Scheme 5.
The same compound was recently prepared by Jana’s group from CAAC: carbene and
NO[BF4] [9]. Our approach provides a simple and straightforward alternative for the
preparation of CAAC-based tetrafluoroborate compounds in high yield.
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Scheme 5. Synthesis of [MeCAACH][BF4].

Single crystals of [MeCAACH][BF4] suitable for X-ray diffraction were prepared by
vapor diffusion crystallization using DCM as solvent and cyclopentane as antisolvent.
[MeCAACH][BF4] crystallizes in the monoclinic space group P21/n and its crystal structure
is shown in Figure 4. The asymmetric units contain a heterocyclic cation [MeCAACH]+ and
a discrete, tetrahedrally coordinated [BF4]– anion. The positions of the fluorine atoms in the
anion are disordered. Two preferred orientations were modeled and refined, with domains
A and B occupied by 73% and 27%, respectively. The crystal structures with disordered
anions are shown along with separate images of domains A and B in Figure S34 in the
Supporting Information. The structural features of our [BF4]− anion in [MeCAACH][BF4]
are consistent with the previously described structures [8], however, the bond lengths and
angles are not compared to the previously reported structures due to the heavy disorder of
the [BF4]− anion.
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Figure 4. Structure of the asymmetric unit of [MeCAACH][BF4]. The ellipsoids are drawn at 50%
probability. The positions of the fluorine atoms in the anion are disordered. For clarity, only the
fluorine atoms in domain A are shown and all hydrogen atoms except those on the heterocyclic ring
are omitted.

In addition to the tetrafluoroborate salts, the CAAC-based chloride and triflate salts
are still used as precursors for CAAC: carbenes. In the past, we have demonstrated their
usefulness as group transfer reagents in aluminum hydride chemistry [10]. During our
work, we succeeded in preparing [MeCAACH][Cl] and [MeCAACH][OTf] according to
known procedures from the literature [1,10], crystallizing them and structurally character-
izing them. The crystal structures of [MeCAACH][Cl] and [MeCAACH][OTf] are shown
in Figure 5. [MeCAACH][Cl] crystallizes in the monoclinic space group P21/c, while
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[MeCAACH][OTf] crystallizes in the monoclinic space group P21/n. The asymmetric unit
of [MeCAACH][Cl] contains a heterocyclic cation [MeCAACH]+ and a discrete chloride
anion, while the asymmetric unit of [MeCAACH][OTf] contains two ion pairs consisting of
a [MeCAACH]+ cation and an [OTf]– anion. The asymmetric unit of [MeCAACH][OTf] is
shown in Figure S35 in the Supporting Information.
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2.2. NMR Spectroscopy

The 1H, 13C, 19F, and other heteronuclear NMR spectra are given in the Supporting
Information for all synthesized salts. All spectra are consistent with crystal structures deter-
mined by single-crystal X-ray diffraction. In the 1H and 13C NMR spectra, the characteristic
signals for the [MeCAACH]+ cation are visible. In addition, the 1H and 13C NMR spectra of
[MeCAACH][(THF)SnF5] contain signals for THF and residual hexane.

Measured 19F and other heteronuclear NMR peaks (11B, 29Si, 119Sn, 31P, 75As, and
121Sb) are listed in Table 1. The 74Ge NMR spectra could not be measured due to the
characteristics of the broadband probe. The frequency of 74Ge was outside the range of the
broadband probe used. The data collected for the discrete fluoroanions of the main group
elements agree well with the data reported for other related compounds.

Table 1. Selected NMR peaks of fluoro-compounds in MeCN-d3.

Compound δ(19F) M–F Isotope (M) δ(Isotope) M–F

[MeCAACH][BF4] −151.94 (s) 11B −1.23 (s)
[MeCAACH][SiF5] −137.53 (br) 29Si −149.86 (s)
[MeCAACH][GeF5] −137.45 (br) 74Ge na

[MeCAACH][(THF)SnF5] −160.37 (d), −170.20 (quint) 119Sn −789.93 (m)
[MeCAACH][PF6] −72.84 (d) 31P −146.09 (sept)

[MeCAACH][AsF6] −65.77 (m) 75As 5.45 (sept)
[MeCAACH][SbF6] −123.96 (m) 121Sb 86.29 (sept)

The 19F and 11B NMR signals of our [BF4]– anion (19F: −151.94 ppm; 11B: −1.23 ppm)
agree well with the data reported by Jana’s group for the same compound (19F: −151.49 ppm
and −151.54 ppm; 11B: −1.19 ppm) [9].
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Also, the 19F NMR signals of the [SiF5]– and [GeF5]– anions in [MeCAACH][SiF5] (19F:
−137.53 ppm) and [MeCAACH][GeF5] (19F: −137.45 ppm) agree well with the previously
characterized [SiF5]– (19F: −139 ppm [13], −138.4 ppm [14], and −137.08 ppm [12]) and
[GeF5]– anions (19F: −136.60 ppm [12]). The 29Si NMR signal of [SiF5]– in [MeCAACH][SiF5]
(29Si: −149.86 ppm) is also consistent with the previously reported data for [SiF5]– anions
(29Si: −147.5 ppm [14]).

Since the [(THF)SnF5]– anion is not symmetrical, two distinct signals corresponding to
the anion are seen in the 19F NMR spectra. A doublet is observed at −160.37 ppm belonging
to the 4 cis-fluorine atoms and a quintet at −170.20 ppm belonging to the trans-fluorine
atom. The same NMR pattern was observed by Röschenthaler’s group for [RSnF5]− anions
(R = (Me2N)2C and C5H10N2) [24]. The 119Sn NMR spectrum for the [(THF)SnF5]– anion
contains a multiplet at −789.93 ppm. Our results are in a similar range to those reported
for [RSnF5]− anions (119Sn: –749.75 ppm) [24]. The 119Sn NMR spectra of [RSnF5]− anions
give a doublet of quintets with 1JSnF(cis) = 2160 Hz and 1JSnF(trans) = 1490 Hz [24]. The 119Sn
NMR spectrum of our [(THF)SnF5]– anion has a similar shape with 1J119SnF = 1880 Hz.
However, not all peaks are visible in the NMR spectrum due to the high background noise.

The 19F and heteronuclear NMR spectra of the discrete fluoroanions of group 15 were
much better resolved. The 19F NMR signal of the [PF6]– anion in [MeCAACH][PF6] (19F:
−72.84 ppm with J = 706.7 Hz) is a doublet due to coupling with 31P (I = 1/2), while
its 31P NMR signal (31P: −146.09 ppm with J = 707.1 Hz) has the form of a septet due to
coupling with 19F (I = 1/2). The values are in good agreement with previously characterized
[PF6]– anions (19F: −70.7 ppm with J = 704 Hz [31]; −70.2 ppm with J = 711.4 Hz [28]; 31P:
−144.2 ppm with J = 711.3 Hz [28]).

The 19F NMR signal of the [AsF6]– anion in [MeCAACH][AsF6] (19F: −65.77 ppm with
J = 931.2 Hz) is split into four lines due to scalar coupling with 75As (I = 3/2), while its 75As
NMR signal (75As: 5.45 ppm with J = 931.6 Hz) is in the form of a septet due to coupling
with 19F (I = 1/2). Our results are consistent with previously published data for [AsF6]–

anions (19F: −68.4 ppm [31]; –56.8 ppm [32];, –56.1 ppm [32]; 75As: 0.0 ppm [32]).
The 19F NMR signal of the [SbF6]– anion in [MeCAACH][SbF6] consists of two sets

of peaks. The first set of peaks with slightly higher intensity (19F: −123.96 ppm with
J = 1936.3 Hz) is split into six lines due to scalar coupling with 121Sb (I = 5/2, natural abun-
dance 57.25%), while the second set of peaks with slightly lower intensity (19F: −123.96 ppm
with J = 1050.4 Hz) is split into eight lines due to scalar coupling with 123Sb (I = 7/2, nat-
ural abundance 42.75%). The chemical shift of the 19F NMR spectra agrees well with the
previously reported results for [SbF6]– anions (19F: −113.69 ppm [31]). The difference of
about 10 ppm can be attributed to the use of a different NMR solvent.

2.3. Raman Spectroscopy

The spectra of all compounds prepared can be found in Figures S28–S30 in the Sup-
porting Information, while selected Raman peaks for M–F vibrations are listed in Table 2.
Assignment of M–F vibrations was difficult due to the strong vibration of the [MeCAACH]+

cation in the same region, so only the strongest M–F vibrations were assigned. In the case
of [MeCAACH][BF4], assignment of the B–F bands was not possible. The vibrations typical
of [BF4]− anions are normally found around 777 cm−1 [33]. However, in our case, it is
very likely that the peaks are hidden under the peaks of the [MeCAACH]+ cation. The
Si–F and Ge–F vibrations of the [SiF5]− and [GeF5]− anions were assigned to 712 cm−1

and 665 cm−1, respectively, which is consistent with the previously reported data for
[IPrH][SiF5] and [IPrH][GeF5] (709 cm−1 and 664 cm−1, respectively) [12]. The Sn–F vibra-
tions in [MeCAACH][(THF)SnF5] were assigned to 581 cm−1, which is in agreement with
the reported Sn–F vibrations in octahedrally coordinated [SnF6]2− anions (600 cm−1 [19],
592 cm−1 [33]). The P–F and Sb–F vibrations of the [PF6]− and [SbF6]− anions were as-
signed to 744 cm−1 and 645 cm−1, respectively, while the As–F vibration of the [AsF6]−

anion was tentatively assigned to 712 cm−1. All data agree well with the P–F, As–F, and
Sb–F vibrations for [PF6]− (756 cm−1), [AsF6]− (689 cm−1), and [SbF6]− anions (668 cm−1)
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published in the literature [33]. Assigning the As–F vibration in [MeCAACH][AsF6] was
difficult because the more intense peak at 681 cm−1, which is in better agreement with
the literature data, is likely a signal from the [MeCAACH]+ cation since it is present in the
Raman spectra of all other aldiminium-based salts.

Table 2. Selected Raman peaks of fluoro-compounds.

Compound Raman ν M–F (cm−1) Isotope (M)

[MeCAACH][BF4] na 11B
[MeCAACH][SiF5] 712 29Si
[MeCAACH][GeF5] 665 74Ge

[MeCAACH][(THF)SnF5] 581 119Sn
[MeCAACH][PF6] 744 31P

[MeCAACH][AsF6] 712 75As
[MeCAACH][SbF6] 645 121Sb

3. Materials and Methods
3.1. Reagents

Commercially available reagents BF3 (Union Carbide Austria GmbH, 99.5%), GeF4
(CERAC, Inc., Milwaukee, WI, USA, 99.99%), SbF3 (Alfa Aesar, Ward Hill, MA, USA, 99%)
and elemental fluorine F2 (Solvay Fluor and Derivate GmbH, Neder-Over-Heembeek,
Brussels, Belgium 99.98%) were used as received. Anhydrous HF (aHF, Linde, Dublin,
Ireland, 99.995%) was dried by mixing with K2NiF6 (Advance Research Chemicals, Inc.,
Catoosa, OK, USA) before use. SiF4 was synthesized according to a modified procedure
described in the literature [34]. SnF4 was synthesized by fluorination of SnF2 (Aldrich,
Burlington, MA, USA, 99%) with F2 at room temperature in aHF. AsF5 and PF5 were
prepared by pressure fluorination of As2O3 (Alfa Aesar, Ward Hill, MA, USA, 99%) and
P2O5 (Sigma-Aldrich, Burlington, MA, USA, ≥98.0%) in a closed system as described
previously [35]. [MeCAACH][(HCl)0.5Cl] and [MeCAACH][F(HF)2] were synthesized ac-
cording to the procedures described in the literature [10,11]. MeCN (Honeywell, Charlotte,
NC, USA, ≥99.9%) was purified using the Vigor solvent purification system. MeCN-d3

(Deutero, Kastellaun, Germany, 99.0%) was stored in the glovebox (M. Braun, Garching bei
Munchen, Germany) over 3 Å molecular sieves before use.

3.2. Caution

F2 and aHF are extremely corrosive and highly dangerous gases. They should be
handled with care by an experienced experimenter in a well-ventilated hood. F2 is also
a strong oxidizer that should be handled in nickel or copper equipment. All equipment
used for reactions with F2 should be thoroughly cleaned, degreased, and fluorinated before
use. The gases BF3, SiF4, GeF4, PF5, and AsF5 are also toxic. They readily hydrolyze in the
presence of water to form HF. Take care to avoid inhalation and contact with skin. Always
wear protective clothing, gloves, and a face mask when handling corrosive gases.

3.3. General

All syntheses were carried out under anhydrous conditions. Nonvolatile compounds
were stored and handled in a glovebox (M. Braun) maintained below 0.1 ppm O2 and
H2O, while gaseous and volatile compounds were handled via a nickel and polytetraflu-
oroethylene (PTFE) vacuum line. All reactions were performed in tetrafluoroethylene-
hexafluoropropylene (FEP) reaction vessels equipped with PTFE valves. Before use, the
vessels were passivated with F2 at 1 bar for 2 h and then evacuated. Crystallization of all
newly prepared compounds proceeded by vapor diffusion. Approximately 20 mg of each
salt was dissolved in 0.5 mL of solvent (usually DCM) in a small vial. The small vial was
placed in a larger wide-neck vial containing 2.5 mL of antisolvent (usually cyclopentane)
and capped with a screw cap. After a few days, small crystals formed in the small vial.
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3.4. Syntheses

3.4.1. [MeCAACH][SiF5]

[MeCAACH][F(HF)2] (200 mg, 0.579 mmol) was added to an FEP reaction vessel and
dissolved in 5 mL of anhydrous MeCN. SiF4 gas (76 mg, 0.730 mmol) was condensed at
−196 ◦C in the FEP reaction vessel. The reaction mixture was warmed to room temper-
ature and stirred overnight. Then all volatiles were removed under reduced pressure of
10−2−10−3 bar to give a white solid. Crystallization by vapor diffusion using DCM as sol-
vent and cyclopentane as antisolvent formed single crystals of [MeCAACH][SiF5] suitable
for X-ray analysis. Yield: 192 mg (81%). 1H NMR (CD3CN, 25 ◦C, 600.06 MHz): δ 8.83 (s,
1H, C2−H), 7.62 (t, 1H, J = 7.8 Hz, p-ArH), 7.47 (d, 2H, J = 7.8 Hz, m-ArH), 2.72 (sept, 2H,
J = 6.7 Hz, i-Pr-CH3), 2.46 (s, 2H, CH2), 1.60 (s, 6H, C5−CH3), 1.53 (s, 6H, C3−CH3), 1.35
(d, 6H, J = 6.7 Hz, i-Pr-CH3), 1.10 (d, 6H, J = 6.8 Hz, i-Pr-CH3). 13C{1H} NMR (CD3CN,
25 ◦C, 150.89 MHz): 192.1 (C2−H), 145.6 (ipso-ArC), 133.1 (p-ArC), 130.1 (o-ArC), 126.6
(m-ArC), 85.8 (C5), 48.9 (C3), 48.8 (CH2), 30.4 (i-Pr-CH), 28.5 (C3-CH3), 26.3 (i-Pr-CH3), 26.2
(C5-CH3), 22.2 (i-Pr-CH3). 19F NMR (CD3CN, 25 ◦C, 564.62 MHz): −137.53 (br, SiF5

−). 29Si
NMR (CD3CN, 25 ◦C, 119.22 MHz): −149.86 (SiF5

−). Raman [ν(Si–F) range]: ν = 712 cm−1.
Crystal Data for C20H32N·SiF5 (M = 409.55 g/mol): monoclinic, space group P21/n (no. 14),
a = 10.7357(4) Å, b = 19.1191(7) Å, c = 10.8661(3) Å, β = 95.235(3)◦, V = 2221.1(1) Å3, Z = 4,
T = 150 K, µ(CuKα) = 1.342 mm−1, Dcalc = 1.225 g/cm3, 35,176 reflections measured
(4.1◦ ≤ 2Θ ≤ 72.3◦), 4372 unique (Rint = 0.0362, Rsigma = 0.0165) which were used in all
calculations. The final R1 was 0.0486 (I > 2σ(I)) and wR2 was 0.1416 (all data).

3.4.2. [MeCAACH][GeF5]

[MeCAACH][F(HF)2] (200 mg, 0.579 mmol) was added to an FEP reaction vessel
and dissolved in 5 mL of anhydrous MeCN. GeF4 gas (92 mg, 0.619 mmol) was con-
densed at −196 ◦C in the FEP reaction vessel. The reaction mixture was warmed to
room temperature and stirred overnight. Then, all volatiles were removed under re-
duced pressure of 10−2−10−3 bar to give a white solid. Crystallization by vapor diffu-
sion using DCM as solvent and cyclopentane as antisolvent formed single crystals of
[MeCAACH][GeF5] suitable for X-ray analysis. Yield: 253 mg (96%). 1H NMR (CD3CN,
25 ◦C, 600.06 MHz): δ 8.79 (s, 1H, C2−H), 7.61 (t, 1H, J = 7.8 Hz, p-ArH), 7.47 (d, 2H,
J = 7.8 Hz, m-ArH), 2.72 (sept, 2H, J = 6.7 Hz, i-Pr-CH3), 2.45 (s, 2H, CH2), 1.60 (s, 6H,
C5−CH3), 1.53 (s, 6H, C3−CH3), 1.35 (d, 6H, J = 6.7 Hz, i-Pr-CH3), 1.10 (d, 6H, J = 6.7 Hz,
i-Pr-CH3). 13C{1H} NMR (CD3CN, 25 ◦C, 150.89 MHz): 192.1 (C2−H), 145.6 (ipso-ArC),
133.1 (p-ArC), 130.1 (o-ArC), 126.6 (m-ArC), 85.8 (C5), 48.9 (C3), 48.8 (CH2), 30.4 (i-Pr-
CH), 28.5 (C3-CH3), 26.3 (i-Pr-CH3), 26.2 (C5-CH3), 22.2 (i-Pr-CH3). 19F NMR (CD3CN,
25 ◦C, 564.62 MHz): −137.45 (br, GiF5

−). Raman [ν(Ge–F) range]: ν = 665 cm−1. Crys-
tal Data for C20H32N·GeF5 (M = 454.05 g/mol): monoclinic, space group P21/n (no. 14),
a = 10.8904(1) Å, b = 19.2640(2) Å, c = 10.9361(2) Å, β = 95.391(1)◦, V = 2284.18(5) Å3,
Z = 4, T = 150 K, µ(CuKα) = 2.219 mm−1, Dcalc = 1.320 g/cm3, 62,624 reflections measured
(4.0◦ ≤ 2Θ ≤ 72.3◦), 4493 unique (Rint = 0.0365, Rsigma = 0.0118) which were used in all
calculations. The final R1 was 0.0425 (I > 2σ(I)) and wR2 was 0.1243 (all data).

3.4.3. [MeCAACH][(THF)SnF5]

SnF4 (113 mg, 0.580 mmol) and [MeCAACH][F(HF)2] (200 mg, 0.579 mmol) were
added to an FEP reaction vessel. Approximately 5 mL of aHF was condensed at −196 ◦C
in the FEP vessel. The reaction mixture was warmed to room temperature and stirred
overnight. Then, all volatiles were removed under reduced pressure of 10−2−10−3 bar
to give a brown solid. In the glovebox, 5 mL of THF was added and a white precipitate
was formed. The precipitate was separated from the solution, dried, and characterized as
[MeCAACH][(THF)SnF5]. Yield: 298 mg (90%). 1H NMR (CD3CN, 25 ◦C, 600.06 MHz):
δ 8.92 (s, 1H, C2−H), 7.61 (t, 1H, J = 7.8 Hz, p-ArH), 7.47 (d, 2H, J = 7.8 Hz, m-ArH), 3.64 (br,
4H, THF), 2.72 (sept, 2H, J = 6.7 Hz, i-Pr-CH3), 2.45 (s, 2H, CH2), 1.80 (s, 4H, THF), 1.61 (s, 6H,
C5−CH3), 1.52 (s, 6H, C3−CH3), 1.35 (d, 6H, J = 6.7 Hz, i-Pr-CH3), 1.11 (d, 6H, J = 6.8 Hz,
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i-Pr-CH3). 13C{1H} NMR (CD3CN, 25 ◦C, 150.89 MHz): 192.5 (C2−H), 145.7 (ipso-ArC),
133.0 (p-ArC), 130.1 (o-ArC), 126.5 (m-ArC), 85.7 (C5), 68.5 (THF), 48.9 (C3), 48.9 (CH2), 30.4
(i-Pr-CH), 28.5 (C3-CH3), 26.3 (i-Pr-CH3), 26.2 (C5-CH3), 22.3 (i-Pr-CH3). 19F NMR (CD3CN,
−23 ◦C, 564.62 MHz): −160.37 (d, 4Fcis, 2JFF = 45.1 Hz, 1J119SnF = 1693 Hz), −170.20 (quint,
1Ftrans, 2JFF = 45.0 Hz, 1J119SnF = 1890 Hz). 119Sn NMR (CD3CN, −23 ◦C, 223.77 MHz):
−789.93 (m, 1J119SnF = 1880 Hz, SnF5

−). Raman [ν(Sn–F) range]: ν = 581 cm−1.

3.4.4. [MeCAACH][PF6]

[MeCAACH][H0.5Cl1.5] (300 mg, 0.932 mmol) was added to an FEP reaction vessel.
Approximately 5 mL of aHF and about 3 mmol of PF5 gas were condensed at −196 ◦C
in the FEP reaction vessel. The reaction mixture was warmed to room temperature and
stirred overnight. Then, all volatiles were removed under reduced pressure of 10−2−10−3

bar to give a white solid. Crystallization by vapor diffusion using DCM as solvent and
cyclopentane as antisolvent formed single crystals of [MeCAACH][PF6] suitable for X-ray
analysis. Yield: 346 mg (86%). 1H NMR (CD3CN, 25 ◦C, 600.06 MHz): δ 8.72 (s, 1H, C2−H),
7.61 (t, 1H, J = 7.8 Hz, p-ArH), 7.47 (d, 2H, J = 7.8 Hz, m-ArH), 2.72 (sept, 2H, J = 6.6 Hz,
i-Pr-CH3), 2.46 (s, 2H, CH2), 1.60 (s, 6H, C5−CH3), 1.53 (s, 6H, C3−CH3), 1.35 (d, 6H,
J = 6.5 Hz, i-Pr-CH3), 1.10 (d, 6H, J = 6.6 Hz, i-Pr-CH3). 13C{1H} NMR (CD3CN, 25 ◦C,
150.89 MHz): 191.8 (C2−H), 145.6 (ipso-ArC), 133.1 (p-ArC), 130.0 (o-ArC), 126.6 (m-ArC),
85.9 (C5), 48.8 (C3), 48.8 (CH2), 30.4 (i-Pr-CH), 28.5 (C3-CH3), 26.3 (i-Pr-CH3), 26.2 (C5-CH3),
22.2 (i-Pr-CH3). 19F NMR (CD3CN, 25 ◦C, 564.62 MHz): −72.84 (d, J = 706.7 Hz, PF6

−). 31P
NMR (CD3CN, 25 ◦C, 119.22 MHz): −146.09 (sept, J = 707.1 Hz, PF6

−). Raman [ν(P–F)
range]: ν = 744 cm−1.

3.4.5. [MeCAACH][AsF6]

[MeCAACH][H0.5Cl1.5] (200 mg, 0.588 mmol) was added to an FEP reaction vessel. Ap-
proximately 5 mL of aHF and AsF5 gas (109 mg, 0.642 mmol) were condensed at −196 ◦C in
the FEP reaction vessel. The reaction mixture was warmed to room temperature and stirred
overnight. Then, all volatiles were removed under reduced pressure of 10−2−10−3 bar
to give a white solid. Crystallization by vapor diffusion using DCM as solvent and cy-
clopentane as antisolvent formed single crystals of [MeCAACH][AsF6] suitable for X-ray
analysis. Yield: 346 mg (86%). 1H NMR (CD3CN, 25 ◦C, 600.06 MHz): δ 8.72 (s, 1H, C2−H),
7.61 (t, 1H, J = 7.8 Hz, p-ArH), 7.48 (d, 2H, J = 7.9 Hz, m-ArH), 2.72 (sept, 2H, J = 6.7 Hz,
i-Pr-CH3), 2.46 (s, 2H, CH2), 1.60 (s, 6H, C5−CH3), 1.53 (s, 6H, C3−CH3), 1.35 (d, 6H,
J = 6.7 Hz, i-Pr-CH3), 1.10 (d, 6H, J = 6.8 Hz, i-Pr-CH3). 13C NMR (CD3CN, 25 ◦C, 150.89
MHz): 191.8 (C2−H), 145.6 (ipso-ArC), 133.1 (p-ArC), 130.0 (o-ArC), 126.6 (m-ArC), 85.9
(C5), 48.8 (C3), 48.8 (CH2), 30.4 (i-Pr-CH), 28.5 (C3-CH3), 26.3 (i-Pr-CH3), 26.2 (C5-CH3),
22.2 (i-Pr-CH3). 19F NMR (CD3CN, 25 ◦C, 564.62 MHz): −65.77 (m, J = 931.2 Hz, AsF6

−).
75As NMR (CD3CN, 25 ◦C, 564.62 MHz): 5.45 (sept, J = 931.6 Hz, AsF6

−). Raman [ν(As–F)
range]: ν = 712 cm−1.

3.4.6. [MeCAACH][SbF6]

SbF3 (155 mg, 0.867 mmol) was added to an FEP reaction vessel. Approximately
5 mL of aHF was condensed at −196 ◦C in the FEP reaction vessel. The mixture was
allowed to react with F2 at room temperature until all the solid SbF3 was fluorinated
to SbF5 and consequently dissolved. The solution was then quantitatively transferred
to a second FEP reaction vessel loaded with [MeCAACH][F(HF)2] (300 mg, 0.868 mmol).
The reaction mixture was stirred overnight. Thereafter, all volatiles were removed under
reduced pressure of 10−2−10−3 bar to give a brown solid. Yield: 253 mg (96%). 1H NMR
(CD3CN, 25 ◦C, 600.06 MHz): δ 8.71 (s, 1H, C2−H), 7.61 (t, 1H, J = 7.8 Hz, p-ArH), 7.48 (d,
2H, J = 7.8 Hz, m-ArH), 2.72 (sept, 2H, J = 6.7 Hz, i-Pr-CH3), 2.46 (s, 2H, CH2), 1.59 (s, 6H,
C5−CH3), 1.53 (s, 6H, C3−CH3), 1.35 (d, 6H, J = 6.7 Hz, i-Pr-CH3), 1.10 (d, 6H, J = 6.8 Hz,
i-Pr-CH3). 13C NMR (CD3CN, 25 ◦C, 150.89 MHz): 191.8 (C2−H), 145.6 (ipso-ArC), 133.1
(p-ArC), 130.1 (o-ArC), 126.6 (m-ArC), 86.0 (C5), 48.8 (C3), 48.8 (CH2), 30.4 (i-Pr-CH),
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28.5 (C3-CH3), 26.3 (i-Pr-CH3), 26.2 (C5-CH3), 22.2 (i-Pr-CH3). 19F NMR (CD3CN, 25 ◦C,
564.62 MHz): −123.96 (m, J = 1936.3 Hz for 121Sb, and 1050.4 Hz for 123Sb, SbF6

−). 121Sb
NMR (CD3CN, 25 ◦C, 376.51 MHz): 86.29 (sept, J = 1934.68 Hz, SbF6

−). Raman [ν(Sb–F)
range]: ν = 645 cm−1.

3.4.7. [MeCAACH][BF4]

[MeCAACH][H0.5Cl1.5] (308 mg, 0.906 mmol) was added to an FEP reaction vessel.
Approximately 5 mL of aHF and about 3 mmol of BF3 gas were condensed at −196 ◦C in
the FEP reaction vessel. The reaction mixture was warmed to room temperature and stirred
overnight. Then, all volatiles were removed under reduced pressure of 10−2−10−3 bar to
give a white solid. Crystallization by vapor diffusion using DCM as solvent and cyclopen-
tane as antisolvent formed single crystals of [MeCAACH][BF4] suitable for X-ray analysis.
Yield: 297 mg (88%). NMR data are in agreement with previously published data [9].

3.5. NMR Spectroscopy

Samples were prepared under inert atmosphere in a glovebox (M. Braun). NMR
spectra were recorded in 5 mm glass NMR tubes with FEP inlays. Measurements were
performed at the Slovenian NMR Centre (National Institute of Chemistry) using a Bruker
AVANCE NEO 600 MHz NMR spectrometer (Bruker Corporation, Billerica, MA, USA).
Chemical shifts of 1H and 13C were referenced to residual MeCN-d3 signals and reported
relative to TMS (tetramethylsilane). The chemical shifts of 19F, 29Si, 31P, 75As, 119Sn, and
121Sb were calculated according to IUPAC guidelines and are given relative to CCl3F, Me4Si
in CDCl3, H3PO4, NaAsF6 in MeCN-d3, Me4Sn in C6D6, and KSbCl6 in MeCN-d3 [36].

3.6. Crystal Structure Determination

Crystal data for all compounds were collected with a Gemini A diffractometer (Ag-
ilent Technologies, Santa Clara, CA, USA) equipped with an Atlas CCD detector using
graphite-monochromated Cu Kα radiation at 150 K. The data were processed using the
CrysAlisPro software package [37]. An analytical absorption correction was applied to all
data sets [38]. Structures were solved using the SHELXT program [39]. Structure refine-
ment was performed using the SHELXL software [40] implemented in the Olex2 program
package [41]. The figures were created using Diamond [42].

CCDC 2286835-2286843 contains the supplementary crystallographic data for this
work. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/
retrieving.html accessed on 24 August 2023 (or from the CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

3.7. Raman Spectroscopy

Samples were filled into 0.3 mm quartz capillaries under an inert atmosphere in a
glovebox (M. Braun). Raman spectra were recorded using a Horiba Jobin Yvon Labram-
HR spectrometer (HORIBA, Ltd., 2 Miyanohigashi, Kisshoin, Minami-ku Kyoto, 601-8510
Japan) coupled with an Olympus BXFM-ILHS microscope (Olympus Corporation, Shinjuku,
Tokyo, Japan) at room temperature. Samples were excited with the 633 nm emission line of
a He–Ne laser.

4. Conclusions

Aldiminium-based salts can be used as CAAC precursors or as unusual group trans-
fer reagents. Since not many aldiminium-based compounds are yet known, we have
carried out a systematic study on the synthesis of aldiminium-based salts of fluoroan-
ions of groups 14 and 15. To achieve this goal, the reactivity of group 14 tetrafluorides
(SiF4, GeF4, and SnF4) and group 15 pentafluorides (PF5, AsF5, and SbF5) was studied
using the CAAC-based trifluoride reagent [MeCAACH][F(HF)2]. SiF4 and GeF4 react with
[MeCAACH][F(HF)2] in MeCN to form [MeCAACH][SiF5] or [MeCAACH][GeF5]. The latter
compound is only the second example of a discrete, structurally characterized [GeF5]−

http://www.ccdc.cam.ac.uk/conts/retrieving.html
http://www.ccdc.cam.ac.uk/conts/retrieving.html
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anion. In a similar reaction, the SnF4 reacts with [MeCAACH][F(HF)2] in anhydrous HF
most likely to give [MeCAACH][SnF5]. However, the interactions with all solvents used for
crystallization led to the formation of octahedral species. This is also confirmed by the ab-
sence of crystal structures with a discrete [SnF5]− anion. The compound was characterized
in the form of [MeCAACH][(THF)SnF5] and [MeCAACH][(dioxane)SnF5] after dissolving
[MeCAACH][SnF5] in THF and dioxane, respectively. Both salts contain discrete, octahe-
drally coordinated tin fluoride anions with solvent molecules and are the first examples of
these types of anions. [MeCAACH][PF6] and [MeCAACH][AsF6] were synthesized in one
pot by the reaction of PF5 or AsF5 gasses with [MeCAACH][F(HF)2] prepared in situ from
[MeCAACH][Cl(HCl)0.5] and aHF. Finally, [MeCAACH][SbF6] was prepared by the reaction
of freshly prepared SbF5 with [MeCAACH][F(HF)2] in aHF. All the newly prepared com-
pounds with discrete [SiF5]−, [GeF5]−, [(THF)SnF5]−, [(dioxane)SnF5]−, [PF6]−, [AsF6]−

and [SbF6]− anions were structurally and spectroscopically characterized by X-ray single-
crystal structure analysis, NMR and Raman spectroscopy. In conclusion, the stabilization
of the rare 5- and 6- coordinated main group fluoroanions would not be possible without
the aldiminium-based cation [MeCAACH]+. It was found to stabilize the discrete anions
and prevent oligomerization of the fluorides used.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28176270/s1, Figure S1. 1H NMR spectrum of [MeCAACH][BF4]
in acetonitrile solution. Figure S2. 13C{1H} NMR spectrum of [MeCAACH][BF4] in acetonitrile
solution. Figure S3. 19F NMR spectrum of [MeCAACH][BF4] in acetonitrile solution. Figure S4.
11B NMR spectrum of [MeCAACH][BF4] in acetonitrile solution. Figure S5. 1H NMR spectrum of
[MeCAACH][SiF5] in acetonitrile solution. Figure S6. 13C{1H} NMR spectrum of [MeCAACH][SiF5]
in acetonitrile solution. Figure S7. 19F NMR spectrum of [MeCAACH][SiF5] in acetonitrile solution.
Figure S8. 29Si NMR spectrum of [MeCAACH][SiF5] in acetonitrile solution. Figure S9. 1H NMR
spectrum of [MeCAACH][GeF5] in acetonitrile solution. Figure S10. 13C{1H} NMR spectrum of
[MeCAACH][GeF5] in acetonitrile solution. Figure S11. 19F NMR spectrum of [MeCAACH][GeF5]
in acetonitrile solution. Figure S12. 1H NMR spectrum of [MeCAACH][(THF)SnF5] in acetonitrile
solution. Figure S13. 13C{1H} NMR spectrum of [MeCAACH][(THF)SnF5] in acetonitrile solution.
Figure S14. 19F NMR spectrum of [MeCAACH][(THF)SnF5] in acetonitrile solution. Figure S15.
119Sn NMR spectrum of [MeCAACH][(THF)SnF5] in acetonitrile solution. Figure S16. 1H NMR
spectrum of [MeCAACH][PF6] in acetonitrile solution. Figure S17. 13C{1H} NMR spectrum of
[MeCAACH][PF6] in acetonitrile solution. Figure S18. 19F NMR spectrum of [MeCAACH][PF6] in
acetonitrile solution. Figure S19. 31P NMR spectrum of [MeCAACH][PF6] in acetonitrile solution.
Figure S20. 1H NMR spectrum of [MeCAACH][AsF6] in acetonitrile solution. Figure S21. 13C{1H}
NMR spectrum of [MeCAACH][AsF6] in acetonitrile solution. Figure S22. 19F NMR spectrum of
[MeCAACH][AsF6] in acetonitrile solution. Figure S23. 75As NMR spectrum of [MeCAACH][AsF6] in
acetonitrile solution. Figure S24. 1H NMR spectrum of [MeCAACH][SbF6] in acetonitrile solution.
Figure S25. 13C{1H} NMR spectrum of [MeCAACH][SbF6] in acetonitrile solution. Figure S26. 19F
NMR spectrum of [MeCAACH][SbF6] in acetonitrile solution. Figure S27. 19F NMR spectrum
of [MeCAACH][SbF6] in acetonitrile solution. Figure S28. Raman spectra of [MeCAACH][SiF5],
[MeCAACH][GeF5], and [MeCAACH][(THF)SnF5]. Figure S29. Raman spectra of [MeCAACH][PF6],
[MeCAACH][AsF6], and [MeCAACH][SbF6]. Figure S30. Raman spectra of [MeCAACH][BF4]. Table
S1. Selected crystal data for [MeCAACH][SiF5], [MeCAACH][GeF5], and [MeCAACH][(THF)SnF5].
Table S2. Selected crystal data for [MeCAACH][(dioxane)SnF5]·dioxane, [MeCAACH][PF6], and
[MeCAACH][AsF6]. Table S3. Selected crystal data for [MeCAACH][BF4], [MeCAACH][Cl], and
[MeCAACH][OTf]. Table S4. Selected bond lengths (Å) and bond angles (◦) for [MeCAACH][SiF5],
[MeCAACH][GeF5], and [MeCAACH][(THF)SnF5]. Table S5. Selected bond lengths (Å) and bond
angles (◦) for [MeCAACH][(dioxane)SnF5]·dioxane, [MeCAACH][PF6] and [MeCAACH][AsF6]. Table
S6. Selected bond lengths (Å) and bond angles (◦) for [MeCAACH][BF4], [MeCAACH][Cl], and
[MeCAACH][OTf]. Figure S31. Structure of the disordered [MeCAACH][SiF5]. Figure S32. Structure of
the disordered [MeCAACH][GeF5]. Figure S33. Crystal structure of [MeCAACH][(dioxane)SnF5]·dioxane
with solvent molecules. Figure S34. Structure of the disordered [MeCAACH][BF4]. Figure S35.
Structure of the asymmetric unit of [MeCAACH][OTf].
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