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Abstract: Obesity, diabetes, and cardiovascular diseases are the major chronic metabolic diseases
that threaten human health. In order to combat these epidemics, there remains a desperate need
for effective, safe, and easily available therapeutic strategies. Recently, the development of natural
product research has provided new methods and options for these diseases. Numerous studies
have demonstrated that microRNAs (miRNAs) are key regulators of metabolic diseases, and natu-
ral products can improve lipid and glucose metabolism disorders and cardiovascular diseases by
regulating the expression of miRNAs. In this review, we present the recent advances involving the
associations between miRNAs and natural products and the current evidence showing the positive
effects of miRNAs for natural product treatment in metabolic diseases. We also encourage further
research to address the relationship between miRNAs and natural products under physiological
and pathological conditions, thus leading to stronger support for drug development from natural
products in the future.
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1. Introduction

Metabolic diseases, which encompass a variety of risk factors highly associated with
obesity, diabetes, and cardiovascular diseases, have come to be regarded as public health
challenges [1–4]. Due to their complex mechanisms of action, effective comprehensive
treatments are still lacking. Even worse, the side effects of some curative drugs have been a
major concern for their therapeutic usage [5–7]. Therefore, it is imperative to provide an
effective treatment approach to overcome the aforementioned diseases.

Natural products that are extracted from the source and from concentrated, fraction-
ated, and purified yielding, which are generally defined as bioactive compounds [8,9], have
the ability to modulate lipid metabolism, improve insulin signaling, and protect against
cardiovascular damage [10,11]. More importantly, natural products are widely distributed
and readily available in nature [12]. To date, extensive studies have shown that plentiful
drugs are derived from structural modification based on natural products [13]. MicroRNAs
(miRNAs) and small noncoding RNAs are characterized by binding to the regulatory sites
of 3′UTR of target mRNA, resulting in the inhibition of transcription or the promotion
of degradation, accompanied by decreased protein synthesis [14,15]. Natural products
could also ameliorate metabolic diseases by targeting abundant miRNAs [16–18]. Thus,
the possibility for natural products to modify the abnormal patterns of these diseases is, at
least in part, possible through a newly defined mechanism: the miRNAs cascade.

In this review, we summarize the positive effects of natural products on lipid and glu-
cose metabolism disorders and cardiovascular diseases, explain the underlying molecular
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mechanisms, and provide the theoretical basis for metabolic diseases. We also highlight
the regulatory effect of natural products on miRNAs in this therapeutic process. In the
hope of the preferable utilization of existing data, we thus provide a new route for future
drug discovery.

2. Research Methodology

A systematic search of the literature was performed in the PubMed and Web of Science
databases (up to December 2022). The following text terms were used to identify any
study candidates: (“microRNA(s)” OR “miRNA(s)” OR “miR”) AND (“natural product(s)”
OR “plant(s)” OR “Herb(s)” OR “extract(s)”) AND (“metabolic disease(s)” OR “glyco-
lipid metabolism disorders” OR “lipid metabolism disorder(s)” OR “Glucose metabolism
disorder(s)” OR “cardiovascular disease(s)” OR “obesity” OR “diabetes” OR “glucose”
OR “lipid” OR “fat” OR “adipocyte” OR “metabolism”). Moreover, we hand-searched the
citation lists of the included studies to identify the relevant literature. As for data extraction,
the titles, keywords, abstracts, and full texts of all enrolled articles were screened. Any
duplicates and irrelevant studies were excluded; traditional Chinese medicine formulas,
extracts, or combinations with unclear functional components were also excluded from
the literature. The useful data were extracted from the relevant qualified literature into
specifically designed spreadsheets. The following data were included: the first author,
country, year of publication, natural products, functional components, experimental models,
dosage and duration of treatment, observed effects, associated miRNAs, and target genes.

3. Effects of Natural Products on Lipid Metabolism Disorders

Lipid metabolism is a crucial and complex biochemical reaction in the body, and
diseases caused by lipid metabolism disorders are common in modern society, such as
obesity and hyperlipidemia [19]. Lipids are known to be important substances in energy
storage and energy supply. Hence, the proper amount of adipose tissue is necessary for the
human body. In general, however, patients have difficulty sticking to a long-term diet and
physical activity regimen to combat these metabolic disorders. Therefore, food components
that ameliorate the risk factors associated with these diseases can facilitate dietary-based
therapies [16]. Dietary natural products have long been of great interest for improving lipid
metabolism by modulating miRNA expression.

3.1. Regulatory Effects on Fatty Acid Synthesis and Decomposition

It is well known that fatty acids are the simplest type of lipids and are the building
blocks of many more complex fats. Furthermore, they are also perceived as one of the main
sources of energy on account of releasing a lot of energy during oxidation into CO2 and H2O
in the case of a sufficient oxygen supply. Therefore, the role of fatty acids in the processes of
lipogenesis and lipodieresis cannot be ignored. Recently, investigators have examined the
regulatory effects of natural products on lipogenesis and lipodieresis, resulting in improved
lipid metabolism through the management of diverse miRNAs (Tables 1 and 2).
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Table 1. The effects of natural products (extracts) on lipid metabolism disorders.

Natural Products
(Extracts)

Relevant
miRNAs Dose Administration

Methods Experimental Models Targets Observed Effects References

Averrhoa carambola free
phenolic extract

miR-33↓
miR-34a↓

10, 20, 30 g/kg/d for
8 weeks Gavage db/db mice /

• Reduced liver TG;
• Inhibited the signal transduction of hepatic lipogenesis;
• Exhibited a potent hepatic steatosis-relieving effect.

[20]

Cerasus humilis
polyphenol extract miR-7a/b↓ 40 µg/mL for 48 h;

250 g/kg/day for 12 weeks
Cell culture;

gavage
3T3-L1 pre-adipocyte cells;

obese mice Sirt1, Prdm16

• Reduced body weight;
• Improved abnormal serum lipid and glucose levels;
• Inhibited adipocyte differentiation;
• Reduced fat accumulation by mitigating fat deposition,
inflammation, and oxidation.

[21]

Citrus peel flavonoids miR-33↓
miR-122↓

10 µg/mL for 0.5, 1, 3 and
6 h Cell culture Oleic acid-treated HepG2

cells FAS, CPT1a • Attenuated intracellular lipid accumulation. [22]

Coffee polyphenols miR-122↑
2.5 × 10−4%;

diet containing 0.5% or
1.0% coffee polyphenols

for 15 weeks

Cell culture;
diet

Hepa 1-6 cells;
HFD-fed mice SREBP1c

• Activated AMPK;
• Enhanced energy metabolism;
• Reduced lipogenesis;
• Reduced body weight gain, abdominal and liver fat
accumulation.

[23]

Ginger extract miR-21↓
miR-132↓

Diet containing 0.8%
ginger extract for 10 weeks Diet HFD-fed rats /

• Lowered body weight and white adipose tissue mass;
• Reduced serum and hepatic lipid levels;
• Enhanced AMPK activity;
• Ameliorated obesity and inflammation.

[24]

Grape seed
proanthocyanidins extract

miR-33a↓
miR-122↓ 5, 25, 50 mg/kg for 3 weeks Gavage HFD–induced obese rats ABCA1;

FAS, PPARβ/δ
• Hypolipidemic;
• Decreased total liver fat. [16]

miR-33a↓
miR-122↓

5, 15, 25, 50 mg/kg for
3 weeks Gavage Healthy Wistar rats ABCA1;

FAS

• Improved postprandial hyperlipemia;
• Increased liver cholesterol efflux to HDL formation;
• Reduced fatty acid synthesis.

[25]

miR-33↓
miR-122↓

10, 25, 50, or 100 mg/L for
0.5, 1, 3, or 5 h;

250 mg/kg for 1 or 3 h

Cell culture;
gavage

FAO cells;
Wistar rats

ABCA1;
FAS

• Hypolipidemic;
• Reduced lipogenesis;
• Increased liver cholesterol efflux to HDL formation.

[26]

miR-33a↓
miR-122↓ 25 mg/kg for 3 weeks Gavage Dyslipidemic obese rats ABCA1, CPT1a;

FAS, PPARβ/δ
• Improved dyslipidemia;
• Decreased total liver fat. [27]

miR-96↓ 200 mg/kg/day for
180 days Diet HFD-fed mice mTOR, FOXO1

• Decreased the weight gain, serum levels of triglycerides,
total cholesterol, and low-density lipoprotein cholesterol
but increased high-density lipoprotein cholesterol;
• Clearance of lipid accumulation.

[28]

miR-33↓
miR-122↓ 250 mg/kg once Gavage HFD-fed grass carp / • Decreased TG accumulation by reducing de novo

lipogenesis and enhancing lipolysis and β-oxidation. [29]
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Table 1. Cont.

Natural Products
(Extracts)

Relevant
miRNAs Dose Administration

Methods Experimental Models Targets Observed Effects References

Green tea extract

miR-34a↓
miR-194↑

500 mg/kg for 12 weeks
(5 days/week) Gavage HFD-fed mice Sirt1, PPARα, INSIG2;

HMGCS, APOA5

• Protected against NAFLD development by altering
lipid metabolism, increasing gene expression involved in
triglycerides and fatty acid catabolism, and decreasing
uptake and lipid accumulation.

[30]

miR-335↓ 500 mg/kg for 12 weeks
(5 days/week) Gavage HFD-fed mice FOXO1, GSK3β

• Reduced weight gain, adiposity and inflammation;
• Increased energy expenditure;
• Improved insulin sensitivity.

[31]

Guarana extract
miR-27b↓
miR-34b↓
miR-760↓

150 µg/mL for 48 h Cell culture 3T3-L1 pre-adipocyte cells Wnt3a, Wnt1, Wnt10b • Anti-adipogenic effect. [32]

Lychee pulp phenolics miR-33↓
miR-122↓ 500 mg/kg for 10 weeks Gavage HFD-fed mice

ABCA1, ABCG1, NPC1;
FAS, ACC1, ACC2, SCD1,

ACLY

• Hypolipidemic;
• Repressed fatty acid synthesis and promoting fatty acid
β-oxidation and cholesterol efflux in the liver;
• Decreased body fat accumulation;
• Ameliorated lipid metabolism.

[33]

Mulberry fruit extract miR-33↓
Diet containing 0.4%

mulberry fruit extract for
4 weeks

Diet High cholesterol/cholic
acid diet-fed rats /

• Promoted serum high-density lipoprotein
cholesterol levels;
• Decreased serum and hepatic cholesterol, serum
low-density lipoprotein cholesterol, and fecal bile
acid levels.

[34]

Mulberry leaf extract miR-34a↓ 3 mg/mL for 24 h Cell culture Glucolipotoxicity-induced
HepG2 cells Sirt1

• Reduced liver fat accumulation;
• Decreased inflammatory responses and steatohepatitis;
• Exerted anti-glucolipotoxicity effects.

[35]

Moringa oleifera leaf
extract

miR-21a↓
miR-103↓
miR-122↓
miR-34a↓

9.375 mg/d for 8 weeks Gavage HFD-fed mice /

• Improved ITT and decreased SREBP1c hepatic protein,
while Sirt1 increased;
• Reduced insulin resistance, de novo lipogenesis,
hepatic inflammation, and ER stress;
• Prevented progression of liver damage in a model of
NASH.

[36]

Portulaca oleracea extract

miR-122↓ 25, 50, 100 mg/kg/d for
7 days Gavage Acute alcoholic liver

injury rats /

• Reduced the ethanol-elevated serum level of ALT, AST,
ALP, and TG;
• Enhanced activities of SOD and GSH-Px;
• Decreased content of NO and MDA;
• Increased antioxidant capacity;
• Relieved the inflammatory injury;
• Improved the lipid metabolism disorder.

[37]

miR-33↓
miR-34a↓

Diet containing 0.8%
portulaca oleracea L.
extract for 4 weeks

Diet High-cholesterol
diet-fed rats /

• Improved serum, liver, and fecal lipid profiles;
• Promoted cholesterol efflux and bile acid synthesis;
• Enhanced hepatic AMPK activity.

[38]

Rosmarinus officinalis
extract miR let-7f-1↑ 30 µg/mL for 35 days Cell culture

Human primary omental
pre-adipocytes and

adipocytes
/

• Decreased triglyceride accumulation;
• Increased glycerol release;
• Stimulated lipolytic activity in differentiating
pre-adipocytes and mature adipocytes;
•Modulated the adipocyte life cycle at different levels.

[39]

The up arrow means an increase, and the down arrow means a decrease.



Molecules 2023, 28, 6202 5 of 30

Table 2. The effects of natural products (compounds) on lipid metabolism disorders.

Natural Products (Compounds) Relevant
miRNAs Dose Administration

Methods Experimental Models Targets Observed Effects References

A-type ECG and EGCG dimers
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Table 2. Cont.

Natural Products (Compounds) Relevant
miRNAs Dose Administration

Methods Experimental Models Targets Observed Effects References
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Specifically, miR-122 and miR-33 are two of the best-studied miRNAs involved in the
regulation of lipid metabolism [53]. As is shown in Tables 1 and 2, numerous pieces of
evidence have revealed that grape seed proanthocyanidin extract treatments reduced fatty
acid synthesis and de novo lipogenesis, increased liver cholesterol efflux to high-density
lipoprotein (HDL) formation by decreasing the expression of miR-122 and miR-33, which
could regulate several genes that control fatty acid and transcriptional regulatory factors,
such as fatty acid synthase (FAS) and peroxisome proliferator-activated receptor beta/delta
(PPARβ/δ), as well as genes that regulate fatty acid β-oxidation, such as ATP-binding
cassette transporter A1 (ABCA1) and carnitine palmitoyltransferase 1a (CPT1a), respec-
tively [16,25–27,29,54]. Further detection revealed that the levels of total cholesterol (TC),
triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) were reduced while the
level of high-density lipoproteins cholesterol (HDL-C) was enhanced in a dose-dependent
manner [16,25–27]. Averrhoa carambola-free phenolic extract, citrus peel flavonoids, lychee
pulp phenolics, mulberry fruit extract, and portulaca oleracea extract treatments could
also improve lipid metabolism in in vitro and in vivo studies; the underlying mechanism
was miR-33 or miR-122-mediated changes in the signaling pathways [20,22,33,34,37,38].
However, the opposite expression of miR-122 was reflected in a natural product experiment
using coffee polyphenols, which could enhance energy metabolism and reduce lipogenesis
by targeting sterol regulatory element binding protein (SREBP) 1c mediated by miR-122 [23].
Accountably, SREBP1c, one of the three isoforms of SREBPs, comes into play in fatty acid
synthesis and metabolism [55,56]. It potentially illustrates the point that the same type of
miRNAs can act on a variety of target genes with different expressions. Similarly, the same
target gene may also be regulated by multiple miRNAs. Recent studies have shown that
miR-103 and miR-107 reduced obesogenic diet-induced hepatic steatosis via decreasing
the protein expression of SREBP1 in resveratrol-treated rats [49], and pseudoprotodioscin
promoted cholesterol effluxion through targeting SREBP1c and SREBP2 mediated by miR-
33a/b in an in vitro experiment [48]. In addition, distinctively, the overexpression of hepatic
miR-98 induced by oleanolic acid, an active component of the traditional Chinese herb olea
europaea, increased the degradation of peroxisome proliferator-activated receptor gamma
coactivator-1beta (PGC1β), known as a transcriptional co-activator of SREBP-1 and the
master regulator of hepatic lipogenesis [46,57].

Intuitively, both FAS and SREBP1 are involved in the process of fatty acid synthesis,
and the connection between them is found in the following experiments. SP1 transcription
factor (SP1), an important member of the ubiquitously expressed SP/KLF transcription
factor family, acts together with SREBP1 to synergistically activate the promoter of the FAS
gene and is involved in de novo lipogenesis [58]. Hence, resveratrol reduced the expression
of SP1 through upregulating miR-539, along with decreasing the expression of the SREBP1
protein and FAS gene in vivo and in vitro [50]. Nevertheless, the correlation between them
still needs to be systematically and intensively investigated beyond all doubt.

Lipid metabolism is a complex process, and natural products can regulate lipogenesis
and lipodieresis in a variety of ways. Zerumbone is a cyclic sesquiterpene isolated from the
wild ginger Zingiber zerumbet smith. It has been proved that zerumbone could improve lipid
metabolism disorder by reducing lipogenesis and increasing fatty acid oxidation [52]. For
one thing, zerumbone acted as a miR-146b inhibitor and downregulated miR-146b, leading
to the activation of sirtuin type 1 (Sirt1), which induced the de-acetylation of forkhead box
O1 (FOXO1) and peroxisome proliferator-activated receptor gamma coactivator-1alpha
(PGC1α); for another, zerumbone induced the phosphorylation of AMP-activated protein
kinase (AMPK), which could limit fatty acid efflux from adipocytes and favor fatty acid
oxidation, as well as decrease de novo fatty acid synthesis through the phosphorylation-
mediated inhibition of acetyl-CoA carboxylase (ACC) [59–61] and also activated Sirt1
indirectly [52]. With these similar natural product experiments, miR-27a/b, miR-96, miR-
34a, miR-194, and miR-355 also participated in the process of lipid metabolism by targeting
Sirt1 or FOXO1, which could both increase energy expenditure and the clearance of lipid
accumulation [21,28,30,31,35,36]. And ginger extract could enhance AMPK activity and
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ameliorate obesity and inflammation by regulating miRNAs expressions in high-fat diet
(HFD)-fed rats [24].

Based on the present studies, regulating miRNAs is potentially becoming a dominant
feature in terms of natural products regulating lipid metabolism (Figure 1). On the one
hand, it can inhibit fatty synthesis by reducing fatty acid synthesis and increasing fatty
acids mobilization. On the other hand, it can also accelerate lipodieresis by enhancing the
oxidation and phosphorylation of fatty acids.
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3.2. Inhibitory Effects on Adipocyte Differentiation and Accumulation

From the perspective of the cellular level, however, the growth of adipose tissue is the
result of an increase in the number of adipocytes and the volume of individual cells [51].
The former contributes to promoting pre-adipocyte differentiation into mature adipocytes,
whereas the latter is due to lipid accumulation. Here, we summarized the functional role of
natural products in this regard, as well as their potential mechanisms of action (Figure 1
and Tables 1 and 2).

Adipocyte differentiation is a highly precisely regulated cellular process. Ahead of
terminal differentiation, the mitotic clonal expansion (MCE) of stimulated pre-adipocytes is
an essential procedure in adipocyte differentiation. Moreover, the transcriptional activation
of adipocyte-specific functional genes is closely related to their differentiation [62]. 3T3-L1
pre-adipocytes have long been considered as the “gold standard” for investigating pre-
adipocyte differentiation in vitro [63,64]. There has been evidence that the MCE process
could be delayed by persimmon tannin by enhancing the expression of miR-27 in 3T3-L1
pre-adipocytes [47]. Furthermore, multiple transcriptional factors, including peroxisome
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proliferator-activated receptor-gamma (PPARγ) and CCAAT/enhancer-binding protein
alpha (C/EBPα) were also attenuated by miR-27, resulting in a decrease in adipocyte-
specific genes, such as adipocyte fatty acid binding protein (aP2) and lipoprotein lipase
(LPL). Similarly, the MCE process was blocked by miR-27a/b in the study of a-type ECG
and EGCG dimers [40]. As we all know, lipids are important structural components in
cell membranes [65]. Notably, with different molecular structures, a-type ECG and EGCG
dimers strongly disturbed the structures of cell membranes by decreasing fluidity and
hydrophobicity and increasing the permeability of the membrane of 3T3-L1 pre-adipocyte
cells, thus displaying significant inhibition on differentiation [40]. EGCG also suppressed
3T3-L1 cell growth via miR-143/MAPK7 pathways [43]. Nonivamide-induced reduction in
lipid accumulation was mediated by transient receptor potential cation channel subfamily
V member 1 (TRPV1) activation [45]. Although miRNAs are involved in the adipocyte
differentiation process, whether they affect membrane structure remains to be intensively
studied in natural product therapy.

The activation of C/EBPα and PPARγ is not only necessary for adipocyte differenti-
ation in the early stage but is also crucial for terminal adipocyte differentiation [66]. The
evidence suggests that grape seed procyanidin B2 could inhibit pre-adipocyte differen-
tiation and reduce intracellular lipid accumulation by modulating the miR-483/PPARγ
axis [42]. Resveratrol reduced the expression of CEBP/α by boosting miR-155, resulting in
decreasing lipogenesis [51]. Consistent with these, as shown in Table 2, similar results were
also obtained in the research of lycopene by regulating the expression of miR-21 [44]. What
is noteworthy is that accompanied with the involvement of multiple miRNAs, Rosmarinus
officinalis extract significantly reduced triglyceride incorporation during pre-adipocyte mat-
uration in a dose-dependent manner and decreased the expression of cell cycle genes, such
as cyclin-dependent kinase 4, cyclin D1, and cyclin-dependent kinase inhibitor 1A [39]. The
final and most studied phase of adipocyte differentiation involves terminal differentiation
and the induction of a signaling cascade to promote the expression of the genes necessary
for adipocyte function [67,68]. The canonical Wnt signaling cascade is an effective approach
to suppress adipogenesis [69–71]. Recently, investigators found that curcumin repressed
3T3-L1 pre-adipocyte cell adipogenic differentiation by inhibiting the expression of miR-17
and stimulating transcription factor 7-like 2 (TCF7L2), which is the Wnt signaling pathway
effector and a direct downstream target of miR-17 [41]. And guarana extract also exerted an
anti-adipogenic effect by regulating the Wnt signaling pathway, mediated by miRNAs [32].
In summary, natural products may inhibit adipocyte differentiation and accumulation by
regulating miRNAs, which play a crucial role in the process of lipogenesis.

4. Effects of Natural Products on Glucose Metabolism Disorders

Glucose metabolism is the basis of metabolism in the body. Metabolic diseases caused
by abnormal glucose metabolism, such as diabetes, are the focus and difficulty of current
social research due to their progressively expanding populations, complex pathogenesis,
drug-maintained recovery, and high expenditure [72,73]. Diabetes is a heterogeneous
group of disorders characterized by hyperglycemia due to an absolute or relative deficit
in insulin production or action [74]. Under hyperglycemic conditions, reactive oxygen
species (ROS) increase, causing cells to activate various abnormal metabolic pathways
and inducing oxidative stress [75]. Now that the prevention and treatment of diabetes
offers a new avenue, natural products are an increasingly significant area of product
development for anti-diabetic drugs. Here, we revealed the effects of natural products on
the action of hypoglycemia and the inhibition of oxidative stress by regulating miRNAs
(Tables 3 and 4).
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Table 3. The effects of natural products (extracts) on glucose metabolism disorders.

Natural Products
(Extracts) Relevant miRNAs Dose Administration

Methods
Experimental

Models Targets Observed Effects References

Alpinia oxyphylla
extract

miR-let-7k,
miR-378d: ↑;

miR-129, miR-21a,
miR-29c, miR-203,

miR-7a: ↓

50 mg/kg/d for
8 weeks Gavage DB/DB and db-/db-

mice /

• Lowered concentrations of blood
glucose;
• Changed the expressions of specific
miRNAs.

[76]

Blueberry
anthocyanins extract miR-182↓ 200 mg/kg/d for

6 days Gavage STZ-induced diabetic
rats OGG1

• Restored the increase of apoptosis,
ROS level, and ERS induced by
high-concentration glucose.

[77]

Coreopsis tinctoria
nutt extract

miR-192↓
miR-200b↓

300 mg/kg/d for
10 weeks Gavage db/db mice ZEB2, PTEN

• Decreased body weight, fasting blood
glucose, and 24 h urinary albumin
excretion;
alleviated kidney damage;
•Modulated the activity of the
PTEN/PI3K/AKT pathway to reduce
the degree of renal fibrosis.

[78]

Crataegus persica
extract miR-126↓ 300 mg/kg/d for

10 weeks Gavage Diabetic rats Nrf2

• Decreased elevated levels of renal
oxidative stress, glomerular filtration
rate, insulin sensitivity, and
pathological score.

[79]

Licorice flavonoid miR-122↑
30 mg/kg for

5 weeks, 5 times
per week

Gavage HFD-fed mice PTP1B

• Reduced blood glucose;
• Restored IR and IRS1/2 tyrosine
phosphorylation and insulin signaling;
• Abrogated hepatic insulin resistance
induced by HFD diet.

[80]

Nigella sativa oil miR-34a↓
miR-26b↓

2.0 mL for
21 days Gavage Diabetic rats /

• Suppressed oxidative stress;
• Improved insulin resistance and
insulin signaling pathway.

[81]

The up arrow means an increase, and the down arrow means a decrease.
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Table 4. The effects of natural products (compounds) on glucose metabolism disorders.

Natural Products
(Compounds) Relevant miRNAs Dose Administration

Methods Experimental Models Targets Observed Effects References
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Table 4. Cont.

Natural Products
(Compounds) Relevant miRNAs Dose Administration

Methods Experimental Models Targets Observed Effects References
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4.1. Hypoglycemic Action

At the heart of glucose metabolism is maintaining an equilibrium of glucose concen-
trations in the blood. So, blood glucose concentration is used as an important indicator
of glucose metabolism in the body [91]. Insulin, secreted by β-cells in the pancreas, is the
hormone currently known to lower blood glucose in the body. However, it has been now
well established from a variety of studies that natural products can reduce blood glucose
by acting on insulin (Tables 3 and 4), while the potential mechanisms of action are diverse
(Figure 2).
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Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator of the insulin
signaling pathway in metabolism and dephosphorylates insulin receptor (IR) and insulin
receptor substrate 1 (IRS1) at tyrosine residues to inhibit the activation of downstream
Akt and ERK1/2 signaling cascades [92,93]. Curcumin, however, could induce miR-206
expression, which, in turn, decreased fructose-induced PTP1B overexpression to improve
glucose intolerance and insulin sensitivity in fructose-fed rats [83]. Interestingly, the same
results were also found in a study on licorice flavonoid, which reversed the decrease of miR-
122 induced by the overexpression of PTP1B and abrogated the hepatic insulin resistance
induced by an HFD diet [80]. Gypenoside A attenuated the dysfunction of pancreatic
β cells by activating pancreatic duodenal homeobox-1 (PDX1) signal transduction via
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the inhibition of miR-150 in HFD-fed mice [86]. Vaccarin, an active flavonoid glycoside
extracted from vaccariae semen, reduced blood glucose, increased glucose and insulin
tolerance, and relieved glucose metabolism disturbances in STZ/HFD-induced type 2
diabetes mellitus (T2DM) mice by regulating miR-34a expression [90]. Coreopsis tinctoria
nutt extract treatment also showed the effect of lowering fasting blood by inhibiting the
expression of miR-192 and miR-200b [78]. From the above, insulin plays an important role
in blood glucose stability, and importantly, both low-insulin secretion and insulin resistance
can lead to blood glucose disorders. This can, however, be reversed, at least in part, by
natural products through miRNA cascades.

In addition, by using hierarchical clustering analysis, the miRNA expression patterns,
as well as miRNA microarray analysis, are shown in Table 3. It was macroscopically
discovered that various miRNAs participated in the hypoglycemic process in Alpinia
oxyphylla extract treatment [76]; however, the underlying mechanism of action is not
yet clear.

4.2. Restraining Effects on Oxidative Stress

Insulin signaling has been one of the most important and highly studied metabolic
hormones for glucose metabolism homeostasis. ROS are usually produced in the process of
biological oxidation and energy conversion in mitochondria; however, the enhancement
of ROS induced by a hyperglycemic environment disrupts the balance between ROS and
the antioxidant system, resulting in oxidative stress, which subsequently induces insulin
resistance and pancreatic β cell dysfunction via their ability to activate stress-sensitive
signaling pathways [94]. Therefore, oxidative stress has been defined as a disturbance
in the dynamic balance between ROS generation and antioxidant capacity [95], and ROS
generation is also regarded as a marker of oxidative stress, which can lead to pancreatic β

cell dysfunction and peripheral insulin resistance, hence, resulting in glucose metabolic
disorders [95,96]. A growing number of studies have shown that natural products can
inhibit oxidative stress by monitoring various miRNAs (Tables 3 and 4).

Insulin resistance in the brain is a specific form of T2DM; however, Nigella sativa oil
has a possible benefit as a disease-modifying agent for insulin resistance in the brain by
suppressing oxidative stress and enhancing the brain insulin signaling pathway; multiple
miRNAs are involved in this process, especially miR-34a and miR-26b [81]. This also
supports the view that insulin resistance partly originates from oxidative stress [97]. In
addition, in experiments on blueberry anthocyanin extract, Crataegus persica extract, poly-
datin, and sodium tanshinone IIA sulfonate treatments all decreased the ROS level and
alleviated the oxidative stress induced by different high-concentration glucose environ-
ments [77,79,88,89]. Pieces of evidence have been accumulating regarding Sirt1 playing
an important role in the cellular redox balance and resistance to oxidative stress [98,99].
Furthermore, Sirt1 can regulate nuclear factor erythroid 2-related factor 2 (Nrf2) to regulate
the transcription of pro- and anti-oxidant enzymes, subsequently affecting the cellular
redox state [100]. Dioscin, a natural steroid saponin isolated from various herbs [101],
significantly decreased the formation of ROS and suppressed oxidative stress by regulating
the miR-34a/Sirt1/Nrf2-mediated pathway in vivo and in vitro [84]. These results were
consistent with the data obtained from a study on genistein which could raise anti-oxidative
ability through the upregulation of Sirt1 via inhibiting miR-34a in in vitro experiments [85].
Additionally, astragaloside IV also increased cellular antioxidant capacity and alleviated
high-glucose-induced cell damage, the potential mechanism of which probably owes credit
to the enhanced Sirt1/Nrf2 activity induced by miR-138 [82]. Oridonin, a diterpenoid
isolated from Rabdosia rubescens, attenuated hydrogen peroxide-induced oxidative stress by
altering miRNAs expression; statistically, six miRNAs were upregulated, and 15 miRNAs
were downregulated by using microarray analysis [87].

In general, as a negative effect produced by excess ROS in the body, oxidative stress
is an important common pathogenesis of pancreatic β cell injury, which, in turn, affects
insulin secretion. As antioxidants, natural products are effective at removing excess free
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radicals from the body and regulating oxidative stress (Figure 2). From the perspective
of drug development, the study of oxidative stress can help to shed further light on the
pathogenesis of abnormal glucose metabolism and provide a theoretical basis for the
prevention and treatment of glucose metabolism disorders and their complications.

5. Effects of Natural Products on Cardiovascular Diseases

Cardiovascular disease is one of the major causes of death worldwide, with morbidity
and mortality rising year by year [102]. Cardiovascular disease, also known as circulatory
disease, is a series of diseases that involve the circulatory systems [103]. Moreover, ab-
normal lipid metabolism and glucose metabolism are important factors in the process of
cardiovascular disease [104]. The changes experienced by using natural products in recent
years are still unprecedented. Existing natural product studies have shown therapeutic
effects on myocardial cell injury and protective effects on vascular endothelial cells via
miRNA-mediated signaling pathways (Tables 5 and 6).

5.1. Therapeutic Effects on Myocardial Cell Injury

Cardiomyocyte injury is closely related to the development of cardiovascular diseases,
such as myocardial failure, myocardial ischemia, cardiac fibrosis, and myocardial infarc-
tion [105–108]. Increasing evidence suggests that natural products protect cardiomyocytes
from various injuries by managing the expression of miRNAs.

Tanshinone IIA, the active ingredient isolated from the rhizome of the Chinese herb
Salvia miltiorrhiza (also known as “Danshen” in Chinese), is an effective cardioprotective
agent. Latterly, it was indicated that tanshinone IIA could protect cardiomyocytes from
ischemic and hypoxic damage, which was based on downregulating the expression of miR-
1 and upregulating the expression of miR-133 by activating the P38 MAPK and ERK1/2
signal pathway, respectively [109,110]. It could also modulate the overexpressed miR-1 by
regulating serum response factor (SRF) [111], a transcriptional regulator of muscle-specific
and growth-regulated genes, which may lower the risk of sudden cardiac death [112]. As
we mentioned in the context of glucose metabolism disorders, ROS accumulation is not
only an indicator of oxidative stress injury but also a marker of cardiomyocyte damage.
The interventional treatment of gypenoside A, resveratrol, and portulaca oleracea extract
significantly reduced ROS production and attenuated myocardial injuries; meanwhile,
it exerted cardio-protective effects via miRNA-mediated signaling pathways [113–115],
whereas dioscin inhibited myocardial oxidative insult and alleviated doxorubicin-induced
cardiotoxicity via the miR-140/Sirt2/Nrf2 signaling pathway [116].

There is evidence that apoptosis is involved in the development of myocardial in-
farction and heart failure [117]. A test study indicated that resina draconis treatment
inhibited the endoplasmic reticulum-induced apoptosis of myocardial cells via regulating
the miR-423/ERK signaling pathway in a tree shrew myocardial IR model [118], whereas
salvianolate treatment blocked apoptosis during myocardial infarction by downregulating
miR-122 [119]. As a heart-healthy compound, it was uncovered for the first time that
resveratrol (100 mg/kg/day) treatment could suppress the apoptosis of myocardium in
cold-treated mice by inhibiting miR-328 expression [120]. Furthermore, curcumin could
also protect cardiomyocytes against hypoxia-induced apoptosis by modulating specific
protein 1, which participated in co-ordinating the transactivation of survivin, a crucial gene
in regulating cell apoptosis [121], which is regulated by miR-7a/b [122]. Some other natural
products or their extracts, such as puerarin, ginsenoside Rb1, theaflavin, astragalus root dry
extract, and Crataegus persica extract, also contributed to the protection of various types of
myocardial injury and exhibited cardio-protective effects by controlling miRNA cascades,
respectively [79,123–126].

Myocardial fibrosis, a common cardiac response in a variety of forms of damage,
is characterized by excessive collagen deposition and extra-cellular matrix accumula-
tion [127]. However, celastrol, a quinone methide triterpene isolated from the root extracts
of Tripterygium wilfordii (Thunder god vine) [128], could reverse these undesirable phenom-
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ena induced by downregulating miR-21 expression and inhibiting MAPK/ERK signaling
in transverse aortic constriction mice [129]. Similarly, Luteolin-7-diglucuronide, a natu-
rally occurring flavonoid glycoside found in the leaves of Basil or Verbena officinalis, also
attenuated isoproterenol-induced myocardial fibrosis both at the histo-pathological and
molecular levels, accompanied by regulating the expression of miRNAs, including miR-29c,
miR-39c, miR-133b, and miR-21 via the TGF-β signaling pathway [130]. Astragaloside
IV inhibited cardiac fibrosis by targeting the miR-135a-TRPM7-TGF-β/Smads signaling
pathway [131]. Identical results were also detected in the study of panax notoginseng
saponins [18]. Myocardial damage and the consequent fibrotic alterations impair the nor-
mal heart architecture and cause cardiac dysfunction (Figure 3). Fortunately, these studies
provide new insight into the molecular mechanisms of natural products in the studies of
cardiovascular diseases.
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Table 5. The effects of natural products (extracts) on cardiovascular diseases.

Natural Products
(Extracts) Relevant miRNAs Dose Administration

Methods
Experimental

Models Targets Observed Effects References

Açaí and red
muscadine grape

polyphenolics
miR-126↑ 5–20 mg GAE/L

for 30 min Cell culture HUVECs VCAM-1

• Protected HUVEC against
glucose-induced oxidative stress and
inflammation;
• Inhibited gene expression of adhesion
molecules and NF-κB activation.

[132]

Astragalus root dry
extract miR-1↓ 20 mg/kg/d for

7 days
Intraperitoneal

injection CVB3-treated mice Cx43 • Prevented the increase of immune cell
infiltration and arrhythmia. [90]

Crataegus persica
extract miR-126↑ 300 mg/kg/d for

10 weeks Gavage Diabetic rats /

• Decreased elevated levels of renal
oxidative stress, glomerular filtration
rate, insulin sensitivity, and
pathological score;
• Ameliorated myocardial
ischemia-reperfusion-induced renal
injury.

[79]

Panax notoginseng
saponins miR-29c↑ 150 mg/kg/d for

20 days
Intraperitoneal

injection ISO-treated mice Cols, Fbn1
• Alleviated ISO-induced myocardial
injury and fibrotic alterations;
• Cardioprotective effects.

[18]

Portulaca oleracea
extract

miR-146↑
miR-let-7↑

300 mg/kg/d for
35 days Gavage Lipopolysaccharide

treated mice /

• Protected from LPS-induced
neuroinflammation and memory
decline through antioxidant and
anti-inflammatory effects.

[115]

Resina draconis miR-423↑ 0.25, 0.5 and
1.0 mg/mL

Intramuscular
injection

Ischemia-reperfusion
tree shrew ERK

• Reduced the infarct size, enhanced the
superoxide dismutase expression, and
downregulated the malondialdehyde
concentration;
• Suppressed the
ischemia-reperfusion-induced
apoptosis.

[118]

Salvianolate miR-122↓
12, 24 and

48 mg/kg/d for
2 weeks

Intraperitoneal
injection

Myocardial infarction
rats / • Induced the anti-apoptosis

mechanism of cardiomyocytes. [119]

Xiaoxianggou miR-203↓
10, 20, and

40 g/kg, two
times one week

for 16 weeks

Gavage
Endogenous high
Ang II ApoE −/−

mice
Ets2

• Reduced the atherosclerotic plaque
area and serum autoantibodies against
oxLDL.

[133]

The up arrow means an increase, and the down arrow means a decrease.
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Table 6. The effects of natural products (compounds) on cardiovascular diseases.

Natural Products
(Compounds) Relevant miRNAs Dose Administration

Methods
Experimental

Models Targets Observed Effects References
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miR-135a↑ 10 mg/kg/d for
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miR-135a-TRPM7-TGF-β/Smads
pathway.

[131]
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(Compounds) Relevant miRNAs Dose Administration

Methods
Experimental

Models Targets Observed Effects References
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pathway.
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• Cardio-protective effect;
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• Activated AMPK signaling.

[114]
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biogenesis-related genes.
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miR-34a↓ 20, 50 or 100 mM for
48 h Cell culture Rat heart-derived

H9c2 cells /

• Enhanced cell viability;
• Reduced cell apoptosis;
• Protective effect on
cardiomyocytes.

[113]

miR-328↓ 100 mg/kg/d for
8 weeks Gavage Cold-treated mice /

• Inhibited alteration of cardiac
structure;
• Improved ultrastructure of
myocardium;
• Improved cardiac function;
• Suppressed cold-induced
hypertension;
• Suppressed apoptosis of
myocardium.

[120]

miR-29b↓ 0.1 mg/mL for
2 months Drinking Fbn1C1039G/+ Marfan

mice
Bcl-2

• Promoted elastin integrity and
smooth muscle cell survival;
• Inhibited aortic root dilatation.

[137]
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Table 6. Cont.

Natural Products
(Compounds) Relevant miRNAs Dose Administration

Methods
Experimental

Models Targets Observed Effects References
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5.2. Protective Effects on Vascular Endothelial Cells

Vascular endothelial cells form the interface between blood and tissues and are involved
in physiological and pathological processes, including cardiovascular diseases [139,140]. Mas-
sive cardiovascular diseases lead to various degrees of vascular endothelial injury, which,
in turn, exacerbates cardiovascular diseases. Vascular endothelial dysfunction is closely
related to the development of cardiovascular diseases [141]. Vascular endothelial cells are
not only the target organs of cardiovascular diseases but also the new target organs of
many drugs [142,143]. Therefore, improving vascular endothelial function has been an
important aspect of anti-cardiovascular drug development in recent years. Obviously, as
shown in Tables 5 and 6, natural products that regulate the expressions of miRNAs may be
a better choice.

Polyphenolics from açaí and red muscadine grape ameliorated human umbilical
vascular endothelial cell (HUVEC) injury by inhibiting the gene expression of adhesion
molecules, including vascular cell adhesionmolecule-1 (VCAM-1), which is targeted by
miR-126 [132]. Ginsenoside-Rg1, which is derived from Ginseng, was considered an agent
that promotes angiogenesis because the decreased expression of miR-23a negatively regu-
lates the angiogenic activities of HUVEC in vitro [136]. Sodium tanshinone IIA sulfonate
treatment improved angiogenesis by regulating the miR-133a/GCH-1 signaling pathway
in experimental peripheral arterial disease (PAD) in diabetes [89].

In addition, vascular endothelial cell injury is the initial stage of atherosclerosis [144].
According to the research, xiaoxianggou, the dried root and stem of Ficus pandurata hance
var. angustifolia Cheng, Ficus panduram hane var. hoiophylla Migo, and Ficus erecta thunb.
var. bcecheyana King, could reduce the area of atherosclerotic plaque by elevating miR-203
expression and reducing the expression of E26 oncogene homolog 2 (Ets2) [133], which
could promote further lesion destabilization by directly affecting endothelial cell function,
promoting vessel leakage and expansive neovascular growth from the adventitia into the
intimal area [145]. Intimal hyperplasia has long been a major problem plaguing vascular
surgery. The proliferation of vascular smooth muscle cells (VSMCs) is an important factor
that causes intimal thickening [146]. Nevertheless, resveratrol improved atherosclerosis
by reducing higher collagen deposition and promoting elastin integrity and VSMC sur-
vival mediated by reducing the expression of miR-29b in the Fbn1C1039G/+ Marfan mouse
model [137]. There were similar results in the study on emodin; interestingly, miR-126
participated in this process by mediating the Wnt4/Dvl-1/β-catenin signaling pathway in
balloon-injured carotid artery rats [135]. Berberine improved vascular dementia in diabetes,
which is possibly related to the suppression of miR-133a ectopic expression in endothelial
cells [134]. A key regulatory role for Krüppel-like factor 4 (KLF4) in vascular function has
been shown in vitro and in vivo, and KLF4 deficiency is associated with atherothrombo-
sis [147–150]. Tanshinone IIA harmonized the crosstalk of autophagy and polarization in
macrophages via activating KLF4 mediated by miR-375 to attenuate atherosclerosis [138].
These studies set out our vision of the protective effect of natural products on vascular
endothelial cells by the regulation of multiple miRNAs (Figure 3), and provide molecular
evidence for further studies on natural products as novel anti-cardiovascular therapies.

6. Conclusions

In all the studies reviewed here, while natural products have provided new insights
into the treatment of metabolic diseases by regulating miRNA cascades and have revealed
anti-obesity, anti-diabetes, and anti-cardiovascular disease functions, as well as demon-
strating a rich source of therapeutic agents, there are still some pressing issues that need
to be addressed. Primarily, the mechanisms of metabolic diseases and the correlations
between them are complex and still require systematic and in-depth studies beyond all
doubt. Moreover, the plentiful miRNAs existing in our bodies often act together with their
cluster members or other miRNAs [151]; hence, the complicated regulatory network of
miRNAs can also not be ignored in natural product treatments. In addition, with a view of
providing better clues for drug development, there are many natural products that have not
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yet been discovered in nature, of which the active substances and their effects on miRNAs
still need to be further investigated.
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Abbreviations

ABCA1: ATP-binding cassette transporter A1; ABCG1, adenosine triphosphate binding cassette
transporter G1; ACC, acetyl-CoA carboxylase; ACLY, ATP citrate lyase; ALT, alanine aminotransferase;
AMPK, AMP-activated protein kinase; aP2, adipocyte fatty acid binding protein; APOA5, apolipopro-
tein A5; AST, aspartate aminotransferase; Bcl-2, B cell lymphoma 2; C/EBPα, CCAAT/enhancer-
binding protein alpha; CAT, catalase; Cav3, caveolin-3; Cols, collagens; CPT1a, carnitine palmitoyl-
transferase 1a; CTGF, connective tissue growth factor; CVB3, coxsackievirus B3; Cx43, connexin 43;
Dvl-1, dishevelled 1; ECG, (-)-Epicatechin-3-gallate; EGCG, Epigallocatechin-3-gallate; ER, endoplas-
mic reticulum; ERK, extracellular signal-regulated kinases; Ets2, E26 oncogene homolog 2; FABP7,
fatty acid-binding protein 7; FAS, fatty acid synthase; Fbn1, fibrillin 1; FOXO1, forkhead box O1;
GCH-1, GTP cyclohydrolase-1; GSH-Px, glutathione peroxidase; GSK3β, glycogen synthase kinase
3β; HDL, high density lipoproteins; HDL-C, high density lipoproteins cholesterol; HFD, high-fat diet;
HMGCS, 3-hydroxy-3-methylglutaryl-CoA synthase; HO-1, heme oxygenase-1; HUVECs, human
umbilical vascular endothelial cells; I/R, ischemia reperfusion injury; INSIG2, insulin-induced gene
2; IR, insulin receptor; IRS1, insulin receptor substrate 1; ISO, isoproterenol; ITT, insulin tolerance test;
KCNJ2, Kir2.1 mRNA; Keap1, Kelch-like ECH-associated protein 1; KLF4, Krüppel-like factor 4; LDL-
C, low density lipoproteins cholesterol; LPL, lipoprotein lipase; MAPK7, mitogen-activated protein
kinase 7; MCE, mitotic clonal expansion; MCL-1, myeloid cell leukemia 1; MDA, malondialdehyde;
MET, hepatocyte growth factor receptor; NASH, nonalcoholic steatohepatitis; NPC1, Niemann-Pick
C1; Nrf2, nuclear factor erythroid 2-related factor 2; OGG1, 8-oxoguanine-DNA glycosylase; oxLDL,
low density lipoprotein; PAD, peripheral arterial disease; PDX1, pancreatic duodenal homeobox-1;
PGC1α, peroxisome proliferator-activated receptor gamma coactivator-1alpha; PGC1β, peroxisome
proliferator-activated receptor gamma coactivator-1beta; PPARβ/δ, peroxisome proliferator-activated
receptor beta/delta; PPARγ, peroxisome proliferator-activated receptor-gamma; PTEN, phosphatase
Phosphatase and tensin homologue deleted on chromosome 10; PTP1B, protein tyrosine phosphatase
1B; ROS, reactive oxygen species; SCD1, stearoyl-coenzyme A desaturase 1; Sirt1, sirtuin type 1; SOD,
superoxide dismutase; SP1, Sp1 transcription factor; SREBP1c, sterol regulatory element binding
protein 1c; SRF, serum response factor; STZ, streptozotocin; T2DM, type 2 diabetes mellitus; TC,
total cholesterol; TCF7L2, transcription factor 7-like 2; TG, triglyceride; TGF-β, transforming growth
factor β; TRPM7, transient receptor potential melastatin 7; TRPV1, transient receptor potential cation
channel subfamily V member 1; VCAM-1, vascular cell adhesionmolecule-1; VSMCs, vascular smooth
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muscle cells; Wnt1, wingless-type MMTV integration site family member 1; Wnt10b, wingless-type
MMTV integration site family member 10b; Wnt3a, wingless-type MMTV integration site family
member 3a; Wnt4, wingless-type MMTV integration site family member 4; ZEB2, zinc finger E-Box
binding homeobox 2.
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