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Abstract: The reutilization non-metallic components from a waste-printed circuit board (WPCB) has
become one of the most significant bottlenecks in the comprehensive reuse of electronic wastes due
to its low value and complex compositions, and it has received great attention from scientific and
industrial researchers. To effectively address the environmental pollution caused by inappropriate re-
cycling methods, such as incineration and landfill, extensive efforts have been dedicated to achieving
the high value-added reutilization of WPCB non-metals in sustainable polymer composites. In this
review, recent progress in developing sustainable polymer composites based on WPCB non-metallic
components was systematically summarized. It has been demonstrated that the WPCB non-metals
can serve as a promising reinforcing and functional fillers to significantly ameliorate some of the
physical and chemical properties of polymer composites, such as excellent mechanical properties,
enhanced thermal stability, and flame retardancy. The recovery strategies and composition of WPCB
non-metals were also briefly discussed. Finally, the future potentials and remaining challenges
regarding the reutilization of WPCB non-metallic components are outlined. This work provides
readers with a comprehensive understanding of the preparation, structure, and properties of the
polymer composites based on WPCB non-metals, providing significant insights regarding the high
value-added reutilization of WPCB non-metals of electronic wastes.

Keywords: waste-printed circuit boards; reutilization; sustainable polymer composites; electronic wastes

1. Introduction

Recent decades have witnessed rapid development and phenomenal progress in
electronic industries, which significantly increased the supply of electrical and electronic
products to the public, occurring in tandem with the technological innovation in and
continuous falling price of new products [1–3]. Moreover, the average service lives of
electronic devices have greatly shortened, eventually lead to a staggering increase in
electrical and electronic equipment (WEEE) and electronic waste (e-waste) [4–6]. It is
estimated that 53.6 million tons of e-waste is generated globally per year, and this figure is
expected to double by 2050 [7,8]. The environmental pollution caused by e-waste and its
resource utilization have become an emerging social problem and created a major challenge
to global sustainable development [9,10]. Thus, recycling and eco-friendly reutilization of
e-waste has attracted extensive interest from scientific and industrial researchers.

Printed circuit boards (PCB) are integral and indispensable components used in almost
all electronic devices, and they have been widely applied in various fields of the electronics
industry [11–13]. Undoubtably, with the acceleration of electronic product renewing, the
generated waste-printed circuit boards (WPCBs), including defective products used in
manufacturing process and scrapped products, have also dramatically stacked up [14–17].
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The management rational treatment of WPCB has, thus, become an imminent issue [18].
WPCB includes an approximately 30% metallic fraction (e.g., copper, iron, nickel, antimony,
lead, and gold) and a 70% non-metallic component (e.g., thermosetting resins, glass fibers,
etc.) [19–21]. At present, the separation and recovery of valuable metals have been widely
investigated owing to their high added value and high purity. However, most of the
non-metallic components used in WPCBs are usually incinerated or landfilled without
any effective disposal, ultimately leading to severe resource wastage and great damage
to the environment [22,23]. Therefore, exploring feasible and appropriate strategies to
achieve eco-friendly reuse of non-metallic components used in WPCBs has far-reaching
implications in terms of saving resources and mitigating the risk of environmental pollu-
tion. Until now, the researchers have searched for many feasible techniques for recycling
WPCB non-metallic materials, such as chemical recycling (pyrolysis, depolymerization)
and mechanical recycling. Among these techniques, the mechanical treatment of PCBs
is considered to be a more straightforward and effective process, and as-obtained WPCB
non-metallic powder could be further applied in construction products, modified asphalt,
and polymer composites [24–27]. In particular, over the past few decades, scientists and
engineers have dedicated great efforts to developing ecofriendly polymer composites by
incorporating WPCB non-metals into various polymer matrixes, including thermosetting
resin (e.g., epoxy resins, unsaturated polyester resin, phenolic resin, etc.), thermoplastic
(e.g., polypropylene, poly(vinyl chloride), polyethylene, polyvinyl alcohol, polystyrene,
acrylonitrile–butadiene–styrene, etc.), and rubber composites due to their wide availability,
low cost, and outstanding environmental protection. It was found that the WPCB non-
metallic powder could endow polymer composites with excellent mechanical properties,
enhanced thermal stability, and flame retardancy. These pioneering and impressive studies
have created new opportunities for the high value-added reutilization of WPCB non-
metallic components. Until now, although several significant reviews have summarized
the recycling and recovery of non-metallic resources from WPCBs [28–30], most researchers
focused on broader discussion rather than specifically exploring their high value-added
reutilization in polymer composites.

Thus, the primary focus of this work was placed on the high value-added reutilization
of WPCB non-metals in various polymer composites, which aims to give a systematic
and profound understanding of the composition and structure of WPCB non-metals, the
preparation strategies used to create sustainable polymer composites and the structure–
properties relationships between WPCB non-metals and polymer composites, as well as
their promising potential applications. Finally, the potential uses and remaining challenges
of WPCB non-metallic components used in the rational design of high-performance sustain-
able polymer composites are considered. By systematic discussion of relevant achievements,
we hope that this work will provide meaningful and valuable insights into the recycling
and high value-added reutilization of non-metallic components of WPCBs.

2. Recovery and Characterization of WPCB Non-Metallic Components

Although waste-printed circuit boards only account for about 3% of all produced
e-waste, the complex toxic components used in WPCBs, which involve heavy metals and
brominated flame retardants, make them hazardous waste that must be treated very cau-
tiously [31–33]. Moreover, considering the fact that various valuable metals, polymers, glass
fiber, and toxic components were simultaneously integrated in such small volumes, the
recovery and recycling of WPCBs become particularly intractable. In general, the composi-
tions of a WPCB are divided into non-metallic components and metallic components [34].
Currently, driven by the economic interests, the recovery of metallic components from
WPCBs has attracted extensive attention by using various extraction processes, including
leaching, mechanical and hydrometallurgical processing techniques [35–37]. For compre-
hensive reviews of metal recovery from WPCB, readers can refer to the reviews written by
Hao et al. [38], Qiu et al. [39], Lu et al. [40], and Akcil et al. [41]. While this review will focus
on the recovery techniques used for non-metallic components, which account for about
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70 wt% of waste PCBs and still face serious environmental and economic challenges [24].
On the other hand, to better reuse these non-metallic components of WPCB in polymer
composites, the detailed characterization of WPCB non-metals is also essential, as they have
a decisive influence on the properties of as-obtained sustainable polymer composites. Thus,
the recovery techniques and characterization of non-metallic components from WPCBs are
discussed below.

2.1. Recovery of WPCB Non-Metallic Components

Generally, the recovery strategies used for WPCB non-metallic components include
chemical recycling strategies and physical recycling strategies. For chemical recycling, the
WPCB are usually depolymerized into some useful molecules via pyrolysis, gasification,
supercritical fluids, glycolysis, aminolysis, and alcoholysis [42]. Among these methods,
pyrolysis is one of the techniques most commonly used to degrade the resins in WPCB into
oils, gases, tar, and glass fibers, which is usually conducted without oxygen or using some
inert gas [43–45]. The obtained pyrolysis gases exhibit high calorific values, and the pyroly-
sis oil can be further utilized as the chemical raw material or asphalt modifier. However, the
pyrolysis process of WPCB recovery is challenging due to the presence of dibenzofurans,
4-methyl-Benzofluroethane, hydrogen bromide and brominated compounds in pyrolysis
oils [46]. Gasification is performed in oxygen, air, or steam at a high temperature, and the
gaseous product is similar to that of the pyrolysis process [47–49]. Recently, supercritical
fluids were widely exploited as a highly efficient means of achieving the metal–non-metal
separation in WPCBs, which can destroy the epoxy resin derived from WPCB and produce
organic molecules [50–53]. Typically, the polymer materials can be effectively oxidized
within a short time under the action of supercritical fluids, including water, methanol, and
ethanol [54–56]. Moreover, organic solvents have been employed to dissolve the bromine
epoxy resin to efficiently separate the glass fibers and polymer materials in WPCB non-
metals [57–59]. Unlike the above chemical recycling methods, the physical recycling process
is dependent on the differences in terms of physical characteristics between the metallic
and non-metallic components of the WPCB. And the shape, size, and size distribution of
liberated WPCB have a critical influence on their separation effectiveness. Generally, as
shown in Figure 1, the most commonly used separation technologies of WPCB include
shape separation, density-based separation, magnetic separation, electrical separation, and
electrostatic separation [60–62]. For example, density-based separation is usually carried
out to separate lighter components from other heavier products based on density difference.
However, due to the simultaneous influence of particle shape, its separation efficiency
is relatively poor. Electrostatic separation is another promising method used to separate
the metals and non-metallic materials, and it has received widespread attention due to
its low energy consumption, facile operation conditions, and environmentally friendly
characteristics [63–65]. Eddy current-based electrostatic separator is generally used to
separate thermosetting plastics and non-ferrous metals from the complex mixture via the
eddy current and external magnetic field [66,67]. Low-intensity drum magnetic separators
can also recover ferrous materials from the non-magnetic fraction. There is no doubt that
the physical recovery method is relatively simple, effective, practical, and energy saving,
which lays the foundation for the diversified applications of recycled non-metallic products
derived from WPCBs. However, there are still some issues related to the physical process
of recycling WPCBs. Generally, it is very difficult to completely remove all metals through
the physical recycling process, and some residual metals in the as-reclaimed non-metallic
components may lead to serious deterioration in the aging properties of polymer compos-
ites. Moreover, other than the residual metals, the complex compositions of non-metallic
components, including various resin powders, glass fiber, metals derivatives, and even
some toxic additives, make their high value-added reutilization even more challenging.
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Figure 1. Schematic presentation of conventional WPCB crushers: (a) Jaw crusher and (b) hammer
crusher. Reprinted with permission from [62]. Copyright: 2020, American Chemical Society. (c) Dia-
gram of the roll-type corona electrostatic separator. Reprinted with permission from [68]. Copyright:
2014, American Chemical Society. Schematic of recovery process for metal components via (d) single
gravity separation and (e) combined magnetic separation and gravity separation. Reprinted with
permission from [61]. Copyright: 2020, Elsevier.

2.2. Compositions and Structure of WPCB Non-Metals

The compositions of non-metallic components in WPCB vary depending on the differ-
ent types of pristine PCBs. In general, non-metallic components in WPCBs are derived from
the substrates, accounting for appropriately 70% of PCBs. The choice of substrate materials
is closely related to the application of PCBs. For example, epoxy resins are usually utilized
in multi-layered PCBs, while the phenolic resins are used in single-layered PCBs [17,69].
As for their application to radio-frequency fields, we usually choose the low-loss Teflon
substrates. To endow the PCB substrate with excellent properties, glass fibers or cellulose
fibers are usually incorporated to reinforce the resins. Moreover, some inorganic materials
are present, including mineral filler, alumina, and other oxides. Among these materials,
the glass-fiber reinforced epoxy resins are the most used substrates. In our previous work,
to realize the better reutilization of WPCB non-metallic components, the compositions
and characteristics were comprehensively investigated [23]. It was found that the ther-
mosetting resin was mainly tetrabromobisphenol A epoxy resin, and the glass fibers were
largely separated from resin particles after ball milling, which shows great potential as the
strength enhancer of sustainable polymer composites. Furthermore, the presence of resid-
ual metal, such as Cu and Fe, may lead to serious aging of polymer composites. Moreover,
although brominated flame retardants have been banned or phased out in some countries
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and regions, while some new flame retardants have been developed as replacements, the
brominated flame retardants still play a significant role in PCB development due to their
extraordinary flame-resistant effects on combustible resins. Thus, traditional combustion
of these non-metallic components in WPCB may induce the release of toxic gases, such as
the dibenzodioxins, polybrominated dibenzofurans, and dioxins and furans [70–72]. In
contrast, when the non-metallic components are further employed in polymer composites,
the lifespan of a WPCB is effectively extended, and it does not pose a great threat to the
environment due to it being present in low concentrations.

3. Reutilization of WPCB Non-Metallic Components in Sustainable Polymer Composites

Polymer composites are multiphase materials combined with polymer matrixes, fillers,
and other additives, which can achieve superior properties to those of pure polymer
matrixes. Based on the structure and characteristics of the non-metallic WPCB components
mentioned above, the incorporation of WPCB non-metallic powders can replace some
conventional fillers and enhances the comprehensive properties of polymer composites.
Until now, the WPCB non-metallic components have been widely used in various polymer
matrixes, such as thermosetting resins (e.g., epoxy resins, unsaturated polyester resin,
phenolic resin, etc.), thermoplastics (e.g., polypropylene, poly(vinyl chloride), polyethylene,
polycarbonate, acrylonitrile–butadiene–styrene, etc.), and rubber composites, which has
sparked extensive attention [73]. In this section, the reutilization of WPCB non-metallic
components in different polymer matrixes is comprehensively reviewed, and the structure–
properties relationships between WPCB non-metallic components and polymer composites
are critically analyzed.

3.1. Reutilization of WPCB Non-Metallic Components in Thermosetting Composites

As one of the most common and oldest thermosetting resins, phenolic resin was
usually used as a bonding agent to prepare phenolic molding compounds (PMC) via
combination with various fillers, curing agents, and other functional additives under high
temperatures and certain pressures [17]. And benefiting from the advantages of low cost, a
simple manufacturing process, excellent mechanical properties, and high thermal stability,
PMC was widely used in many areas, such as radios, kitchen appliances, and electronic
switches [74]. Until now, the most-commonly used filler in PMC was wood powder, but
with the gradual exhaustion of wood resources and the rising cost of wood powder, it is
imperative to find alternative materials to reduce the cost of raw materials and effectively
protect environmental resources. Recently, Guo et al. systematically studied the feasibility
of recycling WPCB non-metallic components to create a replacement for wood flour in
the manufacturing of PMC [74–76]. As illustrated in Figure 2a, it was observed that the
obtained non-metals with particle sizes between 0.3 and 0.125 mm mainly consisted of
fiber–particulate bundles, and most fibers are encapsulated using thermosetting resin.
Additionally, both fiber bundles and single fibers can be observed in the non-metals,
ranging from 0.125 to 0.07 mm (Figure 2b). With the particle further reducing to a size
shorter than 0.07 mm, there were almost single glass fibers and thermosetting powders, as
depicted in Figure 2c, which accounts for the highest proportion of 34.6%. The preparation
diagram that describes PMC filling with WPCB non-metallic components was illustrated in
Figure 2d. After the pre-mixing of phenolic resin, fillers, and other additives, the obtained
mixture was compression-molded into testing samples under a high temperature and
pressure. Generally, strong interfacial bonding between polymer matrix and fillers was
closely related to the superior mechanical properties of PMCs. As depicted in Figure 2e,
the flexural fractured morphology of a PMC filled with wood flour is smooth and exhibits
deep gaps, while the glass fibers were bonded onto or embedded into the phenolic resin
for the PMC filled with WPCB non-metals. The fiber pull-out phenomenon and interfacial
debonding between phenolic resin and fillers were also observed (Figure 2f,g). A strong
interfacial interaction can have a positive influence on the mechanical properties of PMC.
As a result, when 40 wt% of non-metals were filled with phenolic resin, the flexural strength,
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impact strength, heat deflection temperature, and dielectric strength of as-prepared PMC
reached 82 MPa, 2.4 kJ/m2, 175 ◦C, and 4.8 MV/m, respectively, which are superior to the
national standard for PMC. Moreover, the curing behaviors of PMCs filled with WPCB
non-metals were also investigated [77]. It was found that the incorporation of WPCB
non-metals effectively reduces the curing activation energy of PMC based on the Kissinger
model, which should be attributed to the impurities acting as a catalyzer. Consequently,
it is a promising strategy for the achievement of the environmental protection and high
value-added reutilization of WPCB non-metallic components by developing low-cost PMCs
with excellent properties.
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Figure 2. Micrographs of WPCB non-metals with different particle sizes: (a) 0.3–0.125 mm,
(b) 0.125–0.07 mm, (c) <0.07 mm; (d) schematic illustration of the preparation of PMC filled with
WPCB non-metals; SEM images of the fractured morphologies of (e) ordinary PMCs and (f,g) PMCs
filled with WPCB non-metals; (h) properties of PMC with WPCB non-metals. Reprinted with permis-
sion from [75]. Copyright: 2008, Elsevier.

Epoxy resins (ERs) are another typical thermosetting polymer, and they have been
extensively utilized in various applications, such as adhesives, coatings, electronic indus-
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tries, automobiles, and fiber-reinforced composites, due to their outstanding mechanical,
electrical, and chemical properties [78–80]. Yokoyama et al. explored the reuse of WPCB
non-metals as the filler of epoxy resin, mainly investigating their mechanical properties [81].
It was found that their mechanical properties were adequate to serve as a construction
material, but slightly lower than those of the reference samples containing silicon pow-
der. It is worth noting that the surface modification of non-metals using an amino–silane
coupling agent can effectively enhance their flexural strength. Mou et al. investigated the
feasibility of using WPCB non-metals to manufacture composite boards, using the ERs as
an adhesive [82]. The results indicate that the recovered WPCB non-metals can serve as
a substitute for silica and talc. When 15 wt% of non-metallic powders were incorporated
into ERs, their mechanical strength and modulus are effectively enhanced. Moreover,
Chai et al. found that the incorporation of WPCB non-metals can not only enhance the
flexural strength of EP composites, but also decrease their thermal expansion coefficient,
whereas the insulation properties did not show obvious deterioration [83]. Thus, they can
be further applied to produce the substrate used in a circuit board.

Unsaturated polyester resin (UPR) was also employed as a bonding agent because of its
excellent processability, prominent chemical resistance, and low cost. And fiber-reinforced
UPR composites have been widely utilized in various areas, such as the automobile, marine,
and aerospace industries [84–86]. In order to make full use of the WPCB non-metals in UPR,
Hong et al. first incorporated WPCB non-metal powder as a filler into unsaturated polyester
resin and systematically explored the influence of the particle size and surface modification
of non-metal powder on their mechanical and thermal properties [87]. It was found that
adding WPCB non-metals can affect the free radical activity of unsaturated polyesters
and reduce their curing rate. Additionally, the WPCB non-metals can endow the UPE
with higher glass transition temperature and impact toughness. Subsequently, Guo et al.
prepared a novel non-metallic plate (NMP) by employing unsaturated polyester resin as
a bonding agent via the hot press process and explored the influence of the morphology
and particle size of WPCB non-metallic powder on the performance of NMP [88]. The
preparation process of the NMP was illustrated in Figure 3a. The results show that when
the added amount of non-metallic powder is 20 wt%, and the NMP filled with non-metallic
powder with a particle size of less than 0.07 mm exhibits outstanding mechanical proper-
ties, in which the bending strength reaches 68.8 Mpa, while the impact strength reaches
6.4 kJ/m2, thus meeting the performance requirements of park benches, fences, and other
products. This method provides a possible means of achieving the sustainable reutilization
of WPCB non-metallic materials and has promising prospects in terms of reducing the
environmental pollution that occurs during PCB recycling. In our previous work, we firstly
prepared a type of room temperature-cured UPE composite, using WPCB non-metals as
the reinforcing filler [23]. The effects of the WPCB non-metal content on the mechanical
properties and thermal stability of UPE composites were investigated. It was found that the
incorporation of WPCB non-metallic components into UPE composites with appropriate
content displayed more enhanced mechanical properties and heat distortion temperatures
than the polymer matrix. Furthermore, the WPCB non-metals can significantly improve the
thermal stability of UPE composites based on the analysis of thermal degradation kinetics.
Furthermore, to strengthen the interfacial bonding between WPCB non-metals and UPE,
we synthesized a polyurethane pre-polymer that was chemically bonded to the WPCB
non-metals’ surfaces [89]. As shown in Figure 3b,c, the WPCB non-metallic components
were widely wrapped via the UPE matrix and formed strong interfacial interactions with
the UPE matrix, which exhibited a positive influence on the stress transfer and enhanced
the mechanical performances of the UPE composites. Accordingly, the mechanical per-
formances of the UPE/pre-PU–WPCB non-metal composites exhibited more remarkable
enhancements than those of the UPE/WPCB non-metal composites; in particular, the
impact toughness was enhanced three-fold (Figure 3d,e).
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Figure 3. (a) Schematic illustration of the production of the NMP. Reprinted with permission from [88].
Copyright: 2008, American Chemical Society. (b,c) SEM images of the fractures of UPE/pre-PU–WPCB
non-metal composites; (d) tensile strength and flexural strength of the UPE composites; (e) impact
strength of the UPE composites. Reprinted with permission from [89]. Copyright: 2017, Wiley.
SEM images of UPE composites filled with (f1,f2) WPCBP and (g1,g2) m-WPCBP-SiO2 hybrid filler;
(h) proposed model of the reinforcing mechanism of UPE composites; (i) heat distortion temperature,
(j) TGA, and (k) DTG curves of UPE and different UPE composites. Reprinted with permission
from [90].

In fact, in addition to the surface modification using organic modifiers, the rational
construction of novel hybrid fillers is also helpful to achieve remarkable properties of UPE
composites. Typically, silica nanoparticles were chemically immobilized onto the WPCB
non-metals surface via the sol–gel method to develop a novel WPCB–SiO2 hybrid filler [90].
As depicted in Figure 3f1,f2, the interfacial bonding between glass fiber and unsaturated
polyester matrix is poor, and the glass fiber surface is smooth and basically exposed on the
surface of the UPE resin matrix. While the UPE composites filled with modified WPCBP–
SiO2 hybrid filler exhibit strong interfacial bonding (Figure 3g1,g2). It can be observed that
a layer of resin was adhered to the surface of the hybrid filler, indicating that more molec-
ular chains of unsaturated polyester could be restricted. Thus, when the composite was
subjected to external force, the external stress could be effectively transferred to the hybrid
filler, and the mechanical performances of the composites greatly improved (Figure 3h).
Moreover, the construction of the WPCBP–SiO2 hybrid filler could effectively enhance
the heat distortion temperature and thermal stability of the UPE (Figure 3i–k). The idea
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of constructing the hybrid filler prompted us to further explore the application of WPCB
non-metallic components in flame-resistant materials. It was found that the combination
of WPCB non-metals and halloysite nanotubes could endow the UPE composites with
the dense carbon layer, excellent flame resistance, and thermal stability [91]. Moreover,
the potential applications of the UPE composites filled with WPCB non-metals were ex-
plored. Typically, Cai et al. investigated the sound insulation properties of UPE/WPCB
non-metal composites [92]. The results suggested that the maximum sound reduction index
of WPCB-UP composites with a particle size < 0.71 mm reached 28.4 dB, showing great
sound insulation application potential. Luo et al. recycled the WPCB non-metals to prepare
bulk molding composites (BMCs), which were further utilized to manufacture composite
manhole covers (CMCs) [93]. Compared to the traditional filler of CaCO3, the WPCB non-
metals exhibited a higher compatibility with UPE. In particular, after performing surface
modification using coupling agents, the BMC material showed strong interfacial bonding
and enhanced mechanical properties. The constant loading test, together with ANSYS
finite element analysis, was conducted to confirm the application feasibility of the prepared
CMC. Based on the above discussion, it can be found that the WPCB non-metals can not
only serve as a reinforcing filler to enhance the mechanical performances of thermosetting
resins, but also play a significant role in the functionalization of thermosetting resins, which
have favorable economic and social benefits and offer a guarantee of the practical industrial
application of WPCB non-metallic components.

3.2. Reutilization of WPCB Non-Metallic Components in Thermoplastic Composites

Polyolefin is a general term for a class of thermoplastic resin obtained via the individual
or copolymerization of small molecules (ethylene, propylene, 1-butyene, 1-pentene, 1-hexene,
1-methyl-1-pentene, α-oleene, and some cyclic olefins), which have been widely used in agri-
culture, packaging, electronics, automotive, machinery, and daily necessities due to their mod-
erate cost, easy processing and molding, excellent comprehensive performance, etc. Typically,
polypropylene is one of the most important commodity general thermoplastics, having excellent
mechanical properties and heat resistance [94–97]. However, in comparation to the engineer-
ing plastics, the PP still suffer from lower strength and high notch sensitivity. To expand the
applications of PP, various inorganic rigid fillers have been introduced into PP matrixes to
effectively improve their properties or reduce their cost, which has provoked wide interest
in the past few decades [98–100]. Recently, Zheng et al. have systematically investigated the
feasibility of reutilizing the WPCB non-metals to reinforce the PP composites [101–104]. It was
found that both tensile and flexural performances of PP composites were greatly enhanced by
incorporating the WPCB non-metallic components. The maximum improvement in the tensile
strength, flexural strength, and flexural modulus of the PP composites reached 28.4%, 87.8%,
and 133.0%, respectively [35]. The results of the vicat softening temperature indicates that the
WPCB non-metals improve the thermal resistance of PP composites. Moreover, the particle size
and amount can affect the final properties of PP composites. To further strengthen the interfacial
compatibility between WPCB non-metallic particles and PP matrix, the WPCB non-metallic
particles were chemically modified using a KH–550–silane coupling agent, which prevented
and delayed the extension of cracks and resulted in the enhanced strength and rigidity of PP
composites. Moreover, the WPCB non-metals were modified using calcium pimelate (PA) and
blended with PP via a melt-blending strategy [105]. It was suggested that when cooling and
crystallizing from the melt, β-PP was obtained due to the surface effects of PA. Compared to
the neat PP, the impact property and flexural modulus of PP composites filled with 10 wt% of
PA modified non-metals were increased by 205.3 and 61.8%, respectively. In addition to the
reinforcing effect, the WPCB non-metals can serve as a fire resistance modifier. As shown in
Figure 4a, Grigorescu et al. blended the WPCB non-metals with recycled polypropylene and
styrene–butadiene block copolymers, investigating their dynamic–mechanical properties and
flammability [106]. The functionalized block-copolymer containing maleic groups can greatly
increase the interfacial compatibility of WPCB non-metals with polypropylene. Figure 4b shows
the temperature dependence of the storage (E′) of rPP composites. An increase of 35% was
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achieved for rPP/30% WPCB composites relative to the rate of the control samples, whereas a
42% increment was obtained for the rPP/WPCB composites containing SBS. The loss modulus
(E′′) dependence on temperature is depicted in Figure 4c. By introducing the elastomers, the
E′′ of samples decreases, while the E′′ increases with the rigid filler. A shift in the maximum
peak can be ascribed to the immobilization of the polymer chains at the interphase with WPCB
non-metals. In particular, the samples containing elastomers and 30% WPCB non-metals show
the highest flame resistance, having a heat release capacity of 522 J/(g·K) and char yield of
18.75%. In comparison to rPP, an apparent decrease of 51.19% in heat release capacity can be
achieved for rPP/SBS/SEBS–MA/WPCB composites due to the strong interfacial contact. As
expected, the WPCB non-metals can improve the fire resistance of rPP to some extent.
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permission from [107]. Copyright: 2019, Wiley.

Although the above results indicate that the reutilization of WPCB non-metals in PP
composites is a promising means of achieving resource recycling and low environmen-
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tal pollution, some challenges still affect these sustainable PP composites. Typically, the
residual multivalent transition metals (e.g., Cu and Fe) in WPCB powders accelerate the
degradation of PP molecule chains, thus limiting their wide practical applications. As
illustrated in Figure 4e,f, the digital images of PP/WPCB non-metals composites after
thermal oxidative aging showed more cracks of different sizes than pure PP, demonstrating
that WPCB non-metals had a terrible thermal oxidative aging effect on PP composites [107].
Generally, the oxidation induction time (OIT) could effectively reflect the oxidative prop-
erties of polymer composites; the higher the exhibited resistance to thermal oxidation,
the higher the OIT value. It is clearly seen in Figure 4g that the OIT values dramatically
decreased after the incorporation of WPCBP owing to the catalytic degradation effect of
multivalent transition metals. To enhance the weathering properties of PP composites, Tian
et al. further treated the WPCB non-metals using nitric acid. Figure 4h shows the OIT curves
and values of PP composites containing nitric acid-treated WPCBPs. In comparison to the
PP/WPCBP composites, the nitric acid-treated WPCBPs could endow the PP composites
with higher OIT values. In particular, when the concentration was higher than 4 wt%, the
OIT values of PP composites were higher than those of pure PP, indicating that the WPCBP
without multivalent transition metals may serve as an antioxidant to enhance the anti-aging
performance of the PP composite. Moreover, the FTIR results of PP and PP composites
further demonstrated the OIT analysis. The carbonyl peak of PP/6H–WPCBP composites
that originated in the thermal oxidation process show decreases more significant than that
those of PP/WPCBP composites.

Polyethylene is another important thermoplastic with excellent mechanical properties
and chemical resistance. Muniyandi et al. produced a sustainable rHDPE/PCB compos-
ite by combining the WPCB non-metallic powder and recycled HDPE (rHDPE), and the
authors evaluated their mechanical, thermal, and leaching properties [108]. The results
showed that the incorporation of a 6-parts-per-hundred-resin MAPE improved the flexural
strength, tensile strength, and impact strength by 71%, 98%, and 44%, respectively, relative
to those of the unmodified composites. Moreover, the concentrations of Cu and Br in the
leachates from the rHDPE/PCB composites were far below the regulatory level. Although
the rHDPE/PCB composite had excellent physical properties, the weathering properties
of composites were rarely considered. Thus, Muniyandi et al. investigated the changes in
the structure and properties of the rHDPE/PCB composites under accelerated weather-
ing exposure to evaluate the suitability of composites for outdoor applications [109]. As
illustrated in Figure 5a,b, the appearances of the rHDPE and rHDPE/PCB composites
after 2000 h of exposure indicated that all of the composites became lighter after accel-
erated weathering exposure, and their surfaces became rough and powdery. Figure 5c
depicts the carbonyl index (CI) of the rHDPE and rHDPE/PCB composites during the
accelerated weathering process. The results suggested that the CI improves with a longer
exposure time, indicating that the oxidation reaction continuously proceeded during the
aging process. Moreover, rHDPE/PCB composites compatibilized with MAPE had a
relatively lower CI than that of the composites without compatibilizer. Yang et al. also
studied the thermal oxidative aging performances of HDPE/WPCB non-metals composites
and demonstrated that the WPCB non-metals has a similar oxidation resistance to the
two other commercial fillers [110]. Similarly, the WPCB non-metals have been utilized
in polyvinyl chloride (PVC) [111–113]. Grigorescu et al. demonstrated that a 15–20%
non-metallic fraction of WPCB can endow the recycled PVC with properties suitable for
reuse as an insulating technical material [114]. Wang et al. found that the diameter and
contents of glass fiber recovered from WPCB determined the tensile and bending strengths
of as-prepared PVC composites [115]. It can be expected that the interfacial compatibility
between WPCB non-metals and polymer matrixes was significant for the final comprehen-
sive properties of polymer composites. Consequently, Moe et al. explored the influence of
interfacial modifiers, namely polypropylene-grafted-maleic anhydride (PP-g-MAH) and
γ-aminopropyltriethoxysilane (ATPS), on the properties of PVC/WPCB composites [116].
As depicted in Figure 5e,f, the PVC/WPCB composites without interfacial agents showed
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obvious voids around the WPCB and holes caused by glass fiber pullout due to weaker
interfacial bonding between the PVC matrix and fillers. The surface modification of WPCB
non-metals using ATPS and PP-g-MAH can improve the NMPCB dispersion and interfacial
adhesion, as well as reduce the formation of voids and holes. As a result, the as-obtained
PVC/NMPCB composites containing modifiers exhibited excellent tensile strengths and
moduli in comparison to the unmodified PVC/NMPCB composites (Figure 5g,h). Further-
more, the shifting of the loss factor for PVC/NMPCB composites with different interfacial
agents illustrates the enhanced interfacial bonding between the NMPCB and PVC matrixes
(Figure 5i).
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PVC composites with (d) untreated 30 wt% NMPCB; (e) 30 wt% NMPCB-treated ATPS; (f) 30 wt%
NMPCB-treated PP-g-MA; (g) Young’s modulus of PVC/NMPCB composites; (h) tensile strength
of PVC/NMPCB composites; (i) influence of interfacial modifiers on the loss factor or tan δ of
PVC/NMPCB composites. Reprinted with permission from [116]. Copyright: 2023, MDPI.

Wood–plastic composites (WPC) are generally produced by blending thermoplastics,
wood flour, and small amounts of additives, and they have been extensively used in outdoor
decoration, garden architecture, industrial flooring, landscape timbers, automobile paneling,
and furniture due to their non-formaldehyde, light weight, abundance, and other character-
istics [117–119]. Compared to the wooden products, the WPC is durable and requires low
maintenance; therefore, it is ideal for use in unstructured applications. Among these appli-
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cations, the wood flour is one of the most common fillers used in WPC, as it reduces costs
and improves the mechanical strength of WPC. With the increased demand for WPC, devel-
oping other non-wood resources is essential to meeting the raw material requirements and
protecting timber resources [120–123]. Inspired by this fact, Guo et al. innovatively prepared
a new kind of WPC by compounding WPCB non-metals, recycled HDPE, wood flour, and
other additives, as shown in Figure 6a [25]. It was found that adding WPCB non-metals to
WPC effectively enhanced the flexural and tensile properties and synergistically decreased the
screw withdrawal strength. When 40 wt% of non-metals were added, the flexural strength,
tensile strength, and impact strength reached 23.4 MPa, 9.6 MPa, and 3.03 J/m2, respectively.
Moreover, Yang et al. developed a novel strategy to prepare WPC-reinforced with NPCB via
the solid-state shear milling (S3M) process [124]. The results revealed that S3M treatment can
effectively exfoliate NPCB into high-aspect ratio glass fibers. And the as-prepared WPC based
on S3M process showed uniform filler dispersion and strong interfacial bonding between the
fillers and linear low-density polyethylene (LLDPE). Accordingly, the tensile strength of WPC
reached 32.4 MPa, while the storage modulus showed a high value of 616 MPa, even at 100 ◦C,
thus efficiently extending the maximum service temperature of the WPC. In addition, to explore
the thermal behavior of the WPC, the in situ FTIR curves of the LLDPE/WF composites and
LLDPE/WF/NPCB-S3M composites were performed, and they are displayed in Figure 6b–e.
The results showed no characteristic absorption peak of the carbonyl group appeared during the
heating process, illustrating that the WPC molecular chain is very stable during melt processing.
The outstanding thermal stability of the LLDPE/WF/NPCB-S3M composites may be ascribed
to the biobased phenols derived from the wood flour, which may act as antioxidants in the WPC.
The HDT results indicated that the NPCB-reinforced WPC exhibited a higher HDT (112 ◦C)
than the pure LLDPE (89 ◦C) (Figure 6f) owing to the strong skeleton structure of glass fiber in
NPCB. Moreover, as mentioned above, the WPCs are usually utilized in outdoor applications,
which require superior water resistance to meet the service lifespan of the WPC. As displayed
in Figure 6g, the WPC with 30-percentage-by-weight wood content showed a higher water
absorption (0.77%) than pristine LLDPE because the interfacial gaps between the wood and
polymer can result in the penetration of water molecules into LLDPE/WF composites. In
contrast, the water absorption of the NPCB-reinforced WPC was significantly reduced to 0.21%
(Figure 6h), exceeding the values previously reported for the NPCB-reinforced WPC, which
should be attributed to the good filler dispersion and the fewer voids present within the compos-
ites. Additionally, the presence of fewer hydroxyl groups in the NPCB than in the wood flour is
beneficial, as it leads to lower water absorption. Notably, the organic pollutants and heavy-metal
concentrations are basically negligible, which are far below the regulatory limits used to identify
hazardous waste. Thus, the reuse of NPCB in high-strength WPC is a feasible choice in terms of
both relieving environmental pollution and producing high value-added products.

It is worth noting that the WPCB non-metals also play a crucial role in the functionalization
of thermoplastic composites. Yang et al. innovatively explored the possibility of employ-
ing NPCB to prepare thermal management materials [125]. Benefiting from the high aspect
ratio of NPCB, the tensile strength of LDPE/graphite nanosheets (GNP)/NPCB composites
improved from 24.9 MPa to 36.2 MPa. As shown in Figure 7a, the thermal conductivity of
LDPE/GNP/NPCB composites gradually increased with the increase in the NPCB content
by forming more effective thermally conductive pathways. In particular, when incorporating
50 wt% of the NPCB, the thermal conductivity of GNP-10- and GNP-100-filled composites were
enhanced by 34% and 52%, respectively, reaching 1.4 W/m·K and 1.6 W/m·K, respectively,
thus demonstrating the synergistic effect between GNP and NPCB, which improves the thermal
conductivity of the composites. Moreover, it can be noticed that the C1 values of composites are
close to each other, whereas the fitting coefficients of C2 greatly deviate from the Agari model
and are much larger than 1, indicating that a more efficient thermal conduction network is
formed in the GNP-100-filled composites. Furthermore, the electrical conductivity of all samples
is higher than 109 Ω·cm, meeting the requirements of insulating and thermally conductive
materials. To evaluate the cooling process of as-prepared composites in thermal management
applications, the surface temperature distribution was recorded via an infrared thermal camera.
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It was found that the NPCB-reinforced composites exhibited lower surface temperatures and
showed superior thermal dissipation capabilities. Furthermore, finite element simulation was
performed to visually reveal the heat flow diffusion and offer a helpful understanding of the
thermal conduction process of composites. The results illustrate that the thermal propagation
in the filler network of composites is in close agreement with the classical Agari model. The
GNP network is mainly responsible for the efficient thermal diffusion and the increased thermal
conductivity of composites. In addition to above-mentioned general thermoplastics, the WPCB
non-metals have been widely applied in some recycled engineering thermoplastics, such as
acrylonitrile–butadiene–styrene (ABS) and polycarbonate (PC) [126,127]. For example, Sun
et al. developed a sustainable ABS composite by combining two waste resources derived from
recycled ABS waste plastic and WPCB non-metals. It was revealed that the WPCB non-metals
significantly enhanced the mechanical performances of ABS composites. Typically, 30 wt% of
non-metal particles can obtain a flexural strength of 72.6 MPa, a flexural modulus of 3.57 GPa,
and an impact strength of 15.5 kJ/m2 [126]. This method represents a promising strategy to
use in dual e-waste recycling and relieving the environmental pollution. Notably, despite
various feasible applications of WPCBs’ non-metallic components in thermoplastics, there are
still some challenges. For example, many thermoplastics have a poor weathering properties
and are sensitive to heat, UV exposure, and oxidation, which restricts their industrial applica-
tions. Consequently, enhancing the recovery efficiency of residual metal and preparing effective
antioxidants should be given greater attention in future studies.
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Figure 6. (a) Flowchart detailing the preparation of WPC products. Reprinted with permission
from [25]. Copyright: 2010, American Chemical Society. In situ FTIR contour map and the corre-
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flection temperature of the LDPE composites. Reprinted with permission from [124]. Copyright:
2020, Elsevier.
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3.3. Reutilization of WPCB Non-Metallic Components in Rubber Composites

Until now, the main industrial applications of WPCB non-metals have been thermosetting
resins and thermoplastics, as mentioned above. It is also be noting that rubbers, as strategically
important polymer materials, need to be reinforced with various fillers to achieve wide practical
applications owing to their poor mechanical properties [128–130]. In particular, in the past few
years, driven by environmental pressures, some industrial waste and by-products, including fly
ash, marble slag, and agricultural waste, have been used as alternatives to commercial fillers
in rubber composites, which give great hope for the high value-added applications of WPCB
non-metals [131–133]. Therefore, in our previous work, the WPCBP was first introduced into
styrene–butadiene rubber (SBR) composites to systematically investigate its potential as a curing
additive and reinforcing filler of rubber composites [73]. As shown in Figure 8, the vulcanization
behaviors and kinetics of SBR compounds were studied using a moving-die rheometer and
differential scanning calorimeter. It was found that the curing rate was suppressed after the
incorporation of SiO2, while the addition of a small content of WPCBP (5 phr) could evidently
accelerate the crosslinking process. In general, the acidic hydroxyl groups on the surface of
SiO2 could adsorb some basic accelerators, and the diffusion and accessibility of curing agents
to the rubber vulcanization sites were also limited due to the severe aggregate of SiO2 via
hydrogen–bond interactions. However, the incorporation of WPCBP could endow the rubber
composites with a higher curing rate. This outcome may be ascribed to the activation effect of
metal oxide and the accelerating effect of residual additives in WPCBP. Furthermore, to more
accurately explore the nature of vulcanization process, the vulcanization kinetics of SBR com-
pounds was investigated using the Kissinger and Ozawa method. The results suggested that
the SBR composites filled with WPCBP exhibited lower values of exothermal peak temperature
(Tp) and activation energy (Ea), dramatically improving the curing rate of SBR compounds,
which is consistent with the results of the curing curves. As discussed above, WPCBP mainly
consisted of resin powders and glass fibers, and they contained a little residual metal oxide
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and additives. Generally, the inorganic metal derivatives (eg, ZnO, MgO) are suitable for use
as curing activators in rubber compounds to improve their curing efficiency. Moreover, some
residual additives may have the same active groups as the commercial rubber accelerator, which
results in the lower activation energy of SBR/SiO2/WPCBP. Subsequently, Liu et al. reported
a superhydrophobic functional coating based on WPCBP and PDMS silicone rubber inspired
by the lotus leaf effect [134]. As shown in Figure 8d, the surface of WPCBP first formed a layer
of silica nanoparticles. The received WPCBP@SiO2 hybrid filler was combined with PDMS to
develop a novel low-cost and environmentally friendly superhydrophobic coating, providing
a significant platform for the sustainable high-valued reuse of WPCBP in superhydrophobic
composites. Unlike the WPCBP, it can be obviously observed that the prepared WPCBP/SiO2
hybrid filler had a rough surface structure, as depicted in Figure 8e,f, the higher roughness
of which is beneficial to the construction of micro-nano structures used in superhydrophobic
coatings. As presented in Figure 8g, when the ratio of PDMS and WPCBP@SiO2 is 0.2, the
WCA of as-prepared coatings exhibits the highest value of 158◦, and the SA is only 2.0◦, thus
showing superior superhydrophobic properties. Moreover, unlike the initial glass slide, the
as-prepared PDMS/WPCBP/SiO2 coatings show excellent self-cleaning performance, with the
pink chalk powders being automatically removed using the rolling water droplets, leaving
a clean and dry surface. In particular, these low-cost superhydrophobic coatings can be ap-
plied to wood buildings or municipal trash cans, which can efficiently prevent the substrate
from experiencing deformation and damage in humid environments, thus showing impor-
tant practical value in terms of reducing environmental pollution and developing low-cost
superhydrophobic coatings.Molecules 2023, 28, x FOR PEER REVIEW 18 of 25 
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4. Summary, Challenges, and Outlook

In this review, we summarized and discussed recent advances in sustainable poly-
mer composites based on WPCB non-metallic components, and emphasis was placed on
the preparation, structure, and properties of these polymer composites, as well as their
potential applications. It has been demonstrated that the WPCB non-metals can serve
as a promising reinforcing and functional filler to construct various ecofriendly polymer
composites owing to their wide availability, low cost, high mechanical performances, and
environmental nature. The incorporation of WPCB non-metallic powder could significantly
ameliorate some physical and chemical properties of polymer composites, such as excellent
mechanical performances, enhanced thermal stability, and flame resistance. In summary,
significant advances have been achieved in the past few years, which have opened a new
and feasible pathway for the high value-added reutilization of WPCB non-metallic compo-
nents. However, there are still some scientific and technical issues that need to be resolved
prior to their widespread adoption for practical applications. Efforts should be devoted to
the following issues:

(1) The WPCB non-metals are diverse and complex in terms of type, size, shape, com-
ponents, and composition, typically including cured thermosetting resins, glass fiber
(cellulose paper), ceramics, BFRs, residual metals, and other additives. Thus, the
recovery process of WPCBs non-metallic components is also very complicated. In
general, the methods of recovering non-metallic components from WPCB include
physical recycling methods and chemical recycling methods. Physical recycling of
the WPCB non-metals is a promising environmentally friendly recycling method
that requires appropriate equipment investment and low energy costs. More work
should be performed to explore comprehensive and industrialized application of
the recovered WPCB non-metals through physical methods. However, there are still
some issues related to the physical process of recycling WPCBs. It is generally very
difficult to completely remove all metals through the physical recycling process, and
some residual metals in the as-reclaimed non-metallic components may lead to the
serious deterioration of the aging properties of polymer composites. Moreover, other
than the glass fibers, residual metals, and resin powders, the influence of other metal
derivatives and additives on the structures and properties of polymer composites is
also worth studying in depth.

(2) Many studies have indicated that the addition of WPCB non-metallic components
to polymer composites can indeed effectively reduce the cost of polymer composites
and enhance their comprehensive properties to some extent, which is also critically
significant in terms of relieving the environmental pollution caused by inappropriate
traditional recycling methods. However, it is still challenging to achieve the strong
interfacial interaction between polymer matrix and unmodified WPCB non-metals,
causing the superiority of WPCB non-metals with a high aspect ratio not to have been
fully exploited. Moreover, many thermoplastics and rubbers have poor weathering
properties and are sensitive to heat, UV exposure, and oxidation, whereas some
residual metals in the as-reclaimed non-metallic components can further aggravate
the deterioration of the aging properties of polymer composites, which severely
limits their widespread use, especially in outdoor applications. Consequently, it
is highly advisable to develop and introduce some novel interfacial modifiers and
antioxidants in polymer composites to further optimize the interfaces and endow the
polymer composites with longer service lives. Moreover, the reliability and potential
environmental risks of as-prepared sustainable composites need to be taken into
account because of the residual metals and bromide flame retardants.

(3) Although the high value-added reutilization of WPCB non-metals in polymer com-
posites has received a series of impressive advances, the recovery problem associated
with WPCB non-metals has not been fundamentally solved, especially for cured ther-
mosetting composites, which only extend the service life to a certain extent. In fact, if
the thermosetting resin in PCB can be effectively degraded into small molecules or
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dissolved in some solvents, the recycling process of WPCB would become very simple,
which is also in line with the strategy goals of “carbon peaking and carbon neutrality”.
Therefore, it is not only necessary to carry out research into the high-value resource
utilization of WPCB non-metals, but also to pay attention to the development of sus-
tainable polymer matrixes, such as natural bio-based polymers, degradable synthetic
polymers, etc. Moreover, this approach is expected to introduce the dynamic chemical
bonds into thermosetting resins to prepare recyclable thermosets through molecular
design. There is also an urgent need to develop a new generation of environmentally
friendly bio-based additives, such as bio-based flame retardants, curing agents, an-
tioxidants, etc. In conclusion, by systematically summarizing the relevant advances
and investigating their preparation–structure–properties–applications relationships,
we hope that this work can offer meaningful insights regarding the high value-added
reutilization of WPCB non-metals in polymer composites.
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