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Abstract: Two-dimensional (2D) ice I is atomic-level ice that is composed of two interlocked atomic
layers saturated with hydrogen bonds. It has recently been experimentally observed, but its properties
have yet to be clarified. Accordingly, we theoretically studied the hydrophobic properties of 2D
ice I. On the contrary, a simulation of a hydrogen fluoride molecule on a 2D ice surface manifested
that it destroyed the 2D ice structure and connected new hydrogen bonds with water molecules.
Investigations of the interfacial effect between 2D and three-dimensional (3D) ice films indicated that
the network structure of 2D ice was not destroyed by a 3D ice surface, as the former was saturated
with hydrogen bonds. However, the surface of 3D ice reorganized to form as many hydrogen bonds
as possible. Thus, the 2D ice film was hydrophobic and inhibited the growth of 3D ice. This shows
that if 2D ice can be produced on an industrial scale, it can be used as an anti-3D-icing agent under
low temperatures.

Keywords: two-dimensional ice; anti icing; hydrophobic

1. Introduction

Water ice is a ubiquitous substance. More than 19 three-dimensional (3D) ice phases
have been observed under extreme temperature and pressure conditions at a laboratory
scale [1,2]. In addition, two-dimensional (2D) ice has recently attracted considerable
research interest. In 1997, Koga proposed a double-layer ice structure based on molecular
dynamics simulations [3]. In 2015, Molinero et al. reported the discovery of a tetragonal
2D ice phase in bilayer graphene [4]. In 2020, Jiang and co-workers described their use of
high-resolution qPlus atomic microscopy to observe an interlocked 2D ice structure based
on Au (111) that they named 2D ice I [5,6]. They found that 2D ice I is stably saturated with
hydrogen bonds. So far, many methods have been used to detect the properties of ice, such
as the X-ray method. These methods will have important applications in the detection of
2D ice properties [7–10]. Most of the research on the properties of 2D ice has been focused
on its structural characteristics and electronic, dielectric, and optical properties [11,12]. This
revealed that 2D ice phase I has an indirect band gap lattice and thus exhibits anisotropic
optical properties.

As an atomic-level material, 2D ice is likely to be of significance in the fields of material
science, atmospheric science, and biology, among others [13–18]. However, the laboratory
characterization of 2D ice is highly challenging, owing to the complexity of the experimental
conditions involved. As such, we used the density functional theory (DFT), a quantum
mechanical method, to simulate the interaction between a water monomer and 2D ice, and
thus determined the adsorption properties of 2D ice.

The DFT was introduced by Professor Walter Kohn, which uses electron density
instead of wave function to describe multi-electron systems [19,20]. Many similar works
on the study of the adsorption and interface effects of 2D material surfaces have been
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reported. For example, Son et al. studied graphene oxide (GO) by constructing a model
of organic molecules on its surface. They found that the oxidation reaction is likely to
be carried out by transferring hydrogen atoms from the organic starting material to the
surface of GO. They calculated the change in the system energy and showed that GO
has a high chemical potential and a tendency to participate in chemical reactions during
the process [21]. Fan et al. studied the adsorption of Li+ ions on the graphene surface.
The Li+ ions were placed on the surface with different distances. It was found that the
system was stable at the position of 1.84 Å [22]. Nakada systematically calculated the
energy of the chemical element from Z = 1 to 84 at three adsorption sites on 3 × 3 graphene
using the PAW method of DFT calculation [23]. Boukhvalov used the DFT method to
model different types of graphene. Their static (substrate, shape, curvature, strain, and
doping) and dynamic (starting point of functionalization, migration barriers, and stability
of configurations) aspects were investigated, which provided model parameters for the
adsorption on graphene substrates [24].

In this work, using DFT methods, we simulated the adsorption properties and interface
effects between 2D ice and water monomer and 3D ice. The results indicate that 2D ice
is hydrophobic and inhibits the growth of 3D ice. Thus, if 2D ice can be produced on an
industrial scale, it would be a useful anti-icing agent and a valuable lubricant.

2. Results and Discussion

To demonstrate the hydrophobicity of 2D ice, we simulated the adsorption behavior
of a water molecule on the 2D ice (001) surface to determine whether this monomer could
break the 2D ice structure and construct new hydrogen bonds with the 2D ice film. As the
length of a hydrogen bond is approximately 1.8 Å, the monomer was placed at approxi-
mately 1.9–2.5 Å above the 2D ice surface. We constructed three kinds of configurations by
adjusting the monomer orientations, namely two horizontal configurations (Figure 1a,b)
and one upright configuration (Figure 1c). Figure 1a shows the horizontal configuration
in which a hydrogen atom of the monomer was placed on top of an oxygen atom on the
ice surface. Figure 1b shows the horizontal configuration in which an O-H bond of the
monomer was placed on top of an H-O bond on the ice surface. Figure 1c shows the upright
configuration. After geometry optimization (bottom row of Figure 1), in each configura-
tion, the monomer was repelled by the 2D ice and thus moved farther from the surface.
Supplementary Material Video S1 demonstrates how the monomer disturbed the surface
molecules and was ultimately repelled. The distances between the nearest hydrogen atom
of the monomer and an oxygen atom on the ice surface changed from 1.995 Å to 2.728 Å
(Figure 1a); from 1.995 Å to 3.299 Å (Figure 1b); and from 1.914 Å to 2.355 Å (Figure 1c),
respectively. Clearly, the oxygen atom of the monomer exhibited more repulsive behavior
than its two hydrogen atoms.

After optimization, the total energies of the three systems depicted in Figure 1a–c were
−30,545.874 eV, −30,545.872 eV, and −30,545.882 eV, respectively. The upright configuration
(Figure 1c) exhibited the lowest potential, and the system energy was −30,544.857 eV before
optimization. Thus, the energy of the system was reduced by 1 eV. This shows that the
monomer could not break the 2D ice structure to form new hydrogen bonds. Supplementary
Material Video S1 shows the process of water molecules being repelled by 2D ice.

Two comparative models of HF and H2O monomers in parallel with one O-H bond
of H2O at the 2D ice surface were optimized. The distance of the fluorine and hydrogen
atoms was set as 1.927 Å. After geometry optimization, the HF molecule clearly broke the
film structure and reformed two hydrogen bonds with two water molecules at the 2D ice
surface (Figure 2b). On the contrary, the H2O monomer in the same position was repelled
from 1.927 Å to 2.904 Å (Figure 2c). This is because the electronegativity of F is stronger
than that of O, so F could break the hydrogen bond of 2D ice and reformed the hydrogen
bond with it. This illustrates that HF is a good solvent to melt 2D ice. Supplementary
Material Video S2 shows the process of 2D ice film being destroyed by a HF molecule.
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Figure 1. Side view of three models involving a water molecule on the 2D ice surface. (a) and (b) 
are horizontal configuration models, (c) is upright configuration model. The top row shows the con-
structed conformations, and the bottom row shows the corresponding optimized geometries. Red 
and grey balls represent oxygen and hydrogen atoms, respectively. 
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Figure 2. Comparisons of adsorption effect of HF and H2O on 2D ice surface. (a) The initial posi-
tion of a HF molecule on the 2D ice surface and (b) the optimized result of the HF model. (c) The 
optimized result of an H2O molecule placed in the same position. 

Figure 1. Side view of three models involving a water molecule on the 2D ice surface. (a,b) are
horizontal configuration models, (c) is upright configuration model. The top row shows the con-
structed conformations, and the bottom row shows the corresponding optimized geometries. Red
and grey balls represent oxygen and hydrogen atoms, respectively.

Molecules 2023, 28, x FOR PEER REVIEW 3 of 8 
 

 

 
Figure 1. Side view of three models involving a water molecule on the 2D ice surface. (a) and (b) 
are horizontal configuration models, (c) is upright configuration model. The top row shows the con-
structed conformations, and the bottom row shows the corresponding optimized geometries. Red 
and grey balls represent oxygen and hydrogen atoms, respectively. 

After optimization, the total energies of the three systems depicted in Figure 1a–c 
were −30,545.874 eV, −30,545.872 eV, and −30,545.882 eV, respectively. The upright config-
uration (Figure 1c) exhibited the lowest potential, and the system energy was −30,544.857 
eV before optimization. Thus, the energy of the system was reduced by 1 eV. This shows 
that the monomer could not break the 2D ice structure to form new hydrogen bonds. Sup-
plementary Material S1 shows the process of water molecules being repelled by 2D ice. 

Two comparative models of HF and H2O monomers in parallel with one O-H bond 
of H2O at the 2D ice surface were optimized. The distance of the fluorine and hydrogen 
atoms was set as 1.927 Å. After geometry optimization, the HF molecule clearly broke the 
film structure and reformed two hydrogen bonds with two water molecules at the 2D ice 
surface (Figure 2b). On the contrary, the H2O monomer in the same position was repelled 
from 1.927 Å to 2.904Å (Figure 2c). This is because the electronegativity of F is stronger 
than that of O, so F could break the hydrogen bond of 2D ice and reformed the hydrogen 
bond with it. This illustrates that HF is a good solvent to melt 2D ice. Supplementary Ma-
terial S2 shows the process of 2D ice film being destroyed by a HF molecule. 

 
Figure 2. Comparisons of adsorption effect of HF and H2O on 2D ice surface. (a) The initial posi-
tion of a HF molecule on the 2D ice surface and (b) the optimized result of the HF model. (c) The 
optimized result of an H2O molecule placed in the same position. 

Figure 2. Comparisons of adsorption effect of HF and H2O on 2D ice surface. (a) The initial
position of a HF molecule on the 2D ice surface and (b) the optimized result of the HF model. (c) The
optimized result of an H2O molecule placed in the same position.

Subsequently, we studied the interfacial effect between 3D and 2D ice. To integrate
the two types of films into one periodic cell, hydrogen-ordered ice Ic was used as the 3D
ice because its lattice constant is well matched with that of 2D ice. The 3D ice film was
superimposed onto the 2D ice (Figure 3a), and the geometry of the resulting system was
optimized. Simulations were performed to explore whether 3D ice could destroy the stable
hydrogen bond structure of the 2D ice and recombine to form a new 3D ice film. The result
is shown in Figure 3b. There were no hydrogen bonds connecting the two layers. Because
2D ice was saturated with hydrogen bonds, the atomic-level film was highly stable. In
contrast, because the 3D ice surface was not saturated with hydrogen bonds, the surface
atoms encountered repulsive forces from the 2D ice and reorganized to form as many
hydrogen bonds as possible. That is, 2D ice inhibited the growth of 3D ice on its surface.
Supplementary Material Video S3 shows the dynamic process of this interfacial effect.
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Figure 3. Interfacial effect between ice Ic (111) surface and 2D ice (001) surface. (a) Constructed
model of 2D and 3D ice films and (b) geometry optimization results. The surface of 3D ice reorganized
to form more hydrogen bonds while the 2D ice remained stable.

The results of the simulation of the interfacial effect between two 3D ice films are
shown in Figure 4. Although the two 3D ice films were placed in parallel at a large distance,
they easily integrated through the formation of hydrogen bonds. This result was expected
because 3D ice is hydrophilic and thus did not inhibit the growth of a new ice film on its
surface (Supplementary Material Video S4 shows the effect). Comparing these two cases
reveals that the 2D ice was hydrophobic. Because the 2D ice was saturated with hydrogen
bonds, the interlocking hexagonal double-layer 2D ice film could not be destroyed by
water molecules in the ambient environment. This demonstrates that 2D ice is a potential
anti-icing agent. Furthermore, a multilayer framework composed of 2D ice is expected to
be a promising lubricant, similar to graphite [25], for use in cold environments.
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3. Simulation Strategy

The DFT code CASTEP was used to identify the geometries of water adsorption on
2D ice. The CASTEP program was originally developed in the Theory of Condensed
Matter Group at Cambridge University, UK. It is a quantum mechanical code for electronic
structure calculation based on the DFT method. Its advantage is that it can determine the
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ground state electronic structure of a system by solving the Schrödinger equation without
using any experimental (empirical) data and only five basic constants (particle mass, charge,
Planck constant, light speed, and Boltzmann constant), such as the band structure, optical
properties, and mechanical properties. The basic method of using the CASTEP code to
calculate the electronic structure is as follows: A set of Kohn–Sham equations of a single
electron is calculated by using the plane wave approximation method. The energy and
wave function of the single electron orbit are obtained, and the ground state energy of
the electron system is calculated. Using the periodic boundary conditions and the Bloch
theorem, the wave function is expanded into the plane wave basis set. The real potential
energy inside the core is modeled by norm-conserving and Ultrasoft pseudopotential. The
CASTEP code can be used to simulate a variety of materials, including crystalline solids,
surfaces, molecules, liquids, and amorphous materials [26].

For the exchange correlation energy between electrons, DFT uses electron density
instead of wave function as the basic variable, but this does not seem to solve the problem of
calculating the complexity of the exchange correlation between electrons [27]. When Kohn
and Sham introduced the KS equation, they also introduced the local-density approximation
(LDA) functional. However, this method is more applicable for the system with a uniform
electron density. As for the system with uneven electron distribution, the Generalized
Gradient Approximation (GGA) functional is introduced to correct the local change in the
electron density. The Perdew–Burke–Ernzerhof functional is the analytic fit of the numerical
GGA, and the PBE is an improvement of the Perdew–Wang 1991 (PW91) functional [28],
including an accurate description of the linear response of the uniform electron gas and a
smoother potential [29].

Given the large fluctuations in the electron densities, we used the GGA method for
geometry optimization. According to our work on 3D ice phases, the revised PBE functional
is the optimal exchange–correlation functional for phonon calculation [30–35]. The self-
consistent field tolerance was set as 1 × 10−6 eV/atom. Using an ultrasoft pseudopotential,
the energy cut-off was set to 340 eV, and the k-point mesh was 3 × 3 × 1.

With reference to the work of Jiang [5], we constructed a primitive cell of the 2D ice
I structure, as shown in Figure 5. The lattice constants were a = b = 5 Å, c = 22.74 Å,
α = β = 90◦, and γ = 120◦. To represent the 2D film, a large vacuum interval was set on
the surface. Thus, the c-axis appeared to be rather long. In general, CASTEP simulations are
based on periodic structures. To avoid the influence of the neighboring cells, we extended
the 2D ice plane to a 4 × 4 supercell, i.e., a = b = 20 Å. Then, we built a water monomer
and copied it to the ice surface. Finally, three conformations were obtained, as shown
in Figure 1. To compare the adsorption effect, a model of a hydrogen fluoride monomer
placed on the 2D ice surface was constructed, too.
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In the interfacial effect simulations, to match the coordinates of 2D ice, we selected ice Ic
as the 3D ice sample. The lattice constants of ice Ic were set as follows: a = b = c = 6.38 Å,
c = 22.7473 Å, and α = β = γ = 90◦. To match the lattice constants of the 2D ice,
a film along the Ic (111) plane was cleaved with a thickness of four layers. Therefore,
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the parameters of the Ic film were adjusted as follows: a = b = 15.6 Å and γ = 120◦.
Subsequently, we expanded the 2D ice to a 3 × 3 supercell with the lattice constants of
a = b = 15 Å. Finally, we combined the 2D ice (001) film with the 3D ice Ic (111) film. In
addition, we cleaved a bulk Ic sample into two samples placed approximately 3 Å apart
and then performed geometry optimization as a comparative study.

4. Conclusions

Owing to the challenges in experimentally observing atomic-level 2D ice films [5],
research on this material has been limited because it is difficult to prepare in laboratory
environments. In this study, we used DFT to examine the hydrophobic properties of 2D ice.
The dynamic analysis of the adsorption of a water monomer onto a 2D ice surface showed
that the monomer could not break the 2D structure to form new hydrogen bonds. This
hydrophobicity of the 2D ice was due to it being saturated with hydrogen bonds. On the
contrary, the HF molecule may destroy the 2D ice film easily to show that HF is a good
solvent to melt 2D ice.

An analysis of the interfacial effect between a 2D ice film and 3D ice showed that the
surface of the 3D ice reorganized to form more hydrogen bonds when it was placed close to
the 2D ice film. In contrast, two 3D ice films placed in parallel at a large distance from each
other were easily connected by hydrogen bonds. These results suggest that 2D ice inhibits
the growth of 3D ice. Therefore, 2D ice is a promising anti-icing material. In addition, a
multilayer framework of 2D ice may exhibit excellent lubricating properties, similar to
those of graphite. Experimental observations are expected to be made in the future.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules28166145/s1, Video S1: Adsorption of H2O monomer
on 2D ice surface. Video S2: Adsorption of HF monomer on 2D ice surface. Video S3: The interfacial
effect between 3D ice and 2D ice. Video S4: The interfacial effect between two 3D ice films.
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