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Abstract: Indoleamine-2,3-dioxygenase 1 (IDO1) and signal transducer and activator of transcription
3 (STAT3) have emerged as significant targets in the tumor microenvironment for cancer therapy. In
this study, we synthesized three novel 2-amino-1,4-naphthoquinone amide-oxime derivatives and
identified them as dual inhibitors of IDO1 and STAT3. The representative compound NK3 demon-
strated effective binding to IDO1 and exhibited good inhibitory activity (hIDO1 IC50 = 0.06 µM),
leading to its selection for further investigation. The direct interactions between compound NK3
and IDO1 and STAT3 proteins were confirmed through surface plasmon resonance analysis. A
molecular docking study of compound NK3 revealed key interactions between NK3 and IDO1,
with the naphthoquinone-oxime moiety coordinating with the heme iron. In the in vitro anticancer
assay, compound NK3 displayed potent antitumor activity against selected cancer cell lines and
effectively suppressed nuclear translocation of STAT3. Moreover, in vivo assays conducted on CT26
tumor-bearing Balb/c mice and an athymic HepG2 xenograft model revealed that compound NK3
exhibited potent antitumor activity with low toxicity relative to 1-methyl-L-tryptophan (1-MT) and
doxorubicin (DOX). Overall, these findings provided evidence that the dual inhibitors of IDO1 and
STAT3 may offer a promising avenue for the development of highly effective drug candidates for
cancer therapy.

Keywords: indoleamine 2,3-dioxygenase 1; signal transducer and activator of transcription 3; dual
inhibitors; naphthoquinone-oxime derivatives; anticancer agents

1. Introduction

In recent years, the field of cancer immunotherapy has garnered considerable attention
due to the successful use of drugs that target immune checkpoints in clinical cancer therapy.
These drugs include anti-PD1 (programmed cell death protein 1), anti-PDL1 (programmed
death ligand 1), and anti-CTLA4 (cytotoxic T-lymphocyte-associated protein 4) [1,2]. De-
spite the advancements in immune checkpoint therapies, a significant number of patients
with malignancies remain unresponsive to these treatments. In fact, only a limited propor-
tion of patients derive significant benefits [3]. One possible explanation for the evasion
of immune disruption by tumor cells lies in their capacity to develop diverse tactics to
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elude, hinder, or manipulate both innate and adaptive immunity alongside the immune
checkpoint mechanisms prevailing in immunosuppressive tumor microenvironments [4].
There is a pressing need to discover novel cancer immunotherapy treatments that can
enhance the immune system’s ability to recognize and attack cancer cells.

Indoleamine 2,3-dioxygenase 1 (IDO1) is an oxidoreductase that contains heme and
serves as a catalyst for the degradation of tryptophan to kynurenine through the kynure-
nine pathway [5,6]. The ingestion of tryptophan via indoleamine 2,3-dioxygenase (IDO)
results in the inhibition of effector T-cell reactions and amplifies immunosuppressive
signals regulated by T regulatory cells [7]. IDO1-induced immune tolerance is a crucial
mechanism for tumors to escape immune surveillance [8]. Research has demonstrated a cor-
relation between the upregulation of IDO1 in both human tumors and antigen-presenting
cells of the host and unfavorable prognosis, as well as parameters indicative of tumor
progression [9–11]. In mouse tumor models, blocking IDO1 activity with small-molecule
inhibitors has been successful in delaying metastasis development, impairing tumor out-
growth, and prolonging survival [12]. Additionally, combining IDO1 inhibitors with
anticancer drugs has shown synergistic therapeutic effects to facilitate regression of tumors
that are otherwise difficult to treat [13]. Therefore, IDO1 is considered an attractive target
for cancer immunotherapy.

Several potent small-molecule IDO1 inhibitors have been identified to effectively
stimulate antitumor immunity. Some of these inhibitors, including indoximod, epacadostat,
navoximod, BMS-986205, and PF-06840003, have been developed and tested in clinical
trials (Figure 1) [14–16]. However, previous preclinical investigations have demonstrated
that IDO1 inhibitors possess only moderate antitumor activity when administered as stan-
dalone agents [17]. Epacadostat, the most advanced compound in clinical development,
showed promising anticancer activity in an early phase I/II study, but was disappointing in
failing to achieve notable results in combination with pembrolizumab in a subsequent piv-
otal phase III study [18]. Despite the potential synergistic effects observed when utilizing
IDO1 inhibitors in conjunction with other therapies, the efficacy of drug combination strate-
gies is consistently hindered by intricate pharmacokinetics and drug–drug interactions [19].
Consequently, there has been considerable interest in the development of a singular thera-
peutic agent capable of simultaneously targeting two or more cooperative mechanisms to
address this concern.
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immune deficiency, and focus only on modulating the immune synapse [20,21]. As a tran-
scriptional regulator of several tumor-promoting factors, signal transducer and activator
of transcription 3 (STAT3) is involved in multiple oncogenic signaling pathways and is
constitutively activated in cancer and immune cells in the tumor microenvironment [22,23].
The regulation of numerous genes essential for tumor cell survival, proliferation, migra-
tion, and angiogenesis is attributed to STAT3. Targeting constitutively activated STAT3
in tumors has been demonstrated to directly induce tumor cell death and inhibit growth
in vivo [24–26]. In addition, constitutively activated STAT3 inhibits the expression of im-
mune activation mediators and enhances the production of immunosuppressive factors,
thereby promoting STAT3 activity in specific subsets of immune cells [27]. This alteration
in gene expression programs ultimately suppresses antitumor immune responses. It is
worth noting that recent investigations have demonstrated the role of IL6 in regulating
the transcriptional expression of STAT3 [28,29]. Therefore, the identification of dual IDO1
and STAT3 inhibitors potentially represents a new strategy for anticancer treatment by
harnessing the benefits of both immunotherapy and STAT3 inhibition.

In our previous work, a series of naphthoquinone aromatic amide-oxime derivatives
co-targeting IDO1 and STAT3 were synthesized [30]. As part of our ongoing study to
discover potential IDO1/STAT3 dual inhibitors, we synthesized three novel 2-amino-1,4-
naphthoquinone amide-oxime derivatives (NK1-NK3) with the hydrophobic terminal
amine group, which could be tolerated in the active site of IDO1 and STAT3 [16,25], and
evaluated for their IDO1/STAT3 inhibitory activities. In addition, the IDO1/STAT3 in-
hibitory results were further comprehended with the aid of surface plasmon resonance
(SPR), molecular docking studies, immunofluorescence, and in vivo antitumor efficacy
evaluation, providing insights into their biological properties. Our experimental data
unequivocally demonstrated that the most potent bifunctional inhibitor, NK3, directly
bonds to IDO1 and STAT3, exhibiting potent in vivo antitumor efficacy in both CT26
tumor-bearing mice and athymic nude mice. Thus, NK3 presented an efficient anticancer
immunochemotherapy agent.

2. Results and Discussion
2.1. Chemistry

The synthesis of 2-amino-1,4-naphthoquinone amide-oxime derivatives is demon-
strated in Scheme 1. Initially, commercially available phthalic anhydride (1) was subjected
to a reaction with l-phenylalanine (2) in the presence of acetic acid, resulting in the forma-
tion of compound 3, as reported in the previous literature [31]. Subsequently, compound 3
was treated with oxalyl chloride to generate an acyl chloride, which was then reacted with
primary amines to yield amide 4. Finally, compound 4 was subjected to a reaction with hy-
drazine hydrate in the presence of ethanol at ambient temperature, leading to the formation
of amide derivative 5. Compound 5 underwent treatment with 1,4-Naphthoquinone (6)
and triethylamine solution for a duration of 18 h at ambient temperature, resulting in the
formation of intermedium 7. Subsequently, derivative 7 was subjected to a reaction with
hydroxylamine hydrochloride in ethanol at a temperature of 80 ◦C. Following a reaction
time of 12 hours, the corresponding 2-amino-1,4-naphthoquinone amide-oxime derivatives
(NK1–NK3) were successfully obtained. The structures of title compounds NK1–NK3
were confirmed by 1H NMR, 13C NMR, and high-resolution mass spectrometry (HRMS)
(Supporting Information).

2.2. Inhibition of IDO1 Activity

The in vitro evaluation of the synthesized 2-amino-1,4-naphthoquinone amide-oxime
derivatives NK1–NK3 against human IDO1 was conducted using a standard enzymatic as-
say, as described in a previous report [32]. The potent 4-amino-N-(3-chloro-4-fluorophenyl)-
N′-hydroxy-1,2,5-oxadiazole-3-carboximidamide (IDO5L), which has been extensively
characterized as one of the earliest IDO inhibitors in the literature, served as a positive
control [33]. The IC50 values obtained from the in vitro inhibition activities of NK1–NK3
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are summarized in Figure 2. Results showed that compound NK3 exhibited the best in-
hibitory activity against IDO1, which was similar to that of IDO5L. The other two analogs
(NK1, NK2) were also found as IDO1 inhibitors with, however, relatively lower inhibitory
potency.

Scheme 1. Synthetic pathway to target compounds NK1–NK3. Reagents and conditions: (a) phthalic
anhydride, CH3COOH, 70 ◦C, 12 h, 95%; (b) oxalyl chloride, CH2Cl2, primary amines, Et3N, r.t.,
12 h, 60.5–85%; (c) hydrazine hydrate, CH3OH, r.t., 8 h, 70.5–89.5%; (d) DMF, H2O, Et3N, r.t., 18 h,
55.4–70.3%; and (e) hydroxylamine, CH3CH2OH, 80 ◦C, 12 h, 30.2–50.5%.
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Figure 2. Inhibitory effects of compounds NK1–NK3 and IDO5L against IDO1.

2.3. Direct Interactions between NK3 and IDO1

The most potent inhibitor, NK3, was selected for further analysis. A surface plasmon
resonance (SPR)-based binding assay was conducted to validate the direct interaction be-
tween NK3 and IDO1 protein using a Biacore T200 optical biosensor. This analytical method
is valuable for determining the kinetic and thermodynamic parameters of ligand–protein
complex formation and is widely employed in the study of enzyme–enzyme/inhibitor
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interactions [34]. The binding affinity between compound NK3 and IDO1 was assessed
utilizing Biacore analysis software, accompanied by measurements of kinetic association
and dissociation. As depicted in Figure 3, compound NK3 efficiently interacted with
the immobilized protein to induce a concentration-dependent response for association or
dissociation, respectively. Compounds NK3 and IDO1 had a KD value of 0.16 µM, which
suggested the strong binding affinity of compound NK3 with IDO1. The binding assays
confirmed the direct binding of compound NK3 to IDO1 protein.
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2.4. Molecular Docking Study of NK3 and IDO1

With confirmation that compound NK3 directly bound to IDO1 protein with potent
IDO1 enzyme inhibitory activity, we performed molecular docking analyses to elucidate the
possible binding mode of compound NK3 with the IDO1 (PDB ID: 4PK5) [35]. As depicted
in Figure 4, the naphthoquinone oxime group of compound NK3 exhibited coordination
with heme iron through the oxygen atom via the oxygen atom in the catalytically active
site, which is indispensable for IDO1 inhibitory potency. The quinone moiety of NK3 is
conveniently located deep in the hydrophobic pocket formed by Tyr126, Val130, Phe163,
and Leu234, properly positioned to facilitate π-π interactions with amino acid residues
Tyr126, Phe163, and Phe164. Furthermore, the NH of NK3 formed one hydrogen bond
with Gly262 and contributed to the inhibition of IDO1 activity. Notably, the phenyl ring
of the phenylalanine fragment exhibited a greater degree of burial within an additional
hydrophobic pocket, establishing interaction between Arg231, Phe226, and Ile354. In
particular, the result showed that the phenyl ring formed π-π interactions with the side
chain of Phe226. This may be required for the strong inhibition of IDO1 activity and is
consistent with previous findings on the role of Phe226 [35]. Of note, a strong hydrogen
bond was observed between the amide moiety of NK3 and the 7-propionic acid group in
the heme ring, with the propylamine side chain projected out of the active site toward the
solvent.
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Figure 4. The predicted binding mode of compound NK3 (yellow) bound to IDO1 showing key
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the binding mode was generated by Pymol.

2.5. In Vivo Antitumor Efficacy of NK3 in CT26 Tumor-Bearing Mice

Given its promising in vitro enzymatic potencies, compound NK3 was further evalu-
ated for antitumor efficacy in vivo with a model by injecting immunocompetent BALB/c
mice with CT26 murine colon carcinoma cells (Figure 5). CT26 cells, derived from the
epithelial glands of BALB/C mice with colon cancer, are commonly employed as a model
for investigating immunotherapies and studying host immune responses [36]. Compound
NK3 and the positive control compound 1-MT and IDO5L were administered by intraperi-
toneal injection every 3 days for 21 consecutive days. The final tumor tissue size shown in
Figure 5A clearly revealed the good tumor growth-inhibitory potency of NK3 against CT26
tumor-bearing mice. Dose-dependent growth-inhibitory potency of NK3 was observed
(Figure 5B). After a duration of 21 days of treatment, it was observed that the tumor weight
experienced a reduction of 42.8% when administered at a dosage of 50 mg/kg of compound
NK3, and the tumor weight reduction rate reached 65.8% when the dose of NK3 increased
to 100 mg/kg. Interestingly, when treated with the positive control 1-MT at a dose of
100 mg/kg, the reduction in tumor weight (45.6%) was significantly lower than that of treat-
ment with 100 mg/kg of NK3. Compound NK3 dosed at 100 mg/kg exhibited comparable
growth-inhibitory potency on tumors with IDO5L (65.8% for NK3 vs. 70.9% for IDO5L).
The relative tumor volume growth rate (T/C) of NK3 was found to be 56.00% and 29.07%
at dosages of 50 and 100 mg/kg, respectively, indicating a slightly weaker effect compared
to IDO5L (26.05% at 100 mg/kg) (Figure 5C). Notably, there was no significant change in
body weight of mice treated with both NK3 and the positive control compounds compared
to mice treated with the vehicle treatment, confirming the safety of NK3 (Figure 5D). In
addition, the pathological images of the heart, liver, spleen, lung, kidney and other impor-
tant tissues of mice treated with compound NK3 showed no obvious morphological and
pathological changes (Figure 6). The above results indicated that NK3 demonstrated potent
antitumor efficacy and exhibited low toxicity in mice bearing CT26 tumors.
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Figure 5. In vivo antitumor activity of compound NK3 in CT26 tumor-bearing mice. (A) The images
of the harvested tumors from the mice after administration with NK3 (50 and 100 mg/kg), the
positive control 1-MT (100 mg/kg), and IDO5L (100 mg/kg) every 2 days for 3 weeks. (B) Tumor
weight of the excised tumors of each group. (C) Tumor volume of the mice in each group during
the observation period. (D) Body weight of the mice from each group at the end of the observation
period. Body weight change of each group of mice. The data were presented as the mean ± SD.
p < 0.05 (versus the vehicle control group). The antitumor assay in CT26 tumor-bearing mice was
carried out in one experiment with previous work [37].

2.6. Cytotoxicity Assay

The cytotoxic activity of these three compounds was evaluated against HepG2, Hct-116,
and SKOV3 cancer cells by MTT assay, using doxorubicin (DOX) as the positive control.
As shown in Table 1, DOX was active in the low micromolar range, whereas IDO5L was
inactive against the four solid tumor cell lines because IDO1 inhibitors do not destroy
tumor cells directly. The data presented in Table 1 demonstrate the potent cytotoxicity of
these three compounds across all examined cell lines. Particularly, NK3 was identified as
the most potent depending on the cell line, with IC50 values of 0.16 ± 0.04, 0.18 ± 0.04, and
0.48 ± 0.23 µM against HepG2, Hct-116, and SKOV3, respectively.

Table 1. Cytotoxic effects of compounds NK1–Nk3 on the tested cell lines.

IC50 (µM) a

Compd. HepG2 Hct-116 SKOV3

NK1 1.28 ± 0.27 0.49 ± 0.14 0.95 ± 0.18
NK2 5.08 ± 0.33 5.84 ± 1.34 4.25 ± 1.65
NK3 0.16 ± 0.04 0.18 ± 0.04 0.48 ± 0.23
DOX 0.28 ± 0.03 0.37 ± 0.02 0.58 ± 0.28

IDO5L >40 >40 >40
a IC50 values are presented as mean ± SD.
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Figure 6. In vivo safety profiles of NK3, 1-MT, and IDO5L. Pathological analysis of tissue sections
from major organs (heart, liver, lung, spleen, and kidney) of CT26 tumor-bearing mice. Hematoxylin
and eosin (H&E) were used to stain the organs with representative images captured. The H&E
staining of CT26 tumor-bearing mice was carried out in one experiment with previous work [37].

2.7. Antitumor Potency of NK3 in Nude Mice In Vivo

In order to ascertain the viability of IDO1 as an alternative target for compound NK3,
a xenograft model was established by inoculating nude mice with human liver cancer
HepG2 cells, subsequent to two injections of two doses of NK3 administered at three-
day intervals [38]. As shown in Figure 7A,B, intravenous injection of NK3 at 10 mg/kg
or 20 mg/kg every 3 days for 21 consecutive days significantly inhibited tumor growth
(61.1% and 64.4%), which indicated that NK3 treatment displayed potent antitumor effi-
cacy. The antitumor effect of NK3 was also reflected in a delayed increase in xenograft
volume (Figure 7C). Notably, NK3 was well tolerated and did not cause significant weight
loss compared to DOX (Figure 7D). Taken together, these results demonstrated NK3 signifi-
cantly suppressed HepG2 xenografts’ tumor growth in a dose-dependent manner. These
results also indicated that the antitumor efficacy of NK3 did not require T-cell involve-
ment, as IDO1 inhibitors did not destroy tumor cells directly [12,39]. However, our study
successfully demonstrated the potential inhibitory effect of NK3 on IDO1 based on the
aforementioned findings, which was found to be dependent on the functional integrity of
T-cells in suppressing tumor growth in wild-type BALB/c mice. These findings suggested
that other targets may be involved in NK3-induced tumor clearance.

2.8. Compound NK3 Directly Bind with STAT3

It has been reported that naphthoquinone-based compounds could serve as direct
small-molecule inhibitors of IDO1 and STAT3 [38,40]. Recent research has provided evi-
dence indicating that STAT3 plays a crucial role in regulating immune suppression induced
by tumors within the tumor microenvironment [22]. Given that the STAT3 pathway plays a
crucial role in various cancer-related processes, such as tumor cell proliferation, survival,
angiogenesis, and invasion, it is plausible to suggest a direct association between con-
ventional tumorigenesis and immunosuppression mediated by STAT3. Furthermore, the
transcriptional expression of IDO and PD-L1 in human cancer is mediated by STAT3 [41,42].
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In our recently published work, we identified naphthoquinone aromatic amide-oxime
derivatives as dual inhibitors of IDO1 and STAT3, which exerted both immuno-modulatory
and conventional chemotherapy effects [30]. The remarkable synergistic antitumor effects
observed with NK3 led us to propose the possibility of STAT3 being a potential alternative
target of NK3.

In order to further investigate the direct interaction between NK3 and STAT3, we
conducted an SPR binding assay. The result revealed a strong dose-dependent binding
mode between these two molecules, as demonstrated by the resonance curves in the BIAcore
sensorgram (Figure 8). The measured KD values, obtained through BIAcore evaluation
software, indicate a high binding affinity of 0.17 µM. Collectively, these results certified the
hypothesis that NK3 specifically bound STAT3 protein with high affinity, thus suggesting
that STAT3 was also the potential target of NK3.
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Figure 7. In vivo antitumor activity of compound NK3 in nude mice bearing HepG2 xenograft
model. (A) The images of the harvested tumors from the mice after administration with NK3 (10 and
20 mg/kg) and the positive control doxorubicin (DOX) (5 mg/kg) every 3 days for 3 weeks. (B) Tumor
weight of the excised tumors of each group. (C) Tumor volume of the mice in each group during
the observation period. (D) Body weight of the mice from each group at the end of the observation
period. Body weight change of each group of mice. The data were presented as the mean ± SD.
p < 0.05 (versus the vehicle control group). The antitumor assay in nude mice was carried out in one
experiment with previous work [30].

2.9. Compound NK3 Inhibited Nuclear Translocation of STAT3

The central role of nuclear translocation in the functioning of transcription factors is
evident. The activation of STAT3 transcription is reliant on its nuclear translocation and
subsequent binding to target DNA [43], so we further investigated the inhibitory effect
of NK3 on preventing STAT3 from translocating to the nucleus by immunofluorescence
staining. To this end, HepG2 cells were treated with 2 µM NK3 for 6 h, and then IL-6
was added to stimulate STAT3 translocation for 30 min. As shown in Figure 9, strong
nuclear fluorescence was observed in IL-6-treated HepG2 cells, indicating p-STAT3 nuclear
translocation. STAT3 nuclear translocation was significantly inhibited in NK3-treated
cells compared with IL-6-stimulated cells, suggesting that NK3 suppressed STAT3 nuclear
translocation.
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Figure 9. NK3 inhibited the nuclear translocation of STAT3. Immunofluorescence images showed
NK3 can inhibit IL-6 from inducing the activation and nuclear translocation of STAT3. Cells were
treated with 2 µM NK3 for 12 h with or without pre-treatment with 50 ng/mL of IL-6 for 30 min.
Then, cells were fixed and stained with anti-p-STAT3 and DAPI before being subjected to Zeiss
LSM700 Confocal Microscope for analysis.

3. Experimental Section
3.1. General Information

All chemicals and solvents were procured from commercial sources and utilized with-
out additional purification unless otherwise specified. Melting points were measured using
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the WRS-IA apparatus without any adjustments. NMR spectra were recorded in DMSO-
d6 or CD3OD on AVANCE AV 400 (Bruker, Switzerland) with TMS as internal standard.
HRMS were measured in FTMS EI or ESI mode, and the mass analyzer of the HRMS was
TOF. Flash column chromatography was performed on silica gel (200−300 mesh).

3.2. General Procedure for the Preparation of Compounds NK1–NK3

Compound 3 (1 mmol) was dissolved in dry CH2Cl2 (15 mL) and stirred in an ice bath.
After it was completely dissolved, oxaloyl chloride (1.5 mmol) was added. After stirring
at room temperature for 6 h, the solvent and excess oxaloyl chloride were evaporated
under reduced pressure. The acylated product was dissolved with dichloromethane,
transferred to a constant pressure burette, drip added into a round-bottom flask containing
primary amines (1 mmol) and triethylamine (0.5 mmol) under an ice bath condition,
stirred at room temperature for 0.5 h, and rotated under pressure to obtain compound 4.
Then, to obtain the crude product, the mixture underwent evaporation under reduced
pressure, followed by further purification through chromatography on silica gel eluted
with petroleum ether/ethylacetate (V:V = 6:1), resulting in the formation of compound 4.
Compound 4 (1 mmol) was dissolved into anhydrous ethanol, then hydrazine hydrate
(3 mmol) was added at room temperature following stirring. The mixture was stirred at
room temperature for a duration of 8 h, after which the solvent was evaporated under
reduced pressure. The crude product was then subjected to purification through silica
gel chromatography eluted with petroleum ether/ethyl acetate (V:V = 3:1) to acquire
compound 5. A combination of Compounds 5 (2 mmol) and 1,4-naphthoquinone (3 mmol)
was introduced into the mixture of triethylamine, DMF, and distilled water, which was
stirred at room temperature for 18 h. The reaction process was detected by TLC. After
the reaction was completed, its pH was adjusted to 3~4 with 1 mol/L hydrochloric acid,
and then the aqueous layer was extracted with water and dichloromethane three times
(30 mL × 3). Following drying with anhydrous sodium sulfate, the solvent was evaporated
under reduced pressure to yield the residue, which was subjected to chromatography on a
silica gel column (using a mixture of petroleum ether and ethyl acetate in a ratio of 4:1) to
isolate compounds 7. Compound 7 (1 mmol) and hydroxylamine hydrochloride (1 mmol)
were added to absolute ethanol (25 mL). The reaction mixture was refluxed at 80 ◦C for
12 h and then diluted with water after evaporating under reduced pressure. The aqueous
layer was extracted with methylene chloride (30 mL × 3), dried over anhydrous sodium
sulfate, and evaporated to give the residue. The residue was chromatographed on silica gel
column (light petroleum/ethyl acetate, V:V = 4:1) to obtain the title compounds NK1–NK3.
The structures of title compounds were verified by 1H NMR, 13C NMR, and HR-MS.

2-((1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino)-N-(2-ethylhexyl)-3-phenylpropanamide
(7a):
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D = −54 (c 0.1, AcOEt). 1H NMR

(400 MHz, CD3OD) δ 7.97–7.85 (m, 2H, H-6,7), 7.68 (m, J = 7.6, 1.2 Hz, 1H, H-8), 7.60 (m,
J = 7.5, 1.2 Hz, 1H, H-5), 7.28 (d, J = 4.4 Hz, 4H, H-28, 29, 31, 32), 7.24–7.19 (m, 1H, H-30),
5.64 (s, 1H, H-3), 4.25 (dt, J = 7.1, 3.7 Hz, 1H, H-14), 3.26–3.10 (m, 3H, H-17, H-26), 3.04 (ddd,
J = 13.5, 6.5, 1.4 Hz, 1H, H-26), 1.36 (m, J = 11.4, 5.8 Hz, 1H, H-18), 1.20 (m, J = 13.2, 6.4 Hz,
8H, H-19,20,21,23), 0.88–0.77 (m, 6H, H-22,24). 13C NMR (101 MHz, CD3OD) δ 184.81 (s,
C-1), 181.90 (s, C-4), 172.23 (s, C-15), 149.03 (s, C-2), 137.58 (s, C-27), 135.79 (s, C-7), 134.33 (s,
C-6), 133.55 (s, C-9), 131.74 (s, C-10), 130.37 (s, C-29,31), 129.70 (s, C-28,32), 128.16 (s, C-8),
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127.31 (s, C-5), 126.81 (s, C-30), 102.17 (s, C-3), 58.89 (s, C-14), 43.61 (s, C-17), 40.42 (s, C-18),
39.34 (s, C-26), 31.85 (s, C-19), 29.88 (s, C-20), 25.00 (s, C-23), 24.00 (s, C-21), 14.42 (s, C-22),
and 11.11 (s, C-24). HR-MS (m/z) (ESI): calcd for C27H33N2O3 [M + H]+: 433.2486; found:
433.2470.

2-((1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino)-N-phenethyl-3-phenylpropanamide
(7b):
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(400 MHz, CD3OD) δ 7.92 (m, J = 8.0, 0.9 Hz, 2H, H-6,7), 7.69 (m, J = 7.6, 1.3 Hz, 1H,
H-8), 7.60 (m, J = 7.5, 1.3 Hz, 1H,H-5), 7.30–7.21 (m, 5H,H-20,21,22,23,24), 7.21–7.13 (m,
3H,H-16,29,31,), 7.11 (t, J = 4.1 Hz, 2H,H-28,32), 7.09–7.04 (m, 1H,H-30), 5.55 (s, 1H,H-3),
4.16 (dd, J = 7.5, 6.4 Hz, 1H,H-14), 3.44 (dd, J = 13.9, 6.6 Hz, 1H,H-26), 3.37 (dd, J = 13.8,
6.7 Hz, 1H,H-26), 3.17 (dd, J = 13.7, 6.1 Hz, 1H,H-17), 3.08 (dd, J = 13.7, 7.8 Hz, 1H,H-17),
2.71 (dd, J = 12.0, 4.9 Hz, 2H,H-18). 13C NMR (101 MHz, CD3OD) δ 184.88 (s, C-1), 181.88 (s,
C-4), 172.18 (s, C-15), 149.04 (s, C-2), 140.12 (s, C-19), 137.61 (s, C-27), 135.79 (s, C-7), 134.36
(s, C-6), 133.56 (s, C-9), 131.77 (s, C-10), 130.36 (s, C-21, 23), 129.77 (s, C-29, 31), 129.70 (s,
C-20, 24), 129.46 (s, C-28, 32), 128.17 (s, C-8), 127.34 (s, C-5), 127.30 (s, C-22), 126.81 (s, C-30),
102.15 (s, C-3), 58.90 (s, C-14), 41.97 (s, C-17), 39.24 (s, C-26), and 36.27 (s, C-18). HR-MS
(m/z) (ESI): calcd for C27H25N2O3 [M + H]+: 425.1860; found: 425.1842.

2-((1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino)-3-phenyl-N-propylpropanamide (7c):
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6.7 Hz, 1H,H-26), 3.17 (dd, J = 13.7, 6.1 Hz, 1H,H-17), 3.08 (dd, J = 13.7, 7.8 Hz, 1H,H-17), 
2.71 (dd, J = 12.0, 4.9 Hz, 2H,H-18).  13C NMR (101 MHz, CD3OD) δ 184.88 (s, C-1), 181.88 
(s, C-4), 172.18 (s, C-15), 149.04 (s, C-2), 140.12 (s, C-19), 137.61 (s, C-27), 135.79 (s, C-7), 
134.36 (s, C-6), 133.56 (s, C-9), 131.77 (s, C-10), 130.36 (s, C-21, 23), 129.77 (s, C-29, 31), 
129.70 (s, C-20, 24), 129.46 (s, C-28, 32), 128.17 (s, C-8), 127.34 (s, C-5), 127.30 (s, C-22), 
126.81 (s, C-30), 102.15 (s, C-3), 58.90 (s, C-14), 41.97 (s, C-17), 39.24 (s, C-26), and 36.27 (s, 
C-18). HR-MS (m/z) (ESI): calcd for C27H25N2O3 [M + H]+: 425.1860; found: 425.1842. 

2-((1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino)-3-phenyl-N-propylpropanamide 
(7c): 

 
Yield: 55.4%. Yellow solid, m.p. 194.8~196.2 °C. [α]20 

D = −38 (c 0.1, AcOEt). 1H NMR 
(400 MHz, DMSO-d6) δ 8.16 (t, J = 5.6 Hz, 1H, H-13), 7.96 (dd, J = 7.6, 0.9 Hz, 1H, H-7), 
7.90 (dd, J = 7.6, 1.0 Hz, 1H, H-6), 7.81 (m, J = 7.5, 1.3 Hz, 1H, H-8), 7.72 (m, J = 7.5, 1.3 Hz, 
1H, H-5), 7.26 (d, J = 4.3 Hz, 4H, H-22, 23, 26, 27), 7.18 (dd, J = 8.6, 4.3 Hz, 1H, H-25), 7.07 
(d, J = 8.2 Hz, 1H, H-16), 5.61 (s, 1H, H-3), 4.23 (dd, J = 14.1, 7.7 Hz, 1H, H-14), 3.14 (dd, J 
= 6.8, 2.9 Hz, 2H, H-17, 21), 3.02 (dd, J = 5.8, 3.3 Hz, 2H, H-17, 21), 1.44 – 1.29 (m, 2H, H-
18), 0.78 (t, J = 7.4 Hz, 3H, H-19). 13C NMR (101 MHz, DMSO-d6) δ 181.74 (s, C-1), 181.05 
(s, C-4), 169.30 (s, C-15), 147.49 (s, C-2), 137.21 (s, C-22), 134.94 (s, C-7), 132.75 (s, C-6), 
132.46 (s, C-9), 130.22 (s, C-10), 129.24 (s, C-24, 26), 128.26 (s, C-23, 27), 126.59 (s, C-8), 
125.98 (s, C-5), 125.38 (s, C-25), 100.80 (s, C-3), 56.96 (s, C-14), 40.47 (s, C-17), 37.23 (s, C-
21), 22.19 (s, C-18), and 11.34 (s, C-19). HR-MS (m/z) (ESI): calcd for C22H22N2O3Na [M + 
Na]+: 385.1523; found: 385.1508. 

(Z)-N-(2-ethylhexyl)-2-((4-(hydroxyimino)-1-oxo-1,4-dihydronaphthalen-2-
yl)amino)-3-phenylpropanamide (NK1): 

 
Yield: 50.5%. Yellow-green solid, m.p. 120.3~121.8 °C. [α]20 

D = −49 (c 0.1, AcOEt). 1H 
NMR (400 MHz, DMSO-d6) 12.30 (s, 1H, H-33), 8.16 (d, J = 7.6 Hz, 1H, H-13), 8.02 (m, J = 
7.8, 3.8 Hz, 2H, H-5,8), 7.73 – 7.63 (m, 1H, H-6), 7.60 – 7.51 (m, 1H, H-7), 7.26 (d, J = 4.3 
Hz, 4H, H-28, 29, 31, 32), 7.18 (m, J = 8.7, 4.3 Hz, 1H, H-30), 6.53 (d, J = 1.0 Hz, 1H, H-3), 
6.16 (dd, J = 8.2, 1.6 Hz, 1H, H-16), 4.26 – 4.12 (m, 1H, H-14), 3.08 (d, J = 6.8 Hz, 2H, H-26), 
3.04 – 3.00 (m, 1H, H-17), 2.94 (m, J = 18.8, 5.7 Hz, 1H, H-17), 1.30 (dd, J = 11.6, 5.8 Hz, 
1H, H-18), 1.20 – 1.07 (m, 8H, H-19, 20, 21, 23), 0.76 (dd, J = 8.1, 5.7 Hz, 6H, H-22, 24). 13C 
NMR (101 MHz, DMSO-d6) δ 179.94 (s, C-1), 170.65 (s, C-15), 145.24 (s, C-4), 140.42 (s, C-
2), 137.51 (s, C-27), 134.00 (s, C-10), 132.85 (s, C-9), 129.15 (s, C-29, 31), 128.90 (s, C-6), 
128.47 (s, C-7), 128.29 (s, C-28, 32), 126.54 (s, C-8), 125.78 (s, C-5), 122.34 (s, C-30), 91.47 (s, 
C-3), 57.30 (s, C-14), 41.49 (s, C-17), 37.79 (s, C-18), 30.37 (s, C-26), 28.40 (s, C-19), 23.59 (s, 
C-20), 22.51 (s, C-23), 13.94 (s, C-21), 13.94 (s, C-22), and 10.77 (s, C-24). HR-MS (m/z) 
(ESI): calcd for C27H34N3O3 [M + H]+: 448.2595; found: 448.2576. Purity: 99.06%. 

(Z)-2-((4-(hydroxyimino)-1-oxo-1,4-dihydronaphthalen-2-yl)amino)-N-phenethyl-3-
phenylpropanamide (NK2): 

Yield: 55.4%. Yellow solid, m.p. 194.8~196.2 ◦C. [α]20
D = −38 (c 0.1, AcOEt). 1H NMR

(400 MHz, DMSO-d6) δ 8.16 (t, J = 5.6 Hz, 1H, H-13), 7.96 (dd, J = 7.6, 0.9 Hz, 1H, H-7), 7.90
(dd, J = 7.6, 1.0 Hz, 1H, H-6), 7.81 (m, J = 7.5, 1.3 Hz, 1H, H-8), 7.72 (m, J = 7.5, 1.3 Hz, 1H,
H-5), 7.26 (d, J = 4.3 Hz, 4H, H-22, 23, 26, 27), 7.18 (dd, J = 8.6, 4.3 Hz, 1H, H-25), 7.07 (d,
J = 8.2 Hz, 1H, H-16), 5.61 (s, 1H, H-3), 4.23 (dd, J = 14.1, 7.7 Hz, 1H, H-14), 3.14 (dd, J = 6.8,
2.9 Hz, 2H, H-17, 21), 3.02 (dd, J = 5.8, 3.3 Hz, 2H, H-17, 21), 1.44–1.29 (m, 2H, H-18), 0.78
(t, J = 7.4 Hz, 3H, H-19). 13C NMR (101 MHz, DMSO-d6) δ 181.74 (s, C-1), 181.05 (s, C-4),
169.30 (s, C-15), 147.49 (s, C-2), 137.21 (s, C-22), 134.94 (s, C-7), 132.75 (s, C-6), 132.46 (s, C-9),
130.22 (s, C-10), 129.24 (s, C-24, 26), 128.26 (s, C-23, 27), 126.59 (s, C-8), 125.98 (s, C-5), 125.38
(s, C-25), 100.80 (s, C-3), 56.96 (s, C-14), 40.47 (s, C-17), 37.23 (s, C-21), 22.19 (s, C-18), and
11.34 (s, C-19). HR-MS (m/z) (ESI): calcd for C22H22N2O3Na [M + Na]+: 385.1523; found:
385.1508.

(Z)-N-(2-ethylhexyl)-2-((4-(hydroxyimino)-1-oxo-1,4-dihydronaphthalen-2-yl)amino)-
3-phenylpropanamide (NK1):
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6.7 Hz, 1H,H-26), 3.17 (dd, J = 13.7, 6.1 Hz, 1H,H-17), 3.08 (dd, J = 13.7, 7.8 Hz, 1H,H-17), 
2.71 (dd, J = 12.0, 4.9 Hz, 2H,H-18).  13C NMR (101 MHz, CD3OD) δ 184.88 (s, C-1), 181.88 
(s, C-4), 172.18 (s, C-15), 149.04 (s, C-2), 140.12 (s, C-19), 137.61 (s, C-27), 135.79 (s, C-7), 
134.36 (s, C-6), 133.56 (s, C-9), 131.77 (s, C-10), 130.36 (s, C-21, 23), 129.77 (s, C-29, 31), 
129.70 (s, C-20, 24), 129.46 (s, C-28, 32), 128.17 (s, C-8), 127.34 (s, C-5), 127.30 (s, C-22), 
126.81 (s, C-30), 102.15 (s, C-3), 58.90 (s, C-14), 41.97 (s, C-17), 39.24 (s, C-26), and 36.27 (s, 
C-18). HR-MS (m/z) (ESI): calcd for C27H25N2O3 [M + H]+: 425.1860; found: 425.1842. 

2-((1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino)-3-phenyl-N-propylpropanamide 
(7c): 

 
Yield: 55.4%. Yellow solid, m.p. 194.8~196.2 °C. [α]20 

D = −38 (c 0.1, AcOEt). 1H NMR 
(400 MHz, DMSO-d6) δ 8.16 (t, J = 5.6 Hz, 1H, H-13), 7.96 (dd, J = 7.6, 0.9 Hz, 1H, H-7), 
7.90 (dd, J = 7.6, 1.0 Hz, 1H, H-6), 7.81 (m, J = 7.5, 1.3 Hz, 1H, H-8), 7.72 (m, J = 7.5, 1.3 Hz, 
1H, H-5), 7.26 (d, J = 4.3 Hz, 4H, H-22, 23, 26, 27), 7.18 (dd, J = 8.6, 4.3 Hz, 1H, H-25), 7.07 
(d, J = 8.2 Hz, 1H, H-16), 5.61 (s, 1H, H-3), 4.23 (dd, J = 14.1, 7.7 Hz, 1H, H-14), 3.14 (dd, J 
= 6.8, 2.9 Hz, 2H, H-17, 21), 3.02 (dd, J = 5.8, 3.3 Hz, 2H, H-17, 21), 1.44 – 1.29 (m, 2H, H-
18), 0.78 (t, J = 7.4 Hz, 3H, H-19). 13C NMR (101 MHz, DMSO-d6) δ 181.74 (s, C-1), 181.05 
(s, C-4), 169.30 (s, C-15), 147.49 (s, C-2), 137.21 (s, C-22), 134.94 (s, C-7), 132.75 (s, C-6), 
132.46 (s, C-9), 130.22 (s, C-10), 129.24 (s, C-24, 26), 128.26 (s, C-23, 27), 126.59 (s, C-8), 
125.98 (s, C-5), 125.38 (s, C-25), 100.80 (s, C-3), 56.96 (s, C-14), 40.47 (s, C-17), 37.23 (s, C-
21), 22.19 (s, C-18), and 11.34 (s, C-19). HR-MS (m/z) (ESI): calcd for C22H22N2O3Na [M + 
Na]+: 385.1523; found: 385.1508. 

(Z)-N-(2-ethylhexyl)-2-((4-(hydroxyimino)-1-oxo-1,4-dihydronaphthalen-2-
yl)amino)-3-phenylpropanamide (NK1): 

 
Yield: 50.5%. Yellow-green solid, m.p. 120.3~121.8 °C. [α]20 

D = −49 (c 0.1, AcOEt). 1H 
NMR (400 MHz, DMSO-d6) 12.30 (s, 1H, H-33), 8.16 (d, J = 7.6 Hz, 1H, H-13), 8.02 (m, J = 
7.8, 3.8 Hz, 2H, H-5,8), 7.73 – 7.63 (m, 1H, H-6), 7.60 – 7.51 (m, 1H, H-7), 7.26 (d, J = 4.3 
Hz, 4H, H-28, 29, 31, 32), 7.18 (m, J = 8.7, 4.3 Hz, 1H, H-30), 6.53 (d, J = 1.0 Hz, 1H, H-3), 
6.16 (dd, J = 8.2, 1.6 Hz, 1H, H-16), 4.26 – 4.12 (m, 1H, H-14), 3.08 (d, J = 6.8 Hz, 2H, H-26), 
3.04 – 3.00 (m, 1H, H-17), 2.94 (m, J = 18.8, 5.7 Hz, 1H, H-17), 1.30 (dd, J = 11.6, 5.8 Hz, 
1H, H-18), 1.20 – 1.07 (m, 8H, H-19, 20, 21, 23), 0.76 (dd, J = 8.1, 5.7 Hz, 6H, H-22, 24). 13C 
NMR (101 MHz, DMSO-d6) δ 179.94 (s, C-1), 170.65 (s, C-15), 145.24 (s, C-4), 140.42 (s, C-
2), 137.51 (s, C-27), 134.00 (s, C-10), 132.85 (s, C-9), 129.15 (s, C-29, 31), 128.90 (s, C-6), 
128.47 (s, C-7), 128.29 (s, C-28, 32), 126.54 (s, C-8), 125.78 (s, C-5), 122.34 (s, C-30), 91.47 (s, 
C-3), 57.30 (s, C-14), 41.49 (s, C-17), 37.79 (s, C-18), 30.37 (s, C-26), 28.40 (s, C-19), 23.59 (s, 
C-20), 22.51 (s, C-23), 13.94 (s, C-21), 13.94 (s, C-22), and 10.77 (s, C-24). HR-MS (m/z) 
(ESI): calcd for C27H34N3O3 [M + H]+: 448.2595; found: 448.2576. Purity: 99.06%. 

(Z)-2-((4-(hydroxyimino)-1-oxo-1,4-dihydronaphthalen-2-yl)amino)-N-phenethyl-3-
phenylpropanamide (NK2): 

Yield: 50.5%. Yellow-green solid, m.p. 120.3~121.8 ◦C. [α]20
D = −49 (c 0.1, AcOEt). 1H

NMR (400 MHz, DMSO-d6) 12.30 (s, 1H, H-33), 8.16 (d, J = 7.6 Hz, 1H, H-13), 8.02 (m,
J = 7.8, 3.8 Hz, 2H, H-5,8), 7.73–7.63 (m, 1H, H-6), 7.60–7.51 (m, 1H, H-7), 7.26 (d, J = 4.3
Hz, 4H, H-28, 29, 31, 32), 7.18 (m, J = 8.7, 4.3 Hz, 1H, H-30), 6.53 (d, J = 1.0 Hz, 1H, H-3),
6.16 (dd, J = 8.2, 1.6 Hz, 1H, H-16), 4.26–4.12 (m, 1H, H-14), 3.08 (d, J = 6.8 Hz, 2H, H-26),
3.04–3.00 (m, 1H, H-17), 2.94 (m, J = 18.8, 5.7 Hz, 1H, H-17), 1.30 (dd, J = 11.6, 5.8 Hz, 1H,
H-18), 1.20–1.07 (m, 8H, H-19, 20, 21, 23), 0.76 (dd, J = 8.1, 5.7 Hz, 6H, H-22, 24). 13C NMR
(101 MHz, DMSO-d6) δ 179.94 (s, C-1), 170.65 (s, C-15), 145.24 (s, C-4), 140.42 (s, C-2), 137.51
(s, C-27), 134.00 (s, C-10), 132.85 (s, C-9), 129.15 (s, C-29, 31), 128.90 (s, C-6), 128.47 (s, C-7),
128.29 (s, C-28, 32), 126.54 (s, C-8), 125.78 (s, C-5), 122.34 (s, C-30), 91.47 (s, C-3), 57.30 (s,
C-14), 41.49 (s, C-17), 37.79 (s, C-18), 30.37 (s, C-26), 28.40 (s, C-19), 23.59 (s, C-20), 22.51
(s, C-23), 13.94 (s, C-21), 13.94 (s, C-22), and 10.77 (s, C-24). HR-MS (m/z) (ESI): calcd for
C27H34N3O3 [M + H]+: 448.2595; found: 448.2576. Purity: 99.06%.

(Z)-2-((4-(hydroxyimino)-1-oxo-1,4-dihydronaphthalen-2-yl)amino)-N-phenethyl-3-
phenylpropanamide (NK2):

Molecules 2022, 27, x FOR PEER REVIEW 14 of 17 
 

 

 
Yield: 49.5%. Yellow-green solid, m.p. 197.2~198.6 °C. [α]20 

D = −43 (c 0.1, AcOEt). 1H 
NMR (400 MHz, DMSO-d6) δ 12.32 (s, 1H, H-33), 8.23 – 8.15 (m, 2H, H-8, 13), 8.04 (dd, J = 
7.9, 1.0 Hz, 1H, H-5), 7.70 – 7.66 (m, 1H, H-6), 7.59 – 7.55 (m, 1H, H-7), 7.28 – 7.22 (m, 4H, 
H-20, 21, 23, 24), 7.21 – 7.17 (m, 4H, H-28, 29, 31, 32), 7.14 (d, J = 6.7 Hz, 2H, H-22, 30), 
6.50 (s, 1H, H-3), 6.16 (d, J = 8.1 Hz, 1H, H-16), 4.13 (dd, J = 13.7, 7.7 Hz, 1H, H-14), 3.35 – 
3.25 (m, 2H, H-26), 3.04 (dd, J = 8.9, 5.5 Hz, 2H, H-17), 2.70 – 2.64 (m, 2H, H-18). 13C NMR 
(101 MHz, DMSO-d6) δ 180.30 (s, C-1), 170.96 (s, C-15), 145.73 (s, C-4), 140.85 (s, C-2), 
139.75 (s, C-19), 137.88 (s, C-27), 134.39 (s, C-10), 133.32 (s, C-9), 129.59 (s, C-21, 23), 
129.39 (s, C-6), 129.12 (s, C-29, 31), 128.91 (s, C-7), 128.74 (s, C-20, 24), 128.70 (s, C-29, 31), 
126.98 (s, C-8), 126.51 (s, C-5), 126.23 (s, C-22), 122.78 (s, C-30), 91.71 (s, C-3), 57.71 (s, C-
14), 39.32 (s, C-17), 38.08 (s, C-26), and 35.57 (s, C-18). HR-MS (m/z) (ESI): calcd for 
C27H26N3O3 [M + H]+: 440.1969; found: 440.1955. Purity: 96.97%. 

(Z)-2-((4-(hydroxyimino)-1-oxo-1,4-dihydronaphthalen-2-yl)amino)-3-phenyl-N-
propylpropanamide (NK3): 

 
Yield: 30.2%. Yellow-green solid, m.p. 180.0~181.5 °C. [α]20 

D = −34 (c 0.1, AcOEt). 1H 
NMR (400 MHz, DMSO-d6) δ 12.31 (s, 1H, H-28), 8.16 (t, J = 6.4 Hz, 2H, H-8, 13), 8.06 – 
7.98 (m, 1H, H-5), 7.72 – 7.64 (m, 1H, H-6), 7.59 – 7.52 (m, 1H, H-7), 7.34 – 7.23 (m, 4H, 23, 
24, 26, 27), 7.18 (ddd, J = 6.6, 5.0, 3.1 Hz, 1H, H-25), 6.51 (s, 1H, H-3), 6.16 (d, J = 8.0 Hz, 
1H, H-16), 4.16 (q, J = 6.9 Hz, 1H, H-14), 3.09 (d, J = 6.7 Hz, 2H, H-21), 3.02 (dd, J = 12.7, 
6.7 Hz, 2H, H-17), 1.43 – 1.31 (m, 2H, H-18), 0.78 (t, J = 7.4 Hz, 3H, H-19). 13C NMR (101 
MHz, DMSO-d6) δ 179.91 (s, C-1), 170.33 (s, C-15), 145.27 (s, C-4), 140.40 (s, C-2), 137.42 
(s, C-22), 133.94 (s, C-10), 132.89 (s, C-9), 129.19 (s, C-24, 26), 128.95 (s, C-6), 128.46 (s, C-
7), 128.31 (s, C-23, 27), 126.57 (s, C-25), 125.81 (s, C-8), 122.35 (s, C-5), 91.26 (s, C-3), 57.16 
(s, C-14), 40.43 (s, C-17), 37.73 (s, C-21), 22.26 (s, C-18), and 11.35 (s ,C-19). HR-MS (m/z) 
(ESI): calcd for C22H23N3O3Na [M + Na]+: 400.1632; found: 400.1618. Purity: 98.40%. 

3.3. Biological Assays 
All adopted biological experimental procedures of enzymatic assays, SPR experi-

ments, molecular docking, cell viability assay, immunofluorescence staining, and in vivo 
antitumor efficacy were performed according to our previous work [30, 37]. 

4. Conclusions 
In summary, we have presented three novel 2-amino-1,4-naphthoquinone amide-

oxime derivatives as dual IDO1/STAT3 inhibitors. As a result, compound NK3 exhibited 
the highest potency, with an IC50 value of 0.06 μM in the enzymatic assay against IDO1. 
Our findings indicated that the quinone oxime core of compound NK3 played a crucial 
role in inhibiting IDO1, and the oxygen atom of the oxime group could serve as the iron 
binding group. Additionally, compound NK3 showed strong binding affinities toward 

Yield: 49.5%. Yellow-green solid, m.p. 197.2~198.6 ◦C. [α]20
D = −43 (c 0.1, AcOEt). 1H

NMR (400 MHz, DMSO-d6) δ 12.32 (s, 1H, H-33), 8.23–8.15 (m, 2H, H-8, 13), 8.04 (dd, J = 7.9,
1.0 Hz, 1H, H-5), 7.70–7.66 (m, 1H, H-6), 7.59–7.55 (m, 1H, H-7), 7.28–7.22 (m, 4H, H-20, 21,
23, 24), 7.21–7.17 (m, 4H, H-28, 29, 31, 32), 7.14 (d, J = 6.7 Hz, 2H, H-22, 30), 6.50 (s, 1H, H-3),
6.16 (d, J = 8.1 Hz, 1H, H-16), 4.13 (dd, J = 13.7, 7.7 Hz, 1H, H-14), 3.35–3.25 (m, 2H, H-26),
3.04 (dd, J = 8.9, 5.5 Hz, 2H, H-17), 2.70–2.64 (m, 2H, H-18). 13C NMR (101 MHz, DMSO-d6)
δ 180.30 (s, C-1), 170.96 (s, C-15), 145.73 (s, C-4), 140.85 (s, C-2), 139.75 (s, C-19), 137.88 (s,
C-27), 134.39 (s, C-10), 133.32 (s, C-9), 129.59 (s, C-21, 23), 129.39 (s, C-6), 129.12 (s, C-29,
31), 128.91 (s, C-7), 128.74 (s, C-20, 24), 128.70 (s, C-29, 31), 126.98 (s, C-8), 126.51 (s, C-5),
126.23 (s, C-22), 122.78 (s, C-30), 91.71 (s, C-3), 57.71 (s, C-14), 39.32 (s, C-17), 38.08 (s, C-26),
and 35.57 (s, C-18). HR-MS (m/z) (ESI): calcd for C27H26N3O3 [M + H]+: 440.1969; found:
440.1955. Purity: 96.97%.

(Z)-2-((4-(hydroxyimino)-1-oxo-1,4-dihydronaphthalen-2-yl)amino)-3-phenyl-N-
propylpropanamide (NK3):
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In summary, we have presented three novel 2-amino-1,4-naphthoquinone amide-
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Yield: 30.2%. Yellow-green solid, m.p. 180.0~181.5 ◦C. [α]20
D = −34 (c 0.1, AcOEt). 1H

NMR (400 MHz, DMSO-d6) δ 12.31 (s, 1H, H-28), 8.16 (t, J = 6.4 Hz, 2H, H-8, 13), 8.06–7.98
(m, 1H, H-5), 7.72–7.64 (m, 1H, H-6), 7.59–7.52 (m, 1H, H-7), 7.34–7.23 (m, 4H, 23, 24, 26, 27),
7.18 (ddd, J = 6.6, 5.0, 3.1 Hz, 1H, H-25), 6.51 (s, 1H, H-3), 6.16 (d, J = 8.0 Hz, 1H, H-16), 4.16
(q, J = 6.9 Hz, 1H, H-14), 3.09 (d, J = 6.7 Hz, 2H, H-21), 3.02 (dd, J = 12.7, 6.7 Hz, 2H, H-17),
1.43–1.31 (m, 2H, H-18), 0.78 (t, J = 7.4 Hz, 3H, H-19). 13C NMR (101 MHz, DMSO-d6) δ
179.91 (s, C-1), 170.33 (s, C-15), 145.27 (s, C-4), 140.40 (s, C-2), 137.42 (s, C-22), 133.94 (s,
C-10), 132.89 (s, C-9), 129.19 (s, C-24, 26), 128.95 (s, C-6), 128.46 (s, C-7), 128.31 (s, C-23,
27), 126.57 (s, C-25), 125.81 (s, C-8), 122.35 (s, C-5), 91.26 (s, C-3), 57.16 (s, C-14), 40.43 (s,
C-17), 37.73 (s, C-21), 22.26 (s, C-18), and 11.35 (s, C-19). HR-MS (m/z) (ESI): calcd for
C22H23N3O3Na [M + Na]+: 400.1632; found: 400.1618. Purity: 98.40%.

3.3. Biological Assays

All adopted biological experimental procedures of enzymatic assays, SPR experiments,
molecular docking, cell viability assay, immunofluorescence staining, and in vivo antitumor
efficacy were performed according to our previous work [30,37].

4. Conclusions

In summary, we have presented three novel 2-amino-1,4-naphthoquinone amide-
oxime derivatives as dual IDO1/STAT3 inhibitors. As a result, compound NK3 exhibited
the highest potency, with an IC50 value of 0.06 µM in the enzymatic assay against IDO1.
Our findings indicated that the quinone oxime core of compound NK3 played a crucial role
in inhibiting IDO1, and the oxygen atom of the oxime group could serve as the iron binding
group. Additionally, compound NK3 showed strong binding affinities toward IDO1 and
STAT3 through SPR analysis. Accordingly, the in vivo immunocompetent BALB/c mice and
nude mice model indicated that compound NK3 remarkably reduced tumor growth to a
significant extent, signifying the multimodal action of anticancer and immuno-modulatory
activity. Moreover, compound NK3 significantly suppressed STAT3 nuclear translocation.
Therefore, compound NK3 could be a promising dual IDO1/STAT3 inhibitor for the
development of novel targeted antitumor drugs.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules28166135/s1. Figures S1–S21. 1H-NMR, 13C-NMR, HRMS,
and HPLC spectra of all new compounds.
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