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Abstract: Clinically, magnetic resonance imaging (MRI) often uses contrast agents (CAs) to improve
image contrast, but single-signal MRI CAs are often susceptible to calcification, hemorrhage, and
magnetic sensitivity. Herein, iron acetylacetone and gadolinium acetylacetone were used as raw
materials to synthesize a T1–T2 dual-mode imaging gadolinium-doped iron oxide (GdIO) nanocluster.
Moreover, to endow the nanoclusters with targeting properties and achieve antitumor effects, the
cyclic Arg-Gly-Asp (cRGD) peptide and docetaxel (DTX) were attached to the nanocluster surface,
and the efficacy of the decorated nanoclusters against pancreatic cancer was evaluated. The final
synthesized material cRGD-GdIO-DTX actively targeted αvβ3 on the surface of Panc-1 pancreatic
cancer cells. Compared with conventional passive targeting, the enrichment of cRGD-GdIO-DTX
in tumor tissues improved, and the diagnostic accuracy was significantly enhanced. Moreover, the
acidic tumor microenvironment triggered the release of DTX from cRGD-GdIO-DTX, thus achieving
tumor treatment. The inhibition of the proliferation of SW1990 and Panc-1 pancreatic cancer cells
by cRGD-GdIO-DTX was much stronger than that by the untargeted GdIO-DTX and free DTX
in vitro. In addition, in a human pancreatic cancer xenograft model, cRGD-GdIO-DTX considerably
slowed tumor development and demonstrated excellent magnetic resonance enhancement. Our
results suggest that cRGD-GdIO-DTX has potential applications for the precise diagnosis and efficient
treatment of pancreatic cancer.

Keywords: T1–T2; DTX; MRI; drug delivery; pancreatic cancer

1. Introduction

Pancreatic cancer is the digestive tract malignancy with the worst prognosis, with a
five-year survival rate of 5% to 9% [1]. Pancreatic cancer fatalities and newly diagnosed
cases both increased in 2020, reaching 495,773 cases and 466,003 deaths worldwide, re-
spectively [2], which has made this disease a severe threat to human health. The key to
overcoming cancer is precise diagnosis and early treatment [3,4]. Due to its noninvasive na-
ture, lack of ionizing radiation, and excellent resolution for soft tissue, magnetic resonance
imaging (MRI) has garnered much interest in recent years for clinical diagnosis, particu-
larly for malignant tumors [5–7]. It would therefore be advantageous to utilize contrast
agents (CAs), which are frequently used to enhance the MRI signals in diseased tissue to
distinguish it from normal tissue by finding pathological abnormalities [8,9]. Currently,
the most widely used CAs in the clinic are the T1 CAs Magnevist [10] and the T2 CAs
Feridex [11]. However, the majority of clinical MRI CAs are nontargeting substances and
extremely prone to excretion out of the body and passive and nonspecific distribution into
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the tissue’s interstitial space, which might occasionally lead to unwanted MRI contrast
enhancement [12]. Therefore, it is possible that new CAs may be developed in the future,
which might lead to more precise accumulation in diseased tissue and aid in the collec-
tion of more precise diagnostic data [13]. Arg-Gly-Asp (RGD) is a site at which integrin
αvβ3 recognizes its ligand, and this sequence can specifically recognize overexpressed
αvβ3 in pancreatic cancer cells [14]. Hence, utilization of this sequence could improve
tumor targeting. Therefore, the targeted cRGD peptide would be good candidates for
αvβ3-overexpressing tumors, including pancreatic cancer.

As previously mentioned [15,16], T1 CAs mostly reduce the spin-lattice relaxation
time of protons, whereas T2 CAs primarily speed up the attenuation of the spin–spin
relaxation time of water molecules. However, in vivo single-mode T1 or T2 magnetic
resonance imaging is very prone to interference from calcification, hemorrhage, or metal
deposits, which greatly restrict their ability to accurately diagnose diseased tissue [17]. Due
to the benefits of integrating T1 and T2 CAs, the creation of T1–T2 dual-mode MRI CAs
has recently received much attention [18]. It has been demonstrated that T1–T2 dual-mode
MRI CAs may considerably increase the detection accuracy by providing complementary
information about a lesion for self-confirmation and offering error-free MR images [19,20].

Docetaxel (DTX) is a compound synthesized by the structural modification of a com-
pound extracted from yew berries and needles, which is the most promising drug in from
yew trees, and has received FDA approval in the United States for the treatment of solid
tumors such as cervical cancer, breast cancer and a range of other cancerous tumors [21].
Similar to its counterpart paclitaxel, DTX interrupts cell division by stabilizing the micro-
tubule structure to inhibit the development of tumor cells and promote apoptosis [22]. DTX
has effective anticancer properties, but its hydrophobicity has restricted its practical use
for intravenous administration [23]. Tween 80 is typically used to increase the solubility of
DTX; however, it has the potential to induce significant neurotoxicity and hypersensitivity
reactions [24]. Therefore, there is an urgent need to develop a new mode of DTX delivery
with high water solubility, good selective drug distribution, and few side effects. In addition
to helping anticancer medications reach their target tissues, nanocarriers can reduce side
effects, enhance the antitumor benefits and improve biocompatibility with long-lasting
stability [25–27].

In this study, we synthesized a novel multifunctional gadolinium-doped iron oxide
nanocluster (GdIO) that can be used for T1–T2 imaging with RGD receptor specificity for
magnetic resonance imaging-targeted DTX delivery. The results showed that cRGD-GdIO-
DTX can bind specifically to the αvβ3 receptor on the surface of pancreatic cancer cells,
degrade rapidly under the reduced pH conditions of the tumor microenvironment, and
release the loaded DTX. In a human pancreatic cancer xenograft model, systemic delivery of
cRGD-GdIO-DTX dramatically restricted the development of tumors and showed excellent
MR enhancement.

2. Results and Discussion
2.1. Synthesis and Characterization

Nanomaterials can effectively integrate diagnostic and therapeutic processes. In this
study, we synthesized a hybrid nanocarrier for magnetic resonance imaging and drug
delivery. Scheme 1 illustrates the synthesis of cRGD-GdIO-DTX. First, GdIO nanoclusters
were synthesized. Subsequently, the surface of the nanoclusters was modified using
PEG600 diacid (COOH-PEG600-COOH). Next, cRGD and DTX were chemically linked to
the nanocluster surface. The transmission electron microscopy (TEM) images in Figure 1a,
b show that the nanoclusters were evenly dispersed in water without obvious aggregation
with an average size of 73.23 ± 1.62 nm. As measured by high-resolution transmission
electron microscopy (HRTEM), the separation of two neighboring planes of the nanocluster
was 0.303 nm, corresponding to the (220) crystal plane of cubic magnetic Fe3O4, indicating
that the main crystal structure of the nanocluster is Fe3O4. However, compared with the
standard (220) crystal plane of 0.296 nm, the crystal plane spacing was slightly larger. This
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is probably because Gd3+ occupies the Fe2+ cube [28]. The elements in the nanocluster were
analyzed using energy-dispersive X-ray spectroscopy (EDS) mapping scans. As shown in
Figure 1e, the nanoclusters are mainly composed of Fe and Gd, and Gd is evenly distributed
in the nanoclusters. The Fe/Gd ratio was approximately 4/1, as determined by inductively
coupled plasma–mass spectrometry (ICP–MS), which was the same ratio as that of the
precursor before the reaction.
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Figure 1. (a) TEM and (c) HRTEM images of GdIO; (b) Size distribution histograms; (d) EDS spectrum
of GdIO; inset: table showing the quantification of the respective element. (e) EDS elemental mapping
of GdIO.

Fe3O4 and GdIO were synthesized by the same method, and X-ray diffraction (XRD)
was used to further analyze the phase structure of the nanoclusters (Figure 2). XRD analysis
shows that the diffraction peaks of Fe3O4 and GdIO corresponded to the standard card of
ferric oxide (JCPDS No. 99-0073). In addition, there were no other diffraction peaks in the
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GdIO sample, indicating that the sample is not a simple physical mixture of Gd2O3 and
Fe3O4, and Gd2+ may occupy the tetrahedral or octahedral position of Fe3O4. Compared to
Fe3O4, the diffraction peak of GdIO shifted slightly to the left, which is due to the larger
radius of the Gd ion leading to an increase in crystal plane spacing [29], a result that is
consistent with earlier outcomes.
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To achieve tumor targeting and therapeutic effects, a PEG600 diacid modification was
made on the surface of the nanoclusters to allow cRGD and DTX binding. Subsequently,
sample preparation was verified by different methods. As shown in Figure 3b, the GdIO
nanoclusters have a high positive potential, but the zeta potential of PEG-GdIO (pGdIO)
decreased to 20.93 mV due to the successful incorporation of PEG600 diacid with the COO-
group. However, the zeta potential of cRGD-GdIO-DTX sharply increased again, which
may be because many negative carboxyl groups were consumed in the process of cRGD,
DTX and pGdIO conjugation. Moreover, cRGD and DTX provided positively charged
amine and carbonyl groups, respectively. The hydrodynamic diameters of GdIO, pGdIO
and cRGD-GdIO-DTX were measured in deionized water (Figure 3a). With continuous
modification of the GdIO surface, the hydrodynamic diameter also increased, and the
hydrodynamic diameters were 102, 149, and 212 nm. Additionally, the particle size mea-
sured by dynamic light scattering (DLS) was larger than that measured by TEM. This is
most likely because of the hydration layer and small amount of aggregation that nanoclus-
ters experience in aqueous environments [30]. Figure 3c shows the infrared spectra of
GdIO, pGdIO, and cRGD-GdIO-DTX. The absorption peaks in all samples at 570 cm−1 are
due to the stretching vibration of the Fe-O bond from the iron oxides. New absorption
peaks appeared in pGdIO at 1097 and 2882 cm−1, which were C-O-C and C-H stretch-
ing vibrations attributed to PEG600 diacid, respectively [31,32], indicating the successful
modification of PEG600 diacid. The vibration band of the carboxylic acid group of PEG
is at about 1730 cm−1 [33]. When carboxylic acid interacts with metal ions, the carboxylic
acid functional group is transformed into carboxylate, and the absorption peak moves
towards the lower wavenumber of 1647 cm−1 [34]. In addition, the absorption peaks at
1154 and 1091 cm−1 in the cRGD-GdIO-DTX spectrum were attributed to the C-O stretch-
ing vibration of ester in DTX, and the absorption peak at 1317 cm−1 was attributed to
the symmetric angular variable vibration of CH3. These results indicated the successful
modification with the therapeutic group DTX. It is worth noting that DTX was reacted
with the free carboxyl by an esterification reaction and only the C2 hydroxyl group could
react through ester bonds because of the steric effect according to the reference [35]. The
absorption peaks at 1203 cm−1 and 1635 cm−1 are attributed to C-N stretching vibration
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and amine groups variable angle vibration in cRGD, respectively, which indicates the
successful modification of the targeted group cRGD. These results confirm the successful
preparation of cRGD-GdIO-DTX.
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2.2. Drug Loading and Release Behavior

The microenvironment of tumor cells is weakly acidic [36,37]. Therefore, the DTX
that is connected to GdIO is released in response to pH, which helps kill tumor cells more
efficiently. We calculated that the drug loading rate of DTX was 7.87% using UV–vis
spectroscopy. Subsequently, we investigated the DTX release behavior from GdIO-DTX
in neutral and weakly acidic phosphate buffers using UV–vis spectroscopy (230 nm). The
DTX release curve is shown in Figure 3d. GdIO-DTX released only a small amount of DTX
at pH = 7.4, while significantly more DTX was released in the weakly acidic environment
at pH = 5.5. This typical pH-dependent release can decrease DTX release in a neutral
environment, prolong drug circulation in the blood, and promote the release of DTX at the
tumor site, thus reducing the negative side effects to normal tissues.
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2.3. Magnetic Properties and Relaxivity of the Nanoclusters

The outstanding MRI performance of the nanoclusters was largely due to their
magnetism. Therefore, a vibrating sample magnetometer (VSM) was used to exam-
ine the magnetic properties of GdIO. According to the field-dependent magnetization
curves (Figure 4c), GdIO exhibited saturation magnetization with a value of approximately
25.4 emu/g at 300 K, indicating that it was capable of significantly reducing the T2 relax-
ation time of water molecules [38,39]. Additionally, there was no discernible coercive force
or remanence at 300 K, demonstrating that GdIO exhibited exceptional superparamag-
netism. Additionally, transverse and longitudinal relaxation rates play significant roles in
determining how well CAs contrast on MRI [40]. A 0.5 T NMI 20 Analyst NMR instru-
ment was then used to study the relaxivity of GdIO. The longitudinal (r1) and transverse
(r2) relaxation rates of GdIO were 1.114 mM−1s−1 and 173.533 mM−1s−1, respectively
(Figure 4a,b). These findings showed that GdIO has outstanding magnetic characteristics
and is a good dual-mode MRI CAs candidate.
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different periods.

2.4. Biocompatibility and Biotoxicity

To be useful for biomedical applications, these nanoclusters must have favorable
biocompatibility, colloidal stability and lower biotoxicity. In this work, the colloidal stability
of cRGD-GdIO-DTX was studied by determining the changes in the hydrodynamic size
of cRGD-GdIO-DTX in deionized water. As shown in Figure 4d, there was no significant
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change in the hydrodynamic size of cRGD-GdIO-DTX in deionized water over one week,
indicating that cRGD-GdIO-DTX has good colloidal stability. In addition, the release
of free Gd3+ from the nanoclusters is an important factor to consider. As previously
reported [41,42], the deposition of gadolinium ions in the body may lead to nephrogentic
systemic fibrosis, which is very dangerous to the human body, especially in patients with
acute renal failure. Based on this, we measured the leakage of the Gd element by ICP-OES
analysis. The results show that the release of Gd is less than 2% after 1 day and 6 days
of storage (Figure S1, Supplementary Materials), indicating that Gd has good chemical
stability in nanoclusters [13]. The CCK-8 assay was used to investigate in vitro cytotoxicity.
As shown in Figure 5a, the viabilities of Panc-1 and H6C7 cells were over 80% even after
treatment with 200 mg/mL pGdIO, demonstrating that pGdIO had low cytotoxicity. The
hemocompatibility of pGdIO was then evaluated using a hemolysis assay. As shown in
Figure 5b, at all concentrations, the hemolysis rate was under 5%, satisfying the hemolysis
requirement for biomaterials [43,44].
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Figure 5. (a) Viability of Panc-1 cells and H6C7 cells upon treatment with pGdIO for 24 h;
(b) hemolytic efficiency of pGdIO to human red blood cells; (c) weight changes of mice after treatment
for a week, with data expressed as means ± SD (n = 5); (d) blood chemistry results for mice injected
with pGdIO and 0.9% Nacl solution (n = 3); (e) H&E staining of organs dissected from mice upon
treatment with 0.9% NaCl and pGdIO solution (scale: 50 µm).
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Healthy Balb/c mice were injected with pGdIO solution (5 mg/kg) or 0.9% NaCl
solution. The aforementioned animals were then observed for seven days to assess the
in vivo biotoxicity of the pGdIO nanoclusters. The body weights of the nude mice grew
marginally in both the saline and pGdIO groups, as seen in Figure 5c. Additionally, blood
tests revealed that the mice given pGdIO injections did not exhibit any overt signs of
nephrotoxicity or hepatotoxicity (Figure 5d). The primary organs of the pGdIO-treated
animals, such as the heart, liver, spleen, lung, and kidney, did not show any pathological
alterations, according to the findings of the H&E staining experiment (Figure 5e). These
findings point to pGdIO having good biocompatibility and the potential for extensive use.

2.5. Cellular Uptake of the Nanoclusters In Vitro

Effective tumor imaging and therapy depend heavily on the effective cellular uptake
of MRI nanoagents. Therefore, an investigation of the cellular uptake of GdIO-DTX and
cRGD-GdIO-DTX was undertaken. In this study, the cellular uptake of the nanoclusters
was directly observed using confocal laser scanning microscopy (CLSM) with Cy5.5-labeled
GdIO-DTX and cRGD-GdIO-DTX. As shown in Figure 6, strong red fluorescence was
observed in Panc-1 cells after GdIO-DTX treatment, demonstrating that GdIO-DTX could
efficiently enter cancer cells. In comparison to GdIO-DTX, the cells treated with cRGD-
GdIO-DTX displayed more intense red fluorescence, indicating that cRGD-GdIO-DTX had
superior cellular uptake. Then, Image-Pro Plus and GraphPad Prism 8 were used to obtain
and analyze the integrated optical density (IOD) of each group of cells. The results also
showed that the signal intensity of the targeted group was significantly higher than that
of the non-targeted group (Figure S2). Integrin αvβv can be particularly highly expressed
by Panc-1 cells, and the cyclic RGD peptide can preferentially bind this integrin [45]. As a
result, the targeting with cyclic RGD encourages Panc-1 cells to take up cRGD-GdIO-DTX.
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2.6. Antitumor Effect of the Nanoclusters In Vitro

Intracellular cRGD-GdIO-DTX can release DTX. Then, it can impede cell division and
arrest cells in G2/M phase, resulting in cancer cell death [46]. As shown in Figure 7a,b,
the therapeutic effect of cRGD-GdIO-DTX was assessed using SW1990 and Panc-1 cells.
Notably, all groups showed a considerable increase in Panc-1 and SW1990 cell mortality
as the DTX concentration increased. More importantly, the mortality in the cRGD-GdIO-
DTX group was considerably greater than that in the nontargeted GdIO-DTX group at
equal doses of DTX, indicating that cRGD-GdIO-DTX has a better ability to inhibit tumor
proliferation and could kill pancreatic cancer cells in a targeted way. Subsequently, an
apoptosis experiment was performed, and the flow cytometry results are presented in
Figure 7c–e. The apoptotic rates of Panc-1 cells treated with PBS, GdIO-DTX, and cRGD-
GdIO-DTX were 0.74%, 5.27%, and 16.33%, respectively. Compared to GdIO-DTX, cRGD-
GdIO-DTX induced more Panc-1 cell apoptosis. Accordingly, the successful conjugation
between the targeting moiety cRGD and the nanoclusters enhanced nanocluster targeting
and efficiently increased the apoptosis of pancreatic cancer cells, which reinforces the
therapeutic effect of DTX.
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cRGD-GdIO-DTX at different DTX concentrations; (c–e) the apoptosis rates of Panc-1 cells co-cultured
with PBS, GdIO-DTX and cRGD-GdIO-DTX nanoclusters for flow cytometry apoptosis data.

2.7. Antitumor Effect of the Nanoclusters In Vivo

The outstanding efficacy of cRGD-GdIO-DTX in vitro inspired us to further explore
its antitumor ability in vivo. The tumor volumes of cancer-bearing mice were recorded
after the intravenous injection of cRGD-GdIO-DTX at a dose of 2 mg/kg. As shown in
Figure 8a, DTX and GdIO-DTX evidently restrained the tumor volume in comparison
with the saline group. The targeting ligand accelerated the accumulation of cRGD-GdIO-
DTX in the tumor site, which in turn strengthened the antitumor activity, which is why
cRGD-GdIO-DTX demonstrated the strongest tumor inhibition. Moreover, as shown in
Figure 8b, the nude mice in all groups maintained normal weight gain, and no significant
abnormalities were observed.
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At the end of treatment, some of the tumor tissues were cut into slices and analyzed
further using H&E staining and a TUNEL assay. As shown in Figure 9, the nude mice
treated with cRGD-GdIO-DTX had the fewest cancer cells but higher ratios of apoptosis
and necrosis than the other treatment groups. All of the above results suggest that the
binding of cRGD can help these nanoclusters target tumors more efficiently and produce
more effective antitumor effects.
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2.8. MR Imaging In Vivo

As we mentioned earlier, GdIO exhibits outstanding magnetism, which motivated us
to learn more about its MRI contrast capabilities. Using a 3.0 T MRI Scanner, we assessed the
in vivo magnetic resonance imaging capabilities of cRGD-GdIO-DTX. Following injections
of GdIO-DTX and cRGD-GdIO-DTX at a dose of 5 mg/kg, T1-weighted images (T1WIs)
and T2-weighted images (T2WIs) of nude mice in the coronal plane were obtained at
various intervals. As shown in Figure 10, the T1WIs of the tumor tissue gradually became
brighter after injection of GdIO-DTX. Compared to GdIO-DTX, the T1WIs of the tumors
from nude mice injected with cRGD-GdIO-DTX were evidently brighter, which could be
attributed to the outstanding targeting ability of the nanocluster. Additionally, the T2WIs
of the tumors from nude mice that had been treated with various nanoclusters darkened
progressively, which was similar to the T1WI results. These findings showed that the
systemic administration of cRGD-GdIO-DTX can hasten early tumor detection and allow
precise treatment. It is therefore possible to draw the conclusion that cRGD-GdIO-DTX is a
potential candidate with which accurate and effective cancer theranostics can be achieved.
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3. Materials and Methods
3.1. Materials

The following reagents were purchased from Aladdin Co. (Shanghai, China) and used
as received: Fe(acac)3 (98%), ethylene glycol (EG, 99%), Gd(acac)3 (99%), triethanolamine
(TEA, 98%), diethylene glycol (DEG, 99%), dimethyl sulfoxide (DMSO), N,N′-dicyclo
hexylcarbodiimide (DCC), polyvinyl pyrrolidone (PVP), 4-dimethylaminopyridine (DMAP,
99%), and dichloromethane (98%). The cyclic RGD peptide and Cy5.5 were purchased from
Zhongxiang Biotechnology Co, Ltd. (Xian, China). PEG600 diacid (COOH-PEG-COOH)
and DTX were purchased from Macklin Co., Ltd. (Shanghai, China). The CCK-8 kit, DAPI
staining solution, penicillin–streptomycin solution, and trypsin cell digestion solution were
purchased from Beyotime (Shanghai, China). The Annexin V-FITC/PI apoptosis assay kit
was purchased from KGI Bio (Jiangsu, China).
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3.2. Synthesis of RGD-GdIO-DTX
3.2.1. Synthesis of GdIO Nanoclusters

The GdIO nanoclusters were synthesized using Si’s method with minor modifica-
tions [38]. Briefly, 0.05 g of Gd(acac)3 was added to 10 mL of EG and 20 mL of DEG, and
the mixture was stirred continuously at 80 ◦C for 40 min. To this mixture was added 1 g of
PVP, and stirring continued for an additional 45 min. Then, 3 mL of TEA was added to the
above solution, which was stirred for 2 h. Finally, Teflon-lined stainless steel autoclaves
were filled with the prepared solution and maintained at 220 ◦C for 30 h. The black product
was collected and repeatedly rinsed with ethanol and deionized water and centrifuged.

3.2.2. Synthesis of pGdIO Nanoclusters

Forty milligrams of GdIO and 0.6 g of PEG600 diacid were dispersed in deionized water.
After ultrasonic shock for 45 min, stirring was continued for 24 h. Afterward, PEG-modified
GdIO was purified using a dialysis bag, and pGdIO was obtained by freeze-drying the
purified suspension.

3.2.3. Synthesis of cRGD-GdIO-DTX

Twenty milligrams of pGdIO was dissolved in 10 mL of methylene chloride, followed
by the addition of 11.2 mg of DCC, 5.9 mg of DMAP, 13.4 mg of DTX, and 7 mg of cRGD.
The concoction was stirred for 18 h in the dark. The products were then obtained by
centrifugation. Finally, the unreacted reagents were removed using the deionized water
repeated brush protocol.

3.3. Characterization

Transmission electron microscopy (TEM, FEI TF20, Waltham, MA, USA) was used
to examine the morphology and structure of the samples. The size distribution and zeta
potential of the nanoclusters were measured using a Malvern nanoparticle size analyzer
(Nano-ZS90) instrument (Worcestershire, UK). The crystal structure of the sample was
analyzed using X-ray diffraction (XRD, Bruker D8 Advance, Waltham, MA, USA). The
interactions between the samples were analyzed using Fourier transform infrared (FT-IR)
spectroscopy (FT-IR 6800 JASCO, Marseille, France) in the range of 450–4000 cm−1.

3.4. Drug Loading and Release Behavior

The loading rate of the drug was measured by UV–Vis spectroscopy. In summary, 1 mL
of DMSO was used to dissolve the weighed drugs, and the UV–Vis spectra were recorded.
The quantity of unencapsulated DTX was estimated by measuring the absorbance at 230 nm.
Previously, a calibration curve for DTX in DMSO was created in the concentration range of
1–50 µg/mL. The following equations was used to compute drug loading (DLC) based on
differences in the optical absorbance data and molar concentration [40].

DLC (%) =
weight of the drug in the CSNPs

weight of the CSNPs
× 100%

The nanoclusters were dispersed in 4 mL of PBS buffer (pH 7.4 or 5.5) and transferred
to dialysis bags, which were then placed on a magnetic stirrer at 37 ◦C. Then, samples from
each solution were taken at 0, 4, 8, 12, 16, 20, and 24 h, and the absorption was measured at
230 nm to calculate the release of DTX.

3.5. Magnetic Properties and Relaxivity of the Nanoclusters

A vibration sample magnetometer (VSM, Lakeshore 7404, Westerville, OH, USA) was used
to construct the hysteresis regression line of the sample to observe its magnetic properties.

The T1 and T2 relaxation rates at different Gd concentrations (0.02065, 0.04129, 0.08258,
0.16517, and 0.33033 mM) and Fe concentrations (0.03491, 0.06981, 0.13963, 0.27925, and
0.5585 mM) were measured by a 0.5 T NMI 20 Analyst NMR system (Niumag, Suzhou, China).
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3.6. Biocompatibility and Biotoxicity

The stability of the nanoclusters was evaluated by observing the variation in hydrated
particle size of the nanoclusters in deionized water over a 7-day period. Briefly, the
probe was dissolved in deionized water, and the hydrated particle size was measured and
recorded after 1, 3, 5, and 7 days.

Samples were dissolved in different aqueous media (deionized water, normal saline,
and phosphate buffered saline (PBS)) with a concentration of 1 mg/mL before analysis. Gd
content in the cRGD-GdIO-DTX was determined by a Leeman Prodigy inductively coupled
plasma-optical emission spectrometer (ICPOES) (Mason, OH, USA). The samples were
digested by aqua regia and diluted with water before measurements.

Biological toxicity was analyzed using CCK-8, H&E staining, hemolysis assays, and
blood tests. Briefly, cells were inoculated into 96-well plates at a density of 6 × 103 cells
per well and then cultured in RPMI 1640 containing 1% Streptomyces penicillin and 10%
fetal bovine serum at 37 ◦C under 5% CO2 for 24 h. Then, various concentrations of pGdIO
nanoclusters (5, 10, 20, 50, 100, and 200 µg/mL) were added to the culture medium. After
incubation for 24 h, CCK-8 solution (10 µL) was added to the wells of the 96-well plate for
further incubation for 2 h. Finally, the absorbance of each well was measured at 490 nm
using a tablet reader (SAFIRE2, TECAN, Mennedoff, Switzerland). The following formula
was used to calculate cell viability.

cell viability (%) =
ODSample − ODblank

ODControl −ODblank
× 100%

Blood compatibility was evaluated according to the previously reported hemolysis
test [46–50]. Red blood cells (RBCs) were first separated from the remaining blood by
centrifugation at 2500 rpm for 6 min at 4 ◦C. The RBCs were then repeatedly washed and
purified with normal saline. Then, 2 mL of pGdIO (10, 20, 40, 80, or 160 µg/mL) was
dissolved in brine with 2 mL of diluted RBC suspension (4% v/v). The system was then
centrifuged for 10 min at 8000 rpm after incubation for 4 h at 37 ◦C. By using UV–Vis
spectroscopy, the absorbance of the supernatant at 576 nm was measured. The hemolysis
rate formula is as follows.

Hemolysis (%) =
ASample −ANegative Control

APositive Control −ANegative Control
× 100%

The in vivo toxicity of pGdIO was examined in female nude mice (18–20 g). Qiqihar
Medical University’s Animal Ethics Committee (No. QMU-AECC-2022-120) gave its ap-
proval to all of the studies. Nude mice were injected with saline or pGdIO via the tail vein.
The nude mice were euthanized 7 days later, and the main organs (heart, liver, spleen, lung,
and kidney) were removed for histological examination.

3.7. Cellular Uptake of the Nanoclusters In Vitro

Cellular uptake of the nanoclusters was determined using a confocal laser microscope.
Qiqihar Medical University’s Molecular Imaging Laboratory donated the Panc-1, H6C7
and SW1990 cells. Panc-1 cells were injected onto confocal culture dishes for 24 h of culture
until they reached the logarithmic growth stage. Following cell adhesion, 50 µg/mL pGdIO
or cRGD-GdIO was added for incubation. Then, the cells were rinsed with PBS to remove
excess pGdIO and cRGD-GdIO that had not been taken up by the cells. The PBS-washed
cells were then fixed with 4% paraformaldehyde for 20 min before being treated with DAPI
for 10 min. Finally, the cellular uptake of the probe was observed by confocal microscopy.

3.8. Antitumor Effect of the Nanoclusters In Vitro

The in vitro therapeutic efficacy of nanoclusters carrying DTX was evaluated. Free
DTX, GdIO-DTX, and cRGD-GdIO-DTX (DTX concentrations of 0, 1, 2, 4, and 8 µg/mL)
were cultured with Panc-1 and SW1990 cells for 24 h, and the cell survival rate was
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determined colorimetrically by CCK-8 assays. The assay method and data processing were
performed in the same manner as for the cytotoxicity assay.

A 6-well plate was initially filled with pancreatic cancer cells at a density of 2× 105/mL
to evaluate the effect of cRGD-GdIO-DTX on apoptosis. After 12 h of culture, cRGD-GdIO-
DTX, GdIO-DTX, and PBS (blank group) were added to each well, and incubation continued
for 48 h. In this work, cell apoptosis was identified using flow cytometry.

3.9. Antitumor Effect of the Nanoclusters In Vivo

Nude mice with tumors were randomly assigned to one of four groups (n = 4) and
given tail vein injections of 100 µL of PBS, DTX, GdIO-DTX, or cRGD-GdIO-DTX (2 mg/kg).
The first dose was given on the first day of the experiment, followed by an additional dose
every other day for a total of 15 days. Starting on day one, the mice were weighed on an
electronic scale, and the tumor length and breadth were measured every other day with
a Vernier caliper. Tumors were later removed, and all nude mice were sacrificed after
the treatment cycle. The tumor tissues were then sectioned, embedded in paraffin, and
preserved in a 4% paraformaldehyde solution. For histological observation, tumor staining
and TUNEL assays were performed with H&E and optical microscopy. The formula shown
below was used to calculate the tumor volume.

V =
1
2

ab2

3.10. MR Imaging In Vivo

For in vivo magnetic resonance imaging, 100 µL of cRGD-GdIO-DTX, and GdIO-DTX
were injected into tumor-bearing nude mice via the caudal vein. Images were collected at 0,
20, and 40 min after injection with a 3.0 T magnetic resonance scanner.

3.11. Statistical Analysis

Statistical data were analyzed using SPSS 22.0 software with a two-tailed Student’s t
test. The standard deviations (SDs) are shown as error bars. Differences were considered
statistically significant when p < 0.05.

4. Conclusions

In this study, we developed a system (cRGD-GdIO-DTX) for magnetic resonance
bimodal imaging and targeted drug delivery. The colloidal stability, hemolysis assay,
and toxicity experiments results suggested that cRGD-GdIO-DTX has good stability and
biocompatibility. The in vitro cellular uptake experimental results showed that cRGD-
GdIO-DTX had a good targeting effect on pancreatic cancer cells. In addition, the systemic
delivery of cRGD-GdIO-DTX greatly improved the MRI contrast effect and restricted tumor
development in a human pancreatic cancer xenograft model. Therefore, the nanoclusters
investigated here can be employed for T1–T2 dual-modal MRI and tumor-targeted DTX
delivery. However, our cell-based and animal-based explorations are not enough to repre-
sent medical applications, which require further in-depth studies to properly evaluate the
efficacy of these nanoclusters.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28166134/s1, Figure S1. Gd contents (% of original) in
the supernatants of cRGD-GdIO-DTX after process of storage (at 37 ◦C for 1 and 6 days, respectively)
and centrifugation (12,000 rpm, 15 min). Figure S2. Integrated optical density (IOD) of Targeted and
Non-targeted groups. Figure S3. Molecular structure of docetaxel (DTX).
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