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This year we celebrate the 135th anniversary of the discovery of glutathione (L-γ-
glutamyl-L-cysteinyl-glycine). The major intracellular thiol compound was first described
in the literature in 1888 by J. De-Rey Pailhade [1]. He named the substance phylothion,
the Greek expression for sulfur-loving. Since then, chemists, biochemists, and medical
professionals accumulated a wide range of information about this molecule’s cellular and
organizational functions. The broad interest in glutathione-related topics is reflected by
several recent reviews [2–4].

It has been known that endogenous glutathione content and its speciation plays a
role, among others, in redox homeostasis, cell cycle control, immunological defense, and
pathological abnormalities. Among the latter, hemolytic anemia, cardiovascular diseases,
neurological disorders, and distinct types of cancer can be mentioned [5]. Furthermore, it
plays a significant role in the biotransformation of drugs and other endogenous or exoge-
nous electrophilic species. In most cases, such transformations protect cellular nucleophilic
sites and eliminate the target molecules [6]. Most of these cellular functions are related to
the thiol (SH) function of the cysteine moiety.

Due to the redox characteristics of the thiol function, the reduced form of glutathione
(GSH) is not only a powerful nucleophile but an antioxidant as well. Because of the high
cellular level, the GSSG/2GSH couple is the most abundant redox couple in the cells.
Changes in the half-cell reduction potential (Ehc) of the GSSG/2GSH couple appear to
correlate with the biological status of the cells: proliferation Ehc~−240 mV differentiation;
Ehc~−200 mV; or apoptosis Ehc~−170 mV [7]. Although it does not mean that the actual
redox potential of the GSSG/2GSH system is a determining factor of the cells’ fate [8], the
correlations are remarkable and worth further investigation.

Recent clinical trials indicated that oral GSH supplements can elevate body stores of
glutathione and markers of immune function [9,10]. The increased demand for pharma-
copeial grade glutathione signals the importance of new, economical biotechnology-based
technologies for the production and pharmacopeial qualification of glutathione prepa-
rations [11]. Additionally, drug delivery systems enhancing the bioavailability of oral
glutathione are becoming an important issue. Besides using qualified glutathione (GSH)
products as a pharmakon, it can be successfully applied in various other industries where
the compound’s reversible redox and antioxidant properties can be utilized.

This book presents the publications that appeared in the Special Issue of Molecules,
“Glutathione: Chemistry and Biochemistry”. The contributions provide current information
on three fields of glutathione research. The first three contributions [12–14] review the
present-day knowledge of the GSH/GSSG system and the essential GSH-related proteins
involved in controlling various cellular events.

The following four contributions [15–18] present selected interventions which modu-
late the GSH/GSSG system. One of the contributions of this session [15] describes a new
HPLC/DAD method to quantify the reduced glutathione (GSH) and oxidized glutathione
(GSSG) levels in rat brain.

The third session involves three [19–21] contributions demonstrating the role of GSH
in the metabolism of different candidate and clinically used anticancer drugs. One of the
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contributions [22] a theoretical work, provides valuable information for developing GSH
analogs with high ACE inhibitor activity.

By purpose and content, this Special Issue is addressed to the vast number of life
science researchers (academic and industrial) and medical professionals who are interested
or already engaged in research that involves glutathione.

Conflicts of Interest: The author declares no conflict of interest.
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