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Abstract: In recent years, plastic and especially microplastic in the oceans have caused huge problems
to marine flora and fauna. Recently, such particles have also been detected in blood, breast milk,
and placenta, underlining their ability to enter the human body, presumably via the food chain
and other yet-unknown mechanisms. In addition, plastic contains plasticizers, antioxidants, or
lubricants, whose impact on human health is also under investigation. At the cellular level, the most
important enzymes involved in the metabolism of xenobiotic compounds are the cytochrome P450
monooxygenases (CYPs). Despite their extensive characterization in the maintenance of cellular
balance, their interactions with plastic and related products are unexplored. In this study, the possible
interactions between several plastic-related compounds and one of the most important cytochromes,
CYP2C19, were analyzed. By applying virtual compound screening and molecular docking to
more than 1000 commercially available plastic-related compounds, we identified candidates that
are likely to interact with this protein. A growth inhibition assay confirmed their cytotoxic activity
on a CYP2C19-transfected hepatic cell line. Subsequently, we studied the effect of the selected
compounds on the transcriptome-wide gene expression level by conducting RNA sequencing. Three
candidate molecules were identified, i.e., 2,2′-methylene bis(6-tert-butyl-4-methylphenol), 1,1-bis(3,5-
di-tert-butyl-2-hydroxyphenyl) ethane, and 2,2′-methylene bis(6-cyclohexyl-4-methylphenol)), which
bound with a high affinity to CYP2C19 in silico. They exerted a profound cytotoxicity in vitro and
interacted with several metabolic pathways, of which the ‘cholesterol biosynthesis process’ was
the most affected. In addition, other affected pathways involved mitosis, DNA replication, and
inflammation, suggesting an increase in hepatotoxicity. These results indicate that plastic-related
compounds could damage the liver by affecting several molecular pathways.

Keywords: cytotoxicity; ecotoxicity; hepatotoxicity; microplastic; RNA sequencing

1. Introduction

Despite its great importance and utility for our society, plastic poses a huge threat for
the oceans [1–4], marine animals [5–7], and the environment [8,9]. Unfortunately, plastic
remains in the life cycle for more than 100 years [10]. Through ultraviolet light, seawater,
and mechanical action, it degrades to microplastic (smaller than 5 mm) or nanoplastic
particles (smaller than 0.1 µm or 1 µm) [11].
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Microplastic has recently been detected in human blood [12] and placenta [13], thus
confirming its ability to enter our bodies. Indeed, microplastic is not only ingested by
fish and other marine animals [14–16] but also by humans through food and water [17,18].
Once inside the body, it can cross the gastrointestinal epithelial barrier [19]. Moreover, these
particles also enter organisms through respiration and can be detected in the lungs [20].
Once in the blood circulatory system, microplastic can release compounds used as additives
for plastic production such as flame retardants, plasticizers, colorants, or antioxidants,
which can interact with human cells [21,22].

In the years to come, the amount of plastic is expected to tremendously increase [23].
However, the fate of plastic, microplastic, nanoplastic, and related compounds is still
quite elusive once they enter the human body. Some plastic-related chemical pollutants
interact with estrogenic receptors [24], while others (i.e., phthalates) appear to be associated
with several serious health-related concerns [21]. On the other hand, some chemical
pollutants unrelated to plastic (such as aliphatic nitriles or 4-aminobiphenyl) interact with
enzymes that are classically associated with drug metabolism [25]. They play an important
role in absorption, distribution, metabolization, excretion, and toxicity (ADMETox) [26].
These enzymes are the cytochrome P450 monooxygenases (CYPs). CYPs are hemoproteins
responsible for the metabolism of a wide range of substances [27]. Indeed, these proteins
play a key role in the biotransformation of both endogenous and exogenous compounds [28].
There are 57 human CYP genes, of which only some are involved in the metabolism of
drugs and xenobiotics while others are implicated in the metabolism of sterols, vitamins,
and other endogenous substrates, or their functions are not yet fully elucidated [29]. These
enzymes are expressed at high levels in the liver, specifically in the hepatocytes [30]. Among
the various CYPs, CYP2C19 belongs to the most important ones. This enzyme interacts
with several molecular partners, including numerous therapeutic drugs such as antiplatelet
agents (i.e., clopidogrel), proton pump inhibitors (i.e., omeprazole), or antidepressants (i.e.,
imipramine, amitriptyline) [31], as well as endogenous compounds such as melatonin and
progesterone [32].

Plastic, microplastic, nanoplastic, and their related compounds are increasingly threat-
ening human health [33,34]. However, their possible interactions with CYPs are not yet
well understood. In this context, the aim of this study was to investigate several com-
pounds used for plastic production using HepG2 hepatocytes overexpressing CYP2C19.
Through in silico screenings, we first identified compounds that could possibly interact
with this enzyme from a large library of plastic-related chemicals. In a second step, the
most promising candidates were tested with in vitro assays to study their possible toxicity.
Finally, using RNA sequencing, we obtained a view of transcriptome-wide gene expression
affected by the selected compounds on CYP2C19-overexpressing HepG2 cells. Overall, our
comprehensive approach allowed us to determine whether these compounds may have
hazardous potential for human health.

2. Results
2.1. PyRx Screening Analyses

Using the PyRx 0.8 software, we screened more than 1000 compounds downloaded
from PubChem associated with plastic. As shown in Figure 1, 46% of the compounds had
rather low binding affinities to CYP2C19 ranging between−5.0 and−6.9 kcal/mol. Almost
12% of the selected compounds displayed a high binding affinity to CYP2C19, which were
characterized by their binding energy ranging from −8.0 to −12.0 kcal/mol. Based on
these parameters, we selected the 70 best compounds with a high affinity to the enzyme for
further analyses.



Molecules 2023, 28, 5952 3 of 17
Molecules 2023, 28, x FOR PEER REVIEW  3  of  19 
 

 

 

Figure 1. Virtual drug screening using PyRx. The pie chart illustrates the percentage of compounds 

within a specific range of lowest binding energies to CYP2C19. 

2.2. In Silico Binding of Plastic‐Related Compounds to CYP2C19 

To investigate the binding site of the enzyme more specifically, we performed molec-

ular docking using AutoDock  4.2. We  included only  compounds  (1) with  their  lowest 

binding energy (LBE) values smaller than −8.0 kcal/mol, (2) that are commonly used in the 

plastic  industry, and  (3)  that were commercially available. These criteria  skimmed  the 

choice to six compounds (from now on referred to as compounds 1 to 6, Figure 2). The 

selected compounds belonged to different classes: compounds 1 and 2 were plasticizers, 

compound 3 was a UV stabilizer, and compounds 4–6 were antioxidants. 

The CYP2C19-binding candidates displayed LBE values between  −8.14 and  −10.38 

kcal/mol and predicted inhibition constants (pKi) between 27.73 and 1087 nM. The molec-

ular docking of these compounds was visualized in the LBE conformation. The interac-

tions between the six candidate compounds and the enzyme are shown in Figure 2. 

1.33%  − 12.0 to -10.0
3.65%  − 9.9 to -9.0
6.80%  − 8.9 to -8.0
18.74%  − 7.9 to -7.0
23.05%  − 6.9 to -6.0
23.05%  − 5.9 to -5.0
20.40%  − 4.9 to -4.0
2.99%  > − 3.9

Figure 1. Virtual drug screening using PyRx. The pie chart illustrates the percentage of compounds
within a specific range of lowest binding energies to CYP2C19.

2.2. In Silico Binding of Plastic-Related Compounds to CYP2C19

To investigate the binding site of the enzyme more specifically, we performed molec-
ular docking using AutoDock 4.2. We included only compounds (1) with their lowest
binding energy (LBE) values smaller than −8.0 kcal/mol, (2) that are commonly used in
the plastic industry, and (3) that were commercially available. These criteria skimmed the
choice to six compounds (from now on referred to as compounds 1 to 6, Figure 2). The
selected compounds belonged to different classes: compounds 1 and 2 were plasticizers,
compound 3 was a UV stabilizer, and compounds 4–6 were antioxidants.
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the selected compounds. (B) Two-dimensional representation of the different types of interactions
formed between the predicted interactive amino acids of CYP2C19 and the respective selected
compounds, as visualized by Discovery Studio Visualizer software (V 21.1.0.20298). The lowest
binding energies (LBE) as well as the predicted inhibition constant (pKi) values for each compound
with CYP2C19 are shown based on the molecular docking results obtained from AutoDockTools.
Chemical structures are shown according to the color code in panel (A).

The CYP2C19-binding candidates displayed LBE values between−8.14 and−10.38 kcal/mol
and predicted inhibition constants (pKi) between 27.73 and 1087 nM. The molecular dock-
ing of these compounds was visualized in the LBE conformation. The interactions between
the six candidate compounds and the enzyme are shown in Figure 2.

2.3. Cytotoxicity

To investigate the effects of the in silico identified compounds on cell viability, we
used CYP2C19-overexpressing HepG2 cells (Figure 3). Different concentrations (ranging
from 0.003 to 100 µM) were tested. The IC50 values of these concentrations are displayed
in Figure 3. Compound 1 exhibited an IC50 value of 87.99 ± 7.77 µM for the CYP2C19-
overexpressing cells. Compound 3 showed a lower IC50 value (67.47 ± 2.05 µM). Com-
pounds 4, 5, and 6 showed rather comparable IC50 values (18.59± 0.94 µM, 18.11 ± 0.68 µM,
and 20.16 ± 0.06 µM, respectively). Compound 2 did not exhibit any cytotoxic effect.
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Figure 3. Resazurin assay of cytochrome P450 2C19-overexpressing HepG2 cells treated with different
concentrations of the six selected compounds. All experiments were performed in three replicate
measurements of mean ± SD.

2.4. Transcriptomic Analysis and Deregulated Pathways upon Treatment with Compounds 4–6

We performed RNA sequencing to analyze the influence of compounds 4–6 on the
transcriptome-wide gene expression in CYP2C19-overexpressing HepG2 cells.

Differentially expressed genes were determined in the cells treated with compounds
4–6 compared to the control cells treated with DMSO. Functional enrichment analysis with
clusterProfiler [35] was executed using the gene ontology biological process annotation.
Finally, with the GeneTonic software (version 2.4.0) [36], a visual summary of the influ-
enced pathways, from here on referred to as ‘enriched pathways’, was created. These
analyses revealed the interactions with the different cellular pathways represented in Fig-
ure 4. Interestingly, three pathways (‘cholesterol biosynthetic process’, ‘secondary alcohols
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biosynthetic process’, and ‘sterol biosynthetic process’) were found to be in common in all
the enriched maps.
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Figure 4. Gene set enrichment analysis showing the top 10 upregulated and the 10 downregulated
pathways. (A) Enriched pathways referring to compound 4. (B) Enriched pathways referring to
compound 5. (C) Enriched pathways referring to compound 6. Pathways with a positive enrichment
score were considered activated and those with a negative score as downregulated. The size of the
dots corresponds to the number of genes in the reference gene set. The color of the dots corresponds
to the adjusted p-value.
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The pathway enrichment analyses revealed numerous pathways that may help to bet-
ter explain the detrimental effects of plastic-related compounds in CYP2C19-overexpressing
HepG2 cells. This was observed for the pathways related to cell division, e.g., ‘DNA repli-
cation’ was suppressed by compounds 4 and 6 and ‘DNA-templated DNA replication’ by
compound 4. Many mitosis-related pathways were also suppressed by compounds 4 and
6 but not by compound 5 (e.g., ‘mitotic sister chromatid segregation’, ‘sister chromatid
segregation’, ‘regulation of mitotic sister chromatid separation’, and ‘chromosome organi-
zation’). Compound 4 suppressed ‘metaphase/anaphase transition of mitotic cell cycle’,
while compound 6 down-regulated ‘nuclear chromosome segregation’, ‘mitotic nuclear
division’, and ‘chromosome segregation’. The exposure of cells to compounds 4 and 5
activated cell death mechanisms such as ‘autophagy’ and ‘process utilizing autophagic
mechanism’. Interestingly, angiogenesis-related pathways were activated by compound 6:
‘vasculature development’, ‘blood vessel morphogenesis’, and ‘blood vessel development’.
Regarding the metabolic and biosynthetic processes in the cells, ‘response to nutrients lev-
els’ was activated by compound 6, while many other pathways were downregulated. This
was found to be true with all three compounds for ‘cholesterol biosynthetic process’, ‘sterol
biosynthetic process’, and ‘secondary alcohol biosynthetic process’. Compounds 4 and 5
suppressed ‘cholesterol metabolic process’ and ‘sterol metabolic process’. Furthermore,
compound 5 suppressed the ‘steroid biosynthetic process’, ‘alcohol biosynthetic pathway’,
‘alcohol metabolic process’, and ‘organic hydroxy compound metabolic process’.

We highlighted certain pathways in common among the three compounds selected
using signature heat maps generated by the GeneTonic software (version 2.4.0). Figure 5A
shows the heat maps of the three compounds vs. DMSO on the most interesting pathway,
‘cholesterol biosynthetic process’. Next, we investigated whether some genes were com-
monly regulated by the three compounds. Figure 5B highlights these results. Almost all
the genes were influenced by the three compounds (twenty-two genes in common), while
only one gene was determined to be influenced by compounds 4 and 5. No genes were
in common between compounds 4 and 6 and compounds 5 and 6. Finally, two genes for
compound 4, three genes for compound 5 and one gene for compound 6 were influenced by
only one compound. Then, we created another heat map visualizing the log2-fold change
in the genes affected by all three compounds (Figure 5C). Many of the genes in common
were highly influenced by all the selected compounds.
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Figure 5. (A) Heat maps of differentially expressed genes upon exposure to compounds 4–6 related
to the ‘cholesterol biosynthetic process’ pathway. The samples selected for comparison always
refer to treatment with the compound of interest vs. DMSO. Color-coded standardized z-score
expression values after variance-stabilizing transformation was used to simplify the comparison
across samples. (B) Venn diagram of the genes in common amongst the three selected compounds.
(C) Heat map showing log2-fold changes in significantly down-regulated genes in common among
the three compounds.
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In Figure 6A, the heat maps of compounds 4 and 6 on the ‘DNA replication’ pathway
are highlighted. The Venn diagram shows seventy-six genes in common between the
two selected compounds (Figure 6B). Forty-one genes were exclusively influenced by
compound 4, and nine were uniquely influenced by compound 6. In the heat map shown
in Figure 6C, compound 4 had a higher influence on genes mostly related to the ‘DNA
replication’ pathway.
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Figure 6. (A) Heat maps of differentially expressed genes related to the ‘DNA replication’ pathway
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compound of interest vs. DMSO. Color-coded standardized z-scores for the expression values after
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diagram of the genes in common amongst the two selected compounds. (C) Heat map showing
log2-fold changes in significantly down-regulated genes in common among the two compounds.

Finally, the two heat maps of compounds 4 and 5 related to the ‘regulation of cytokine
production’ are shown in Figure 7A. There were 82 affected genes for compound 4 and
80 for compound 5. As can be seen in Figure 6B, 54 of these genes were affected by both
compounds. These compounds markedly influenced this metabolic pathway.
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diagram of the genes in common amongst the two selected compounds. (C) Heat map showing
log2-fold changes in significantly up-regulated genes in common among the two compounds.

2.5. Predicted Metabolism of Compounds 4–6

As a final step, we considered whether the metabolization of these compounds by
CYP2C19 might influence their binding to this enzyme. As the metabolites of these com-
pounds had not yet been determined, we used the SmartCYP software (version 2.3) [37,38]
to theoretically predict the possible metabolites in silico of compounds 4–6. The sites of
hydroxylation by CYP2C19 are highlighted in Supplementary Figure S1A. Interestingly,
the binding affinities of the predicted metabolites were derived from compounds 4 and
5, and they were even slightly increased compared to the main compound with only one
exception. This can be seen by the comparison of the lowest binding energies (LBE) in
Supplementary Figure S1B. For compound 4, the values ranged from −8.94 kcal/mol (by
hydroxylation of C.13) to −10.61 kcal/mol (by hydroxylation of all three selected carbons
(C.1, C.13, and C.9)). The LBE value (modifications of C.25) for compound 5 was −9.62
kcal/mol, while the LBE values for the modifications at C.2 and C.10 were−10.96 kcal/mol.
For the metabolites of compound 6, the LBE was −10.48 kcal/mol (hydroxylation of C.11),
while −11.00 kcal/mol was the lowest LBE (hydroxylation of C.10 and C.11).
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2.6. Compounds 4 and 6 Induce Cell Cycle Arrest in G0/G1 Phase

The results of the flow cytometric cell cycle analysis are shown in Figure 8. The treat-
ment with compounds 4 and 6 revealed an increase in the G0/G1 population at the IC50
concentration (74.11 ± 1.98% for compound 4 and 72.30 ± 1.68% for compound 6, respec-
tively) compared to the untreated cells (66.05 ± 1.66%). In addition, the analysis showed
a decrease in the percentage of S-phase cells of the treated compounds (8.05 ± 1.92% for
compound 4 and 6.76 ± 3.28 for compound 6) in contrast to the control (12.83 ± 1.54%).
No significant percentage change was detected in the sub-G0 and G2/M phases.
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3. Discussion

Despite the fact that the release of plastic-related compounds from microplastic has
been previously studied [39,40] and the increasing problem of plastic pollution for human
health has been recognized [41], their interactions with CYPs have been largely neglected.
These enzymes interact with and metabolize a plethora of different substances such as
other environmental pollutants (i.e., pesticides or chemicals) [42] and thereby contribute to
the maintenance of cellular equilibrium by means of detoxification [26].

Here, we focused on one of the most important CYPs, CYP2C19. As a first step,
a library of plastic-related compounds was used. By molecular docking in silico and a
growth inhibition assay in vitro, we selected three candidates. We selected compounds
4–6 for subsequent analyses, as they bound to this protein with good affinities and were
cytotoxic at low IC50 values (<21 µM). Considering these results, we studied the possi-
ble consequences of their interactions with CYP2C19-overexpressing HepG2 cells at the
gene level using RNA sequencing. Previous studies have shown that this approach is
feasible, since the gene expression signatures were modulated upon exposure to envi-
ronmental pollutants [43,44] as well as to hepatotoxic and carcinogenic xenobiotics (e.g.,
pyrrolizidine alkaloids and polyaromatic hydrocarbons) [42,45]. However, changes in gene
expression profiles in CYP-overexpressing cells induced by interactions with plastic-related
compounds remain elusive.

Therefore, we investigated transcriptomic alterations in CYP2C19-overexpressing
cells treated with the three selected plastic-related compounds. These compounds had
some commonly targeted pathways: the ‘cholesterol biosynthetic process’, the ‘secondary
alcohol biosynthetic process’ and the ‘sterol biosynthetic process’. However, the path-
way found to be the most strongly downregulated for all the three compounds was the
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‘cholesterol biosynthesis process’. By analyzing the cholesterol biosynthetic pathway in
detail using heat maps of all three compounds and the Venn diagram, it was seen that
all three compounds targeted both the same pathway as well as the same genes within
it. These included genes that play a critical role in cellular cholesterol homeostasis [46]
and whose dysregulation leads to diseases in various organs [47] (such as HMGCR (3-
hydroxy-3-methyl-glutaryl-CoA reductase) and DHCR7 (7-dehydrocholesterol reductase)).
Other regulated genes, which were also found to show a reduced expression, regulate
apolipoproteins, which have been shown to play a key role in cholesterol transport in the
blood circulation [48] (APOA1 and APOA4, apolipoprotein A1 and A4).

Microplastics and plastic-related compounds can cross the gastrointestinal epithelial
barrier [19] and enter the bloodstream [12]. Subsequently, these particles reach the liver
through the portal vein where they interact with CYP2C19-expressing hepatocytes. Plastic-
related compounds can accumulate in different organs and compartments, such as liver
and adipose tissue [49–51]. Therefore, it is plausible that the everyday exposure [52,53] to
such compounds and their subsequent accumulation may lead to high local concentrations
in the body, especially in the long run, resulting in chronic toxicity [54–56].

Cholesterol, which is mainly produced in the liver [57], is a fundamental and ubiqui-
tous molecule in humans. It is involved in numerous biological processes, and its imbalance
leads to various diseases and ailments. It is well known that approximately 70% is syn-
thesized in the body (endogenous cholesterol), while the remaining 30% is assimilated
through the diet (exogenous cholesterol) [58]. Imbalanced diets or dysregulations in pro-
cesses affecting the biosynthesis of cholesterol lead to fluctuating cholesterol levels. High
cholesterol values in western society are associated with several health problems such as
hypercholesterolemia or atherosclerosis [59–61]. On the other hand, low concentrations can
lead to a different set of issues. Cholesterol is a precursor for the synthesis of substances
vital to the body, including steroid hormones, vitamin D, and bile acids [62–64]. Due to
their lipophilic properties, bile acids facilitate the absorption of lipids and lipid-soluble
vitamins. Interestingly, the synthesis of bile acids decreases with age [54,55]. Therefore,
the presence of plastic-related compounds could aggravate this lack of bile acid activity
in elderly healthy individuals. In fact, these compounds not only hamper the synthesis of
endogenous cholesterol but also create imbalances in the absorption of useful substances for
the body such as lipids and vitamins. Cholesterol also plays a pivotal role in the integrity
of the cell membrane [62,63,65]. A lack of cholesterol production leads to a loss of fluidity
and permeability of cell membranes in the presence of plastic-related compounds [66].
This is reflected by a deficit in the regulation of the activity as well as the biophysical
properties of numerous ion channels [67]. Moreover, a deficiency of cholesterol in the
circulation results in an inadequate distribution of vitamins K and E to vital organs with
severe consequences [68].

Furthermore, inflammation-related pathways were activated such as ‘inflammatory
response’ for compound 6 or ‘cytokine production’ and ‘regulation of cytokine production’
for compounds 4 and 5. Inflammatory processes caused by plastics, microplastics [69,70],
and their related compounds [71] have been documented. Thus, this response may promote
harmful effects on the liver [72] such as the onset of fibrosis and cirrhosis [56].

Our RNA-sequencing analyses additionally showed that compounds 4 and 6 both af-
fected different pathways involved in mitosis (such as ‘mitotic sister chromatid segregation’
or ‘sister chromatid segregation’) and the ‘DNA replication’ pathway. Previously, it has
been shown that plastic-related compounds [73–75] and environmental pollutants [76–78]
provoked cytotoxicity and DNA damage, which corroborates our own observations on the
cytotoxicity of the compounds. Cell cycle analysis further confirmed this statement. In
fact, compounds 4 and 6 accumulated the cells in the G0/G1 phase of the cell cycle. This
behavior was also described for other compounds related to plastics (such as bisphenol
A) [79]. Other compounds (e.g., gypenoside LI) showed deregulated pathways; similarly,
compounds 4 and 6 also arrested the cells in G0/G1 phase [80]. Under healthy physiological
conditions, the liver displays efficient regenerative properties [81]. However, plastic-related
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compounds may reduce this capacity by disrupting mitosis and DNA replication, block-
ing hepatocytes in G0/G1 phase. Moreover, the suppression of mitosis may cause cell
death [82,83]. Regarding compounds 4 and 5, the activation of pathways involved in au-
tophagy was identified (such as ‘autophagy’ and ‘process utilizing autophagic mechanism’).
This is an interesting result as compound 4 has already shown a specific influence on this
exact pathway in a previous study [84].

In conclusion, there is no doubt that we are frequently faced with the exposure to
plastics, microplastics, and related-compounds [85]. Not only can the main xenobiotics
display harmful effects but possibly so can their metabolites [86]. In this context, we
determined the common pathways influenced by three selected plastic-related compounds.
Interestingly, an augmented toxicity, triggered by simultaneous exposure to several plastic-
related compounds, may be due to the discovery that many genes belonging to certain
pathways (e.g., the cholesterol pathways) are commonly influenced by the compounds
exemplarily selected in this investigation.

4. Materials and Methods
4.1. Chemicals

Compound 1: dicyclohexyl phthalate (CAS 84-61-7, >99%), compound 2: diisobutyl
phthalate (CAS 84-69-5, >98%), compound 3: octrizole (CAS 3147-75-9, >98%), compound
4: 2,2′-methylene bis(6-tert-butyl-4-methylphenol) (CAS 119-47-1, >99%), compound 6:
2,2′-methylene bis(6-cyclohexyl-4-methylphenol) (CAS 4066-02-8, >97%). Compounds were
acquired from TCI Deutschland GmbH (Eschborn, Germany). Compound 5, 1,1-bis(3,5-
di-tert-butyl-2-hydroxyphenyl)ethane (CAS 35958-30-6, 96%), was purchased from abcr
GmbH (Karlsruhe, Germany).

4.2. Cell Lines

CYP2C19-overexpressing HepG2 cells were originated as previously described [87].
Cells were grown in DMEM medium (DMEM, 31966021, Gibco™, Billings, MT, USA) at
37 ◦C and 5% CO2 in a humidified incubator. DMEM media were supplemented with 10%
fetal bovine serum (FBS) and with 3 µg/mL blasticidin (ant-bl-05, InvivoGen, San Diego,
CA, USA) to preserve the selection of transfected CYP2C19-overexpressing HepG2 cells.

4.3. PyRx Screening

More than 1000 compounds associated with plastic production were screened for their
interactions with CYP2C19 with the virtual screening tool PyRx (https://pyrx.sourceforge.
io) (accessed 16 April 2020). The three-dimensional ligand structures were downloaded
from PubChem (NCBI, Bethesda, MD, USA) [88] as standard data files. The crystal structure
of CYP2C19 was downloaded from the Protein Data Bank (http://www.rcsb.org/) [89] as
a PDB file (PDB code: 4GQS) [90].

4.4. Molecular Docking

Molecular docking was run for the compounds with the lowest PyRx binding energies.
The binding affinities of the top 70 compounds were read using AutoDock 4.2. The grid
box was positioned around the drug binding sites of CYP2C19 with the center of the grid
box at x = −99.076, y = −26.072, and z = −63.517 and with the number of grid points
(npts) being 100 in x, 104 in y, and 100 in z. Molecular docking was performed with
the Lamarckian genetic algorithm with 250 runs and 25 Mio evaluations. The Discovery
Studio Visualizer software was used for visualizing protein–ligand interactions. Parts
of this analysis were performed using the supercomputer Mogon II and the advisory
services offered by Johannes Gutenberg University Mainz (hpc.uni-mainz.de), which is a
member of the AHRP (Alliance for High-Performance Computing in Rhineland Palatinate,
www.ahrp.info) and the Gauss Alliance e.V. (accessed 25 January 2021).

https://pyrx.sourceforge.io
https://pyrx.sourceforge.io
http://www.rcsb.org/
www.ahrp.info
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4.5. Resazurin Reduction Assay

Aliquots of 104 CYP2C19-overexpressing HepG2 cells were seeded per well into 96-
well plates. Cells were treated with different concentrations of the selected compounds
with a range from 0.003 to 100 µM in a total volume of 200 µL for 72 h. Successively,
20 µL/well of resazurin 0.01% w/v (Sigma Aldrich, Taufkirchen, Germany) was added.
The fluorescence intensity was measured with an Infinite M200 Pro-plate reader (Tecan,
Crailsheim, Germany). Dose–response curves were engendered for three independent
experiments for each compound, and 50% inhibition concentrations (IC50) were calculated.
The analysis was represented using the Prism 6 GraphPad Software (version 9.5.1) (La Jolla,
CA, USA).

4.6. RNA Extraction

A total of 24 h before treatment, 5 × 105 CYP2C19-overexpressing HepG2 cells were
seeded into 6-well-plates. Cells were treated with the compounds of interest, resulting in
a final concentration of IC50 calculated beforehand. Control cells were treated with 0.2%
DMSO. After 24 h of incubation, the cells were harvested. RNA extraction was performed
with an InviTrap® Spin Cell RNA Mini Kit (Invitek Molecular GmbH, Berlin, Germany)
according to the manufacturer’s instructions. The cell pellet was lysed with 350 µL of
Lysis Solution and treated with β-mercaptoethanol. After DNA removal, 350 µL of 70%
ethanol was added, and the sample was applied onto the RNA-RTA spin filter. After several
washing steps, RNA was eluted with 60 µL of Elution Buffer R, and the concentration and
purity were measured with NanoDrop.

4.7. RNA Sequencing

RNA sequencing was performed by StarSEQ GmbH, Mainz, Germany. The quality of
the extracted RNA was verified by the company with a 2100 Bioanalyzer system (Agilent
Technologies, Santa Clara, CA, USA). After mRNA isolation and library preparation using
a NEBNext© Ultra™ II Directional RNA Library Prep Kit (New England Biolabs, Ipswich,
MA, USA), RNA sequencing of around 25 Mio PE reads (2 × 12.5 M reads, 2 × 150 nt) was
performed with an Illumina NextSeq 2000™ system. Each treatment and control group
included two replicates.

4.8. Bioinformatics Analysis

The FastQC tool (0.12.0, https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
(accessed 15 February 2023) was used for quality control on the sequencing data. Transcript
abundance estimates were computed with Salmon (version 1.5.0) [91] with a transcriptome
index generated by GENCODE (version 38) and then summarized to the gene level with
the tximeta R package (version 1.16.0) [92]. Exploration, modelling, and interpretation of
the expression data followed the protocols defined by Ludt et al. (2022) [93]. Exploratory
data analysis was performed with the pcaExplorer package (version 2.24.0) [94]. Differ-
ential expression analysis was executed with the DESeq2 package (version 1.38.3) [95],
setting the false discovery rate (FDR) cutoff to 0.05. Accurate estimation of the effect sizes
(described as log2-fold changes) was performed using the apeglm shrinkage estimator
(version 1.20.0) [96]. Further analyses included gene ontology pathway enrichment by
topGO (version 2.50.0) [97] using all expressed genes as a background dataset and the
ideal package (version 1.22.0) [93] and by clusterProfiler (version 4.6.0) [35] with default
settings and the log2-fold change as the input. Then, all pathways with an adjusted
p-value < 0.05 were chosen [35] for further analyses and processed with the GeneTonic
package for visualization and summarization (version 2.2.0) [36]. Gene expression profiles
were designed as heatmaps (color-coded standardized Z scores for the expression values
after variance-stabilizing transformation) to simplify the comparison across the samples.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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4.9. Predicted Metabolites

We used SmartCYP [37,38] to predict the possible metabolism sites of the 3 compounds.
Then, the ChemDraw software (19.0) was utilized to modify the initial molecules by
inserting the hydroxyl group to each of the first 3 predicted ranking sites in different
combinations. The binding affinities of the metabolite compounds were calculated using
AutoDock 4.2. The grid was placed on the CYP2C19 drug binding sites with the grid
center at x = −99.076, y = −26.072, and z = −63.517 and with the number of grid points
(npts) being 100 in x, 104 in y, and 100 in z. Molecular docking was performed using the
Lamarckian genetic algorithm with 250 runs and 25 million evaluations. The analysis was
shown using the Prism 6 GraphPad software (version 9.5.1) (La Jolla, CA, USA).

4.10. Cell Cycle Analysis

CYP2C19-overexpressing HepG2 cells were treated with IC50 concentrations of com-
pounds 4 and 6 for 24 h. Then, the cells were fixed using 80% cold ethanol and stored
overnight at −20 ◦C. Successively, the cells were washed twice with PBS and resuspended
in 1 mL of cold PBS containing 1mg/mL RNaseA (Sigma-Aldrich, Taufkirchen, Germany)
and 50 µg/mL PI (Sigma-Aldrich, Taufkirchen, Germany). After 15 min of incubation, the
measurements were performed using a BD LSRFortessa™ Cell Analyzer (Becton-Dickinson,
Heidelberg, Germany). DMSO-treated cells were used as a negative control.

5. Conclusions

We analyzed the interactions of several plastic-related compounds with cytochrome
2C19. Summarizing the results of the three selected compounds (compounds 4–6), a
cytotoxic effect could be observed as well as a combined regulation of different gene
pathways. Specifically, all three compounds caused significant under-expression in the
pathway related to cholesterol biosynthesis. Furthermore, these compounds acted on
several pathways related to cell replication (such as mitosis) and inflammation, causing
damage to liver cells at different levels. Currently, research regarding the possible toxicity
of plastic for humans, specifically concerning the compounds used to produce it, remains
very limited. To fully understand their impact on human health, future in vivo research
on plastic and related compounds as well as further investigations on related topics are
essential. Furthermore, to mitigate the immense problem of plastic pollution, it would be
useful not only to conduct scientific research but also to start effectively communicating
its findings to the entire population. To this day, plastic pollution is often considered an
environmental problem that exclusively concerns the oceans and marine animals; however,
day by day, it is increasingly jeopardizing human health as well.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28165952/s1, Figure S1: Predicted sites of metabolism
and lowest binding energy (LBE) for the selected compounds. (A) Possible sites of hydroxylation
by CYP2C19 for the three selected compounds with the top 5 ranking positions. (B) Lowest binding
energies (LBE) of the metabolites of the various compounds in different combinations in comparison
with the unmodified molecule.
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