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Abstract: Sulphonamides have been one of the major pharmaceutical compound classes since their
introduction in the 1930s. Co-crystallisation of sulphonamides with halogen bonding (XB) might lead
to a new class of pharmaceutical-relevant co-crystals. We present the synthesis and structural analysis
of seven new co-crystals of simple sulphonamides N-methylbenzenesulphonamide (NMBSA), N-
phenylmethanesulphonamide (NPMSA), and N-phenylbenzenesulphonamide (BSA), as well as of an
anti-diabetic agent Chlorpropamide (CPA), with the model XB-donors 1,4-diiodotetrafluorobenzene
(14DITFB), 1,4-dibromotetrafluorobenzene (14DBTFB), and 1,2-diiodotetrafluorobenzene (12DITFB).
In the reported co-crystals, X···O/N bonds do not represent the most common intermolecular
interaction. Against our rational design expectations and the results of our statistical CSD analysis,
the normally less often present X···π interaction dominates the crystal packing. Furthermore, the
general interaction pattern in model sulphonamides and the CPA multicomponent crystals differ,
mainly due to strong hydrogen bonds blocking possible interaction sites.

Keywords: crystal engineering; pharmaceutical co-crystals; halogen bonding; halogen-π interactions;
non-covalent interactions

1. Introduction

Sulphonamides are one of the essential pharmaceutical compound classes [1–4]. Over
5000 derivatives have been investigated for pharmaceutical applications, and 70 are used
today. One example is sulfamidochrysoidine (trade name Prontosil), the first sulphonamide
with pharmaceutical use and one of the first synthetic antibacterial drugs. It was discovered
in 1932, reported in 1935, and honored with the Nobel Prize in medicine in 1939 [5,6]. Since
then, sulphonamide drugs have been used in a wide range of applications, among others
in antibacterial drugs [7–10], anti-diabetic agents [11–15], antiretroviral drugs [16–19],
nonsteroidal anti-inflammatory drugs [20–22], and cardiac medications [23–25].

Like many other modern pharmaceuticals, some sulphonamides lack bioavailabil-
ity [26,27]. One well-documented way to overcome this problem and simultaneously
improve other macroscopic properties is co-crystallisation [28–31]. By profoundly inves-
tigating interaction patterns, general patterns of sulphonamides might be found. This is
based on the well-known synthon theory, which despite its failures is still the starting point
of rational design and could lead not only to one co-crystal but to a whole new class of
pharmaceutical-relevant co-crystals.

Halogen bonds (XBs), an attractive interaction of a halogen moiety’s (-Cl, -Br, -I)
partially positive charged σ-hole with a partially negative charged area, is along with
hydrogen bonding one of the most important anisotropic intermolecular interactions [32].
There are numerous XBs; for example, strong XBs are formed with ions and oxygen and
nitrogen moieties. XBs formed between two halogens are categorised into Type I and II
based on the geometrical parameters [33]. In some cases, the so-called Quasi Type I/II can
occur [34]. Some rare examples of XBs with aromatic π-systems have been reported [35–38].
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These X···π interactions are weaker than the others mentioned because of the relatively
widespread electron density along the π-system.

This work presents a series of rationally designed co-crystalline systems of selected
sulphonamides with halogen-bonding donors (Scheme 1). Selected survey objects range
from the simplest archetypal sulphonamides to their pharmaceutically active derivative
CPA. The simplest sulphonamides are N-methylbenzenesulphonamide (NMBSA) [39],
N-phenylmethanesulphonamide (NPMSA) [40,41], and N-phenylbenzenesulphonamide
(BSA) [42]. They are derivates only substituted by methyl and phenyl moieties, which
are nonpolar and sterically manageable. On the other hand, there is Chlorpropamide
(CPA) [12], which has been used as an anti-diabetic agent. CPA is more complex and
belongs to the sulphonamide subcategory sulphonylureas, which inhibit a urea-like moiety
and are used to treat diabetes. It has six polymorphic modifications [43,44] and one known
co-crystal with 4,4′-dipyridyl [45]. The coformers, 1,4-diiodotetrafluorobenzene (14DITFB),
1,4-dibromotetrafluorobenzene (14DBTFB), and 1,2-diiodotetrafluorobenzene (12DITFB),
are model XB coformers used in various studies to obtain multicomponent systems. Based
on the obtained crystal structures, a topological analysis of intermolecular interactions with
a primary emphasis on different types of halogen bonding is carried out.
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established between the amine and the sulphone group (d(O2···H1) = 2.1(1) Å, d(O2···N1) 
= 3.009(7) Å). The 14DITFB layers are only loosely connected with weak F···π interactions 
in a herringbone pattern. The layers interact via two independent halogen bonds. On one 
side, there is an XB (C8-I1···N1) with the free nitrogen electron pair. It is short (d = 3.057(6) 
Å) and straight (∢ = 179.8(2)°), both of which are signs of strong interactions. On the other 
side is a halogen bond between iodine and the π-system. It is relatively weak with a 
distance of d(I2···cg) = 4.045 Å and an angle of ∢(C11-I2···cg) = 166.0°. 

  

Scheme 1. Molecular structures of used substances.

2. Results
2.1. Crystal Structure of NMBSA-14DITFB (1:1), 1

The NMBSA-14DITFB (1:1) co-crystal, 1, crystallises in the orthorhombic space group
Pna21 with NMBSA and 14DITFB in a 1:1 ratio (Figure 1a). These form alternating layers
along the ab-plane in a simple ABAB motif (Figure 1b). The sulphonamide layer is intercon-
nected via strong and weak hydrogen bonds. Predominantly, a chain motif is established
between the amine and the sulphone group (d(O2···H1) = 2.1(1) Å, d(O2···N1) = 3.009(7) Å).
The 14DITFB layers are only loosely connected with weak F···π interactions in a herring-
bone pattern. The layers interact via two independent halogen bonds. On one side, there
is an XB (C8-I1···N1) with the free nitrogen electron pair. It is short (d = 3.057(6) Å) and
straight (
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= 179.8(2)◦), both of which are signs of strong interactions. On the other side is
a halogen bond between iodine and the π-system. It is relatively weak with a distance of
d(I2···cg) = 4.045 Å and an angle of
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Figure 1. (a) ORTEP plot of 1 with occurring halogen bonds I1···N1 (3.057(6) Å) and I2···πcg (4.045 Å),
where labelled atoms are part of the asymmetric unit; (b) structure along the b-axis highlighting the
alternating layers of NMBSA and 14DITFB.

2.2. Crystal Structure of NPMSA-14DITFB (1:1), 2

The NPMSA-14DITFB (1:1) co-crystal, 2, crystallises in a monoclinic space group P21/n
with NPMSA and 14DITFB in a 1:1 ratio (Figure 2a). The sulphonamide forms a dimer
with its inverted counterpart, utilising strong HB between the sulphone and amine group
(d(O1···H1) = 2.15(4) Å, d(O1···N1) = 2.933(3) Å) with the inversion centre in the middle.
Four dimers are aligned in channels along the a-axis, including two 14DITFB molecules
(Figure 2b). The 14DITFB interacts on one site via a strong XB with the sulphone group
(d(I1···O1) = 2.994(2) Å; d(I1···O2) = 3.496(2) Å) and on the other one with the π-system
of the phenyl ring (d(I2···cg) = 3.536 Å,
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oriented along the (101) plane (Figure 2c).
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where labelled atoms are part of the asymmetric unit; (b) crystal packing along the a-axis highlighting
the NPMSA hydrogen-bonded dimers; (c) layers interconnected via halogen bonding.

2.3. Crystal Structure of NPMSA-14DITFB (2:1), 3

The NPMSA-14DITFB (2:1) co-crystal, 3, crystallises in a monoclinic space group P21/c
with NPMSA and 14DITFB in a 2:1 ratio (Figure 3a). The structure is not only related to
2 by its components but also by important structural elements. It forms almost identical
sulphonamide HB dimers (d(O1···H1) = 2.19(5) Å, d(O1···N1) = 2.982(4) Å) and I···O2S- XBs
(d(I1···O1) = 3.089(3) Å; d(I1···O2) = 3.751(2) Å). However, due to the different stoichiometry,
and an additional inversion centre present in 14DITFB, it forms only one distinctive XB.
This is also reflected in both smaller asymmetric unit and unit cell. Nevertheless, system 3
could not be reproduced in subsequent crystallisation attempts after the initial production.
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are part of the asymmetric unit; (b) structure along the a-axis highlighting the NPMSA hydrogen-
bonded dimers.

2.4. Crystal Structure of BSA-14DITFB (2:1), 4

The BSA-14DITFB (2:1) co-crystal, 4, crystallises in a monoclinic space group P21/c
with BSA and 14DITFB in a 2:1 ratio (Figure 4a). The BSA builds a 2D net pattern
in the ab-plane using strong and weak HBs. Chains are based on strong O···H-N HB
(d(O1···H1) = 2.08(3) Å; d(O1···N1) = 2.864(2) Å). These chains are interacting via weak
O···H-C HB (d(O2···H5) = 2.62(2) Å; d(O2···C5) = 3.409(2) Å). The 14DITFB interacts with
the π-systems linking the nets via XB. This XB is the shortest X···cg interaction presented in
this publication, with a distance of 3.461 Å. The angle towards the centre of the aromatic
system is
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= 3.009(7) Å). The 14DITFB layers are only loosely connected with weak F···π interactions 
in a herringbone pattern. The layers interact via two independent halogen bonds. On one 
side, there is an XB (C8-I1···N1) with the free nitrogen electron pair. It is short (d = 3.057(6) 
Å) and straight (∢ = 179.8(2)°), both of which are signs of strong interactions. On the other 
side is a halogen bond between iodine and the π-system. It is relatively weak with a 
distance of d(I2···cg) = 4.045 Å and an angle of ∢(C11-I2···cg) = 166.0°. 

  

(C13-I1···cg) = 162.1◦.
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2.5. Crystal Structure of CPA-14DITFB (2:1), 5

The CPA-1,4DITFB (2:1) co-crystal, 5, crystallises in a monoclinic space group, P21/n,
with CPA and 14DITFB in a 2:1 ratio (Figure 5a). The strongest intermolecular interaction
within this structure is the HB chain pattern of the CPA molecules. The molecules’ align-
ment regarding each other is defined by the 21-screw axis going through the urea moiety of
the oxygen double bond. The hydrogen atoms of the urea moiety interact with the oxygen
atom of the next urea moiety, (d(H1···O3) = 1.91(4) Å, d(H2A···O3) = 2.21(4) Å), and one of
the oxygen atoms of the sulphone group (d(H2A···O1) = 2.36(4) Å). These chains are inter-
connected via π-stacking and form zig-zag-planes. The planes are connected via 14DITFB.
In the middle of 14DITFB is an inversion centre; therefore, only half of the molecule is
part of the asymmetric unit. The XB distance is relatively long (d(I1A···cg) = 3.626 Å,
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Figure 5. (a) ORTEP plot of 5 with occurring halogen bonds I1···cg (3.626 Å), where labelled atoms
are part of the asymmetric unit; (b) crystal packing along the b-axis highlighting the CPA layers
interconnected by 14DITFB.

The structure was solved with a disordered iodine atom (87:13). The disorder is based
on different possible interactions with the π-system. Only the iodine atom was refined
separately since the whole molecule would have required a lot of restrains.

2.6. Crystal Structure of CPA-14DBTFB (2:1), 6

The crystal structures of CPA-14DBTFB (2:1), 6 (Figure 6), and 5 are isostructural,
which is a common phenomenon for 14DITFB and 14DBTFB co-crystals [26]. Unsur-
prisingly, the distances hardly change. For the halogen-π XB (d(Br1··· cg) = 3.639 Å,
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(C13-Br1···cg) = 173.0◦), caused by the smaller bromine, this results in an even weaker
intermolecular interaction.
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Figure 6. ORTEP plot of 6 with occurring halogen bonds I1···cg (3.639 Å), where labelled atoms are
part of the asymmetric unit.

The structure was solved with a disordered bromine atom (53:47). The disorder is
based on different possible interactions with the π-system, and the higher disorder here
compared to 5 is a direct consequence of the weaker XBs. Only the bromine atom was
refined separately since a refinement of the whole molecule requires a lot of restrains,
although in this case, the ellipsoids of F1 and F2 also indicate disorder.

2.7. Crystal Structure of CPA-12DITFB (2:1), 7

The CPA-12DITFB (2:1) co-crystal, 7, crystallises in a monoclinic space group C2/c
with CPA and 12DITFB in a 2:1 ratio (Figure 7). Strong and weak HBs hold the CPA
zig-zag-plane structure together, and π-stacking is the same as in the crystal structures 5
and 6. In contrast, here the space between the layers is filled with 12DITFB, which interacts
via weak XBs with the π-system of CPA (d(I1···cg) = 4.168 Å,
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(C11-I1···cg) = 155.4◦). The
12DITFB is locked in the centre in place by the rotational axis and cannot move in any way
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without losing symmetry. Therefore, it cannot move closer towards the π-systems of two
CPA molecules of the lattice structure. Again, the long XBs result from symmetry-related
needs and the slight geometrical mismatch.
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Figure 7. (a) ORTEP plot of 7 with occurring halogen bonds I1···cg (4.168 Å), where labelled atoms
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interconnected by 12DITFB.

3. Discussion

To give a broader context for the described XB patterns, in-depth research on inter-
molecular XB interactions of the three diiodotetrafluorobenzenes 12DITFB, 13DITFB, and
14DITFB in the Cambridge Structural Database (CSD) [46] has been performed. Therefore,
we analysed 553 structures and categorised the halogen bonds into four major groups,
which are discussed in the following section. The results are presented in Figure 8; all
search parameters are listed in the Supplementary Materials.
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are overlapping. These interactions are the classic strong XBs, which are well-known and
obviously often described [32]. Therefore, these interactions are the ones we expected for
our systems.

The area of XB interactions with aromatic systems is more extensive and diverse.
Therefore, to increase the comparability, only C6 aromatic systems were considered. The
distance (d), as well as the angle (
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interactions reach from 3.4 Å to 4.5 Å and from 50◦ to 180◦. A cut-off was made at 4.5 Å
since interactions at this point are almost impossible. The subgroup I···cg_opp within
this category contains 23 XB interactions of DITFBs, which on the opposing iodine are
interacting with nitrogen or oxygen. We had the hypothesis that they might behave with
less direction and be more focused on the I···O/N site; hence, the stronger interaction
with the electron-rich moieties should dominate the interaction pattern. But, interestingly,
based on the scatterplot, no difference is noticeable compared to the I···cg_w/o, and the
interactions are distributed in the whole green area. In contrast to that, I···cg_con indicates
interactions where the same iodine entity shares both I···O/N and I···cg. From the 70 XB
interactions found in the database, 62 are mostly caused by symmetry between “con” and
“opp”. However, this subgroup, as indicated by the black line, is almost solely found in the
region with longer distances and a lower angle. This is understandable considering the
competing strong XB acceptor. Overall, the ratio between I···O/N and I···cg given in the
literature is 4:1 (807:194). On the other hand, a more rigorous view on I···cg would move
the ratio even further in favour of I···O/N.

The nine XBs in the presented structures 1–7 are plotted as red stars in the scatterplot
above and summarised in Table 1 together with the van der Waals radii (vdW) [47] for
respective interactions. Three of these XBs are I···O/N and fit very well into analogue liter-
ature interactions (blue area). The remaining six interactions are I···cg_w/o or I···cg_opp
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cg = 155.4

vdW radii [47] d(I···N) = 3.53 d(I···O) = 3.50 d(I···C) = 3.68,
d(Br···C) = 3.53

Within this study, the co-crystallisation experiments with the basic sulphonamides
were performed first, resulting in structures 1–4. These structures share I···O/N and I···cg
equally, slightly overrepresenting the latter compared to the literature. Co-crystallisation
experiments on a real-world example, namely CPA, followed to elucidate if the same
result will occur for a more complex sulphonamide system. Interestingly, a strong I···O/N
interaction was not formed in either of the resulting structures, 5–7. At this point, we
began an in-depth analysis of the structures to clarify why the lessons learned from the
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small-model molecules are not transferable to the larger one and if there is a reason why
I···cg might be stronger than I···O/N.

Newly synthesised compounds 2 and 3 both consist of the same entities of NPMSA
and 14DITFB in different ratios, a phenomenon, which does not occur often for co-crystals.
In some sense, it can be seen as a polymorphic behaviour. Similar to known examples
of disappearing polymorphs [48,49], it was impossible to reproduce 3 in any possible
way, which shows that it is disfavoured. Both structures have an intermolecular inter-
action with the sulphone oxygen moiety, but while in 3 both iodines of the 14DITFB are
symmetry-equivalent, in 2 the second iodine interacts with a π-system. This comes from the
significantly stronger I···O. It is likely that in the process of lattice formation, after forming
this bond, it is sterically hindered since it needs to be elongated and rotated relative to
the sulphone moiety. Therefore, the next-best option is forming an XB with the π-system
favoured, leading to structure 2.

In contrast, co-crystal structures of CPA (5–7) show only XBs of the I···cg; CPA forming
zig-zag-planes which are intercalated with the halogen bond donors naturally occurs for
these structures. The backbone of these planes are strong hydrogen bond chains of the urea
moiety, which are well known in the literature [50–52]. However, the intermediate spaces
seem to be somewhat larger than ideal for the halo-benzenes. For structures 5 and 6 it
results in a longer I···cg bond than necessary, since the 14DITFB and 14DBTFB are secured
by symmetry. For 7 the situation is slightly different. The iodines are not in a para but in an
ortho position, and the aromatic centres are in a far-from-ideal position, resulting in the
longest XB (d(I1···cg) = 4.168 Å).

Let us go back to the initial thought that XBs in sulphonamide systems might prefer
π-systems over O/N-moieties as acceptors. More realistically, the HBs are stronger and,
therefore, the predominant building blocks are either catameric structures (1, 4–7) or dimeric
structures (2, 3). The halogens take what was left, following Ostwald’s rule of stages [53]. So
XBs with π-systems have become a common interaction within the investigated structures
against our expectations based on statistical knowledge and model sulphonamide co-crystal
structures.

4. Materials and Methods
4.1. Synthesis of NMBSA-14DITFB (1:1), 1

Single crystals of 1 suitable for SCXRD were synthesised by dissolving NMBSA (10 mg,
58 µmol) and 14DITFB (12 mg, 30 µmol) in 1 mL of chloroform. The solution evaporated
slowly at room temperature to give clear, colourless, plate-shaped crystals. The pure phase
was obtained by neat-grinding NMBSA (45 mg, 261 µmol) and 1,4DITFB (105 mg, 263 µmol)
in an MM 400 ball mill from Retsch with 20 Hz for 20 min.

4.2. Synthesis of NPMSA-14DITFB (1:1), 2

Single crystals of 2 suitable for SCXRD were obtained by dissolving NPMSA (10 mg,
58 µmol) and 14DITFB (12 mg, 30 µmol) in 1 mL of acetonitrile. The solution rapidly
evaporated at room temperature to give clear, colourless, plate-shaped crystals. The pure
phase was then obtained by neat-grinding NMBSA (40 mg, 234 µmol) and 14DITFB (94 mg,
234 µmol) in an MM 400 ball mill from Retsch with 20 Hz for 30 min.

4.3. Synthesis of NPMSA-14DITFB (2:1), 3

Pure-phase and single crystals of 3 suitable for SCXRD were synthesised by dissolving
NPMSA (10 mg, 58 µmol) and 14DITFB (12 mg, 30 µmol) in 1 mL of acetonitrile. Clear,
colourless block-shaped crystals were obtained after several days via slow evaporation at
room temperature. Phase 3 could not be reproduced under the same or several different
conditions. All attempts led to either 2 or a mixture of the base components.
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4.4. Synthesis of BSA-14DITFB (2:1), 4

Single crystals of 4 suitable for SCXRD were synthesised by dissolving BSA (10 mg,
42 µmol) and 14DITFB (9 mg, 22 µmol) in 1 mL of ethanol. The solution evaporated
slowly at room temperature for several days to form clear, colourless block-shaped crystals.
The pure phase was additionally obtained by neat-grinding BSA (80 mg, 343 µmol) and
14DITFB (69 mg, 172 µmol) in an MM 400 ball mill from Retsch with 20 Hz for 20 min.

4.5. Synthesis of CPA-14DITFB (2:1), 5

Clear, colourless block-shaped single crystals of 5 suitable for SCXRD were synthesised
by dissolving CPA (45 mg, 163 µmol) and 14DITFB (65 mg, 163 µmol) in 1 mL of methanol.
The solution rapidly evaporated at room temperature. The pure phase was obtained via
liquid-assisted grinding CPA (270 mg, 976 µmol) with 14DITFB (196 mg, 488 µmol) and
20 µL of methanol in an MM 400 ball mill from Retsch with 20 Hz for 20 min.

4.6. Synthesis of CPA-14DBTFB (2:1), 6

Single crystals of 6 suitable for SCXRD were synthesised by dissolving CPA (39 mg,
1000 µmol) and 14DBTFB (70 mg, 1672 µmol) in 1 mL of methanol, followed by rapid
evaporation at room temperature. Clear, colourless block-shaped crystals were formed
overnight. The pure phase was obtained via liquid-assisted grinding CPA (260 mg,
940 µmol), 14DBTFB (145 mg, 470 µmol), and 20 µL methanol in an MM 400 ball mill
from Retsch with 20 Hz for 20 min.

4.7. Synthesis of CPA-12DITFB (2:1), 7

Single crystals of 7 suitable for SCXRD were synthesised by fast solution evaporation
of CPA (45 mg, 163 µmol) and 12DITFB (65 mg, 163 µmol) dissolved in 1 mL of methanol
at room temperature. Clear, colourless block-shaped crystals were formed overnight. The
pure phase was obtained by liquid-assisted grinding CPA (500 mg, 1806 µmol), 1,2DITFB
(363 mg, 1806 µmol), and 20 µL methanol in an MM 400 ball mill from Retsch with 20 Hz
for 20 min.

4.8. SCXRD

Single Crystal X-ray Diffraction of 1–7: Suitable single crystals were selected and
mounted with silicon oil on a cryo-loop. Diffraction data were recorded with a Rigaku
XtaLAB Synergy S diffractometer with a Hybrid Pixel Array Detector. Diffraction data
were recorded withω-scans using a micro-focus sealed X-ray tube PhotonJet X-ray Source
(Cu (λ= 1.54184 Å) or Mo (λ = 0.71073 Å)), mirror monochromator. Cell refinement, data
reduction, and absorption correction were executed with CrysAlisPro [54]. OLEX2 [55] was
used to solve the crystal structures with SHELXS and refine it with SHELXL [56]. All non-
hydrogen positions were refined with anisotropic displacement parameters. Hydrogens
were positioned geometrically with Uiso(HCH(aliph.)) = 1.5 Ueq and Uiso(HCH(arom.)) = 1.2 Ueq,
except for amide hydrogens, which were positioned and refined freely. The crystallographic
data for structures 1–7 have been deposited at the Cambridge Crystallographic Data Centre
(CCDC 2258821-2258827). Important crystallographic data and refinement parameters for
systems 1–7 are listed in Appendix A, Tables A1–A7. Figures were prepared with Mercury
software (2022.3.0) [57].

4.9. PXRD

Powder X-ray Diffraction measurements were performed on a Rigaku Miniflex diffrac-
tometer in θ/2θ geometry from 5◦ to 50◦ at ambient temperature using Cu Kα radiation
(λ = 1.54182 Å) and a rotating sample holder. Simulations were carried out with Mercury
software [57]. All recorded PXRDs, including their comparison with the simulated ones,
are available in the Supplementary Materials.



Molecules 2023, 28, 5910 10 of 16

5. Conclusions

This study has presented four new co-crystal structures of archetypal sulphonamides
(1–4) and three co-crystal structures of the pharmaceutically used CPA (5–7). All presented
structures exhibit halogen bonds with para- or ortho-substituted halogen benzene deriva-
tives, but against prior expectations based on statistical analysis and model sulphonamides,
X···O/N was not formed in CPA multicomponent systems, but X···π XBs were. This is
not a sign of XBs favouring aromatic systems over these strong Lewis bases but rather
a consequence of competing hydrogen bonds (HBs). The sulphonamides formed strong
HB dimers and catamers with O/N, interacting with multiple sites. Therefore, XBs fall
behind and interact with the aromatic π-systems instead. In addition, some X···π XBs are
unusually long, which is caused by symmetry and rigid sulphonamide grids.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28155910/s1. Table S1: hydrogen-bond geometry for NMBSA-
14DITFB (1:1), 1.; Table S2: halogen-bond geometry for NMBSA-14DITFB (1:1), 1; Table S3: hydrogen-
bond geometry for NPMSA-14DITFB (1:1), 2; Table S4: halogen-bond geometry for NPMSA-14DITFB
(1:1), 2; Table S5: hydrogen-bond geometry for NPMSA-14DITFB (2:1), 3; Table S6: halogen-bond
geometry for NPMSA-14DITFB (2:1), 3; Table S7: hydrogen-bond geometry for BSA-14DITFB (2:1),
4; Table S8: halogen-bond geometry for BSA-14DITFB (2:1), 4; Table S9: hydrogen-bond geometry
for CPA-14DITFB (2:1), 5; Table S10: halogen-bond geometry for CPA-14DITFB (2:1), 5; Table S11:
hydrogen-bond geometry for CPA-14DBTFB (2:1), 6; Table S12: halogen-bond geometry for CPA-
14DBTFB (2:1), 6; Table S13: hydrogen-bond geometry for CPA-12DITFB (2:1), 7; Table S14: halogen-
bond geometry for CPA-12DITFB (2:1), 7; Figure S1: PXRDs of 1 as-synthesised (a.s.) and simulated
(sim.) based on the single-crystal structure; Figure S2: PXRDs of 2 as-synthesised (a.s.) and simulated
(sim.) based on the single-crystal structure; Figure S3: PXRDs of 3 as-synthesised (a.s.) and simulated
(sim.) based on the single-crystal structure; Figure S4: PXRDs of 4 as-synthesised (a.s.) and simulated
(sim.) based on the single-crystal structure; Figure S5: PXRDs of 5 as-synthesised (a.s.) and simulated
(sim.) based on the single-crystal structure; Figure S6: PXRDs of 6 as-synthesised (a.s.) and simulated
(sim.) based on the single-crystal structure; Figure S7: PXRDs of 7 as-synthesised (a.s.) and simulated
(sim.) based on the single crystal structure; List of CSD Search Parameters.
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Appendix A

Table A1. Crystallographic data and refinement details for structure 1.

Structure 1

Empirical formula C13H9F4I2NO2S
Moiety formula SO2NC7H9, C6F4I2

Formula weight [g/mol] 573.07

https://www.mdpi.com/article/10.3390/molecules28155910/s1
https://www.mdpi.com/article/10.3390/molecules28155910/s1
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Table A1. Cont.

Structure 1

Temperature [K] 100(1)
Crystal system orthorhombic

Space group Pna21
a, b, c [Å] 8.96170(10), 5.82430(10), 32.1685(5)
α, β, γ [◦] 90, 90, 90

Volume [Å3] 1679.06(4)
Z 4

$calc [g/cm3] 2.267
µ [mm−1] 31.045

F(000) 1072.0
Crystal size [mm] 0.14 × 0.07 × 0.03

Radiation CuKα (λ = 1.54184 Å)
2Θ range for data collection [◦] 5.494 to 157.628

Index ranges −11 ≤ h ≤ 10, −7 ≤ k ≤ 6, −40 ≤ l ≤ 40
Reflections collected 17831

Independent reflections 3313 (Rint = 0.0479, Rsigma = 0.0356)
Data/restraints/parameters 3313/2/213

Goodness of fit on F2 1.085
Final R indexes (I ≥ 2σ (I)) R1 = 0.0328, wR2 = 0.0871
Final R indexes (all data) R1 = 0.0335, wR2 = 0.0876

Largest diff. peak/hole [e Å−3] 1.27/−1.02
Flack parameter −0.021(8)

Table A2. Crystallographic data and refinement details for structure 2.

Structure 2

Empirical formula C13H9F4I2NO2S
Moiety formula SO2NC7H9, C6F4I2

Formula weight [g/mol] 573.07
Temperature [K] 100(1)
Crystal system monoclinic

Space group P21/n
a, b, c [Å] 5.6059(2), 16.1462(4), 18.2847(4)
α, β, γ [◦] 90, 93.083(2), 90

Volume [Å3] 1652.63(8)
Z 4

$calc [g/cm3] 2.303
µ [mm−1] 3.979

F(000) 1072.0
Crystal size [mm] 0.15 × 0.08 × 0.04

Radiation MoKα (λ = 0.71073 Å)
2Θ range for data collection [◦] 4.462 to 59.944

Index ranges −7 ≤ h ≤ 7, −19 ≤ k ≤ 20, −25 ≤ l ≤ 25
Reflections collected 15,672

Independent reflections 3945 (Rint = 0.0314, Rsigma = 0.0259)
Data/restraints/parameters 3945/0/213

Goodness of fit on F2 1.038
Final R indexes (I ≥ 2σ (I)) R1 = 0.0227, wR2 = 0.0527
Final R indexes (all data) R1 = 0.0275, wR2 = 0.0549

Largest diff. peak/hole [e Å−3] 0.72/−0.60
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Table A3. Crystallographic data and refinement details for structure 3.

Structure 3

Empirical formula C10H9F2INO2S
Moiety formula SO2NC7H9, 0.5(C6F4I2)

Formula weight [g/mol] 372.14
Temperature [K] 100(1)
Crystal system monoclinic

Space group P21/c
a, b, c [Å] 11.4061(3), 5.74650(10), 18.4124(4)
α, β, γ [◦] 90, 90.479(2), 90

Volume [Å3] 1206.80(5)
Z 4

$calc [g/cm3] 2.048
µ [mm−1] 22.656

F(000) 716.0
Crystal size [mm] 0.12 × 0.07 × 0.05

Radiation CuKα (λ = 1.54184 Å)
2Θ range for data collection [◦] 7.752 to 153.698

Index ranges −13 ≤ h ≤ 14, −4 ≤ k ≤ 6, −22 ≤ l ≤ 22
Reflections collected 8322

Independent reflections 2285 (Rint = 0.0386, Rsigma = 0.0328)
Data/restraints/parameters 2285/0/159

Goodness of fit on F2 1.072
Final R indexes (I ≥ 2σ (I)) R1 = 0.0272, wR2 = 0.0737
Final R indexes (all data) R1 = 0.0293, wR2 = 0.0752

Largest diff. peak/hole [e Å−3] 0.64/−0.72

Table A4. Crystallographic data and refinement details for structure 4.

Structure 4

Empirical formula C15H11NO2F2SI
Moiety formula SO2NC12H11, 0.5(C6F4I2)

Formula weight [g/mol] 434.21
Temperature [K] 100(1)
Crystal system monoclinic

Space group P21/n
a, b, c [Å] 10.6190(2), 6.03240(10), 23.9571(6)
α, β, γ [◦] 90, 95.244(2), 90

Volume [Å3] 1528.22(5)
Z 4

$calc [g/cm3] 1.887
µ [mm−1] 2.259

F(000) 844.0
Crystal size [mm] 0.258 × 0.212 × 0.097

Radiation MoKα (λ = 0.71073 Å)
2Θ range for data collection [◦] 4.068 to 60.228

Index ranges −14 ≤ h ≤ 14, −6 ≤ k ≤ 8, −32 ≤ l ≤ 28
Reflections collected 11,111

Independent reflections 3659 (Rint = 0.0273, Rsigma = 0.0269)
Data/restraints/parameters 3659/0/202

Goodness of fit on F2 1.057
Final R indexes (I ≥ 2σ (I)) R1 = 0.0203, wR2 = 0.0453
Final R indexes (all data) R1 = 0.0222, wR2 = 0.0461

Largest diff. peak/hole [e Å−3] 0.43/−0.34
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Table A5. Crystallographic data and refinement details for structure 5.

Structure 5

Empirical formula C13H13ClF2IN2O3S
Moiety formula SO3N2C10 H13Cl, 0.5(C6F4I2)

Formula weight [g/mol] 477.66
Temperature [K] 100(1)
Crystal system monoclinic

Space group P21/n
a, b, c [Å] 13.14950(10), 8.96850(10), 14.61480(10)
α, β, γ [◦] 90, 102.8420(10), 90

Volume [Å3] 1680.43(3)
Z 4

$calc [g/cm3] 1.888
µ [mm−1] 17.934

F(000) 932.0
Crystal size [mm] 0.51 × 0.18 × 0.18

Radiation CuKα (λ = 1.54184 Å)
2Θ range for data collection [◦] 10.256 to 158.07

Index ranges −15 ≤ h ≤ 15, −10 ≤ k ≤ 10, −17 ≤ l ≤ 17
Reflections collected 24,561

Independent reflections 3342 (Rint = 0.0630, Rsigma = 0.0275)
Data/restraints/parameters 3342/24/227

Goodness of fit on F2 1.063
Final R indexes (I ≥ 2σ (I)) R1 = 0.0380, wR2 = 0.0998
Final R indexes (all data) R1 = 0.0384, wR2 = 0.1002

Largest diff. peak/hole [e Å−3] 1.03/−2.26

Table A6. Crystallographic data and refinement details for structure 6.

Structure 6

Empirical formula C13H13BrClF2N2O3S
Moiety formula SO3N2C10H13Cl, 0.5(C6Br2F4)

Formula weight [g/mol] 430.67
Temperature [K] 100(1)
Crystal system monoclinic

Space group P21/n
a, b, c [Å] 13.1627(2), 8.95812(18), 14.5445(3)
α, β, γ [◦] 90, 105.584(2), 90

Volume [Å3] 1651.94(6)
Z 4

$calc [g/cm3] 1.732
µ [mm−1] 2.811

F(000) 860.0
Crystal size [mm] 0.4 × 0.1 × 0.1

Radiation MoKα (λ = 0.71073 Å)
2Θ range for data collection [◦] 4.878 to 52.742

Index ranges −16 ≤ h ≤ 16, −11 ≤ k ≤ 11, −18 ≤ l ≤ 18
Reflections collected 44,260

Independent reflections 3378 (Rint = 0.0345, Rsigma = 0.0128)
Data/restraints/parameters 3378/33/227

Goodness of fit on F2 1.168
Final R indexes (I ≥ 2σ (I)) R1 = 0.0342, wR2 = 0.0712
Final R indexes (all data) R1 = 0.0365, wR2 = 0.0722

Largest diff. peak/hole [e Å−3] 0.45/−0.37
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Table A7. Crystallographic data and refinement details for structure 7.

Structure 7

Empirical formula C13H13ClF2IN2O3S
Moiety formula SO3N2C10H13Cl, 0.5(C6F4I2)

Formula weight [g/mol] 477.66
Temperature [K] 100(1)
Crystal system monoclinic

Space group C2/c
a, b, c [Å] 16.9967(2), 8.90250(10), 22.2511(3)
α, β, γ [◦] 90, 95.9650(10), 90

Volume [Å3] 3348.65(7)
Z 8

$calc [g/cm3] 1.895
µ [mm−1] 2.231

F(000) 1864.0
Crystal size [mm] 0.51 × 0.326 × 0.206

Radiation MoKα (λ = 0.71073 Å)
2Θ range for data collection [◦] 4.82 to 60.264

Index ranges −23 ≤ h ≤ 22, −12 ≤ k ≤ 12, −30 ≤ l ≤ 31
Reflections collected 41,319

Independent reflections 4452 (Rint = 0.0259, Rsigma = 0.0112)
Data/restraints/parameters 4452/0/217

Goodness of fit on F2 1.068
Final R indexes (I ≥ 2σ (I)) R1 = 0.0178, wR2 = 0.0440
Final R indexes (all data) R1 = 0.0187, wR2 = 0.0444

Largest diff. peak/hole [e Å−3] 0.47/−0.57
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