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Abstract: The solvothermal reactions of LnCl3·6H2O and MCl2·6H2O (M = Co, Ni) with 2,2′-diphenol
(H2L1) and 5,7-dichloro-8-hydroxyquinoline (HL2) gave three 3d–4f heterometallic wheel-like nano-
clusters [Ln7M6(L1)6(L2)6(µ3-OH)6(OCH3)6Cl(CH3CN)6]Cl2·xH2O (Ln = Dy, M = Co, x = 3 for 1;
Ln = Dy, M = Ni, x = 0 for 2; Ln = Tb, M = Ni, x = 0 for 3) with similar cluster structure. The innermost
Ln(III) ion is encapsulated in a planar Ln6 ring which is further embedded in a chair-conformation
M6 ring, constructing a Russian doll-like 3d–4f cluster wheel Ln(III)⊂Ln6⊂M6. 2 and 3 show obvious
slow magnetic relaxation behavior with negligible opening of the magnetic hysteresis loop. Such a
Russian doll-like 3d–4f cluster wheel with the lanthanide disc isolated by transition metallo-ring is
rarely reported.

Keywords: 3d-4f cluster; wheel; slow magnetic relaxation; Russian doll

1. Introduction

Research on 3d–4f single-molecule magnets (SMMs) has mushroomed since the first
report of 3d–4f SMM by Matsumoto’s group in 2004 [1–5]. The fundamental interest
in SMMs is the potential applications in molecular spintronics and nanoscale magnetic
devices [6,7]. As we all know, lanthanide ions such as Dy(III) and Tb(III) have a high-spin
ground state and large uniaxial magnetic anisotropy [6,8–12]. In 2021, two chiral Dy(III)
macrocyclic complexes with a record anisotropy barrier exceeding 1800 K and a relaxation
time approaching 2500 s at 2.0 K for all known air-stable SMMs were obtained. The nearly
perfect axiality of the ground Kramers doublet (KD) enables the open hysteresis loops up
to 20 K in the magnetically diluted sample [13]. Different from 4f ions, the intrinsic crystal
field effects of transition metal ions are strong but with much weaker spin–orbit coupling,
which limits the effective orbital contribution of a single transition metal ion and leads to
weak magnetic anisotropy [14–18]. Therefore, the magnetic anisotropies of 3d–4f SMMs are
largely contributed by 4f ions. However, the paramagnetic 3d metal ions such as Co2+ and
Mn3+ can help to effectively regulate magnetic exchange in 3d–4f SMMs [19–22]. Thus, the
combination of 3d–4f metal ions can not only achieve high ground state spin and strong
magnetic anisotropy, but also enhance the magnetic exchange between metal ions, which is
facile for obtaining SMMs with superior performance.

In the past decade, a lot of efforts have been made in the development of 3d–4f SMMs,
achieving rich and colorful structures with the aim to improve SMM performances. In
2007, a four-shell, nesting doll-like 3d–4f cluster containing 108 metal ions was reported.
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The metal ions are arranged into an unprecedented four-shell nesting doll-like structure
of Ni(II)6Gd2(III)⊂Gd20(III)⊂Gd32(III)⊂Ni(II)48 to generate a giant cluster [23]. In 2020,
the group of Jun-Liang Liu reported one Dy-NC-Fe-CN-Dy SMM and one Dy-NC-Co-
CN-Dy SMM with a record barrier of 659 and 975 K among d–f SMMs [24]. However,
the performances of these reported SMMs are still far from expected. Furthermore, there
are a lot of other issues to be solved, such as the effective regulation and enhancement
of magnetic coupling between 3d and 4f metal ions and the explanation of the relaxation
mechanism [25–28]. Therefore, it is still of great significance to design and synthesize more
3d–4f SMMs with novel structures to improve SMM performances and to understand the
magneto–structural correlation.

As well known, the performances of these 3d–4f SMMs are closely correlated with
their structures including the coordination geometry of single lanthanide ion which tunes
the anisotropy of single lanthanide ion, as well as the topological arrangement of metal
ions in the cluster which adjusts the synergistic effect of metal ions and intermetallic in-
teractions in the cluster. Ligands play an important role in obtaining expected aesthetic
structures [29–34], which requires the appropriate selection of bridging groups for tuning
intermetallic interactions, spacers between the bridging groups for further adjusting the in-
termetallic interactions through changing the intermetallic distances, and non-coordinating
groups for controlling the growth of targeted clusters in dimensionalities.

With an overall consideration of all the above-mentioned information, we selected
two ligands of 2,2′-diphenol (H2L1) and 5,7-dichloro-8-hydroxyquinoline (HL2) to syn-
ergistically construct 3d-4f clusters as depicted in Scheme 1. We succeeded in obtaining
three 3d–4f heterometallic wheel-like nano-clusters [Ln7M6(L1)6(L2)6(µ3-OH)6(OCH3)6Cl-
(CH3CN)6]Cl2·xH2O (Ln = Dy, M = Co, x = 3 for 1; Ln = Dy, M = Ni, x = 0 for 2;
Ln = Tb, M = Ni, x = 0 for 3), which show similar Russian doll-like 3d-4f wheel skeleton of
Ln(III)⊂Ln6⊂M6. Their structures and magnetic properties were investigated in detail.

Molecules 2023, 28, x FOR PEER REVIEW 2 of 10 
 

 

In the past decade, a lot of efforts have been made in the development of 3d–4f SMMs, 
achieving rich and colorful structures with the aim to improve SMM performances. In 
2007, a four-shell, nesting doll-like 3d–4f cluster containing 108 metal ions was reported. 
The metal ions are arranged into an unprecedented four-shell nesting doll-like structure 
of Ni(II)6Gd2(III)⸦Gd20(III)⸦Gd32(III)⸦Ni(II)48 to generate a giant cluster [23]. In 2020, the 
group of Jun-Liang Liu reported one Dy-NC-Fe-CN-Dy SMM and one Dy-NC-Co-CN-Dy 
SMM with a record barrier of 659 and 975 K among d–f SMMs [24]. However, the perfor-
mances of these reported SMMs are still far from expected. Furthermore, there are a lot of 
other issues to be solved, such as the effective regulation and enhancement of magnetic 
coupling between 3d and 4f metal ions and the explanation of the relaxation mechanism 
[25–28]. Therefore, it is still of great significance to design and synthesize more 3d–4f 
SMMs with novel structures to improve SMM performances and to understand the mag-
neto–structural correlation. 

As well known, the performances of these 3d–4f SMMs are closely correlated with 
their structures including the coordination geometry of single lanthanide ion which tunes 
the anisotropy of single lanthanide ion, as well as the topological arrangement of metal 
ions in the cluster which adjusts the synergistic effect of metal ions and intermetallic in-
teractions in the cluster. Ligands play an important role in obtaining expected aesthetic 
structures [29–34], which requires the appropriate selection of bridging groups for tuning 
intermetallic interactions, spacers between the bridging groups for further adjusting the 
intermetallic interactions through changing the intermetallic distances, and non-coordi-
nating groups for controlling the growth of targeted clusters in dimensionalities. 

With an overall consideration of all the above-mentioned information, we selected 
two ligands of 2,2′-diphenol (H2L1) and 5,7-dichloro-8-hydroxyquinoline (HL2) to syner-
gistically construct 3d-4f clusters as depicted in Scheme 1. We succeeded in obtaining three 
3d–4f heterometallic wheel-like nano-clusters [Ln7M6(L1)6(L2)6(µ3-OH)6(OCH3)6Cl-
(CH3CN)6]Cl2·xH2O (Ln = Dy, M = Co, x = 3 for 1; Ln = Dy, M = Ni, x = 0 for 2; Ln = Tb, M 
= Ni, x = 0 for 3), which show similar Russian doll-like 3d-4f wheel skeleton of 
Ln(III)⸦Ln6⸦M6. Their structures and magnetic properties were investigated in detail. 

 
Scheme 1. Preparation of 1–3.



Molecules 2023, 28, 5906 3 of 10

2. Results and Discussion

The sample purities for the titled clusters were confirmed by their experimental
powder X-ray diffraction (PXRD) curves which fit well with their simulated ones from
their structures as shown in Figure S1. The infrared spectra of 1–3 were recorded, which
display similar features. Thus, only the infrared spectrum of 1 is presented in Figure 1 and
discussed here in detail with the infrared spectra of 2 and 3 shown in Figure S2. It shows
bands at 1583, 1492, 1434, 1372, 1289, and 1245 cm−1 for C=C and C–C stretching vibrations
of the quinoline and diphenyl skeletons, 1448 cm−1 for C=N stretching vibration, 1105 cm−1

for C–O stretching vibration, and 1042 and 868 cm−1 for C–Cl stretching vibration [35].
This information supports the composition of 1. The structures of titled clusters were
determined from single crystal X-ray diffraction analysis with related data shown in
Figures 2, S3 and S4 and Tables S1–S4.
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Figure 1. Infrared spectrum of 1.

2.1. Crystal Structures

The structural analysis results revealed a space group of Pa-3 (cubic system) for 1,
and R-3 (trigonal system) for 2 and 3. But they present similar composition and structure
with the formula of [Ln7M6(L1)6(L2)6(µ3-OH)6(OCH3)6Cl(CH3CN)6]Cl2·xH2O (Ln = Dy,
M = Co, x = 3 for 1; Ln = Dy, M = Ni, x = 0 for 2; Ln = Tb, M = Ni, x = 0 for 3), in which
seven Ln(III) ions and six octahedral M(II) ions are linked by six (L1)−, six (L2)2−, six OH−,
and six CH3O− ligands. Thus, only the structure of 1 was discussed here in detail as an
example for further understanding the structural features of the titled 3d–4f heterometallic
wheel-like nano-clusters as shown in Figure 2a. Dy1 in 1 is eight-coordinated in a square
antiprism geometry as revealed by the SHAPE calculation with the eight O atoms provided
by two OH−, two CH3O−, one two (L1)2−, and two (L2)− ligands. The central Dy2 ion in 1
is disordered over two symmetry-related positions in an occupancy ratio of 0.5:0.5. The
Co(II) ions in 1 show severely distorted octahedral geometries with the two N and four O
atoms from one CH3CN, one CH3O−, one (L2)− and two (L1)2− ligands. Each (L1)2− ligand
bridges one Dy(III) and two Co(II) ions with each of its two phenolic O atoms linking one
Dy(III) and one Co(II) ion, presenting a bridging mode of µ3-η1:η1:η2. Each (L2)− ligand
chelates one Co(II) ion and uses its phenolic O atom to link this Co(II) ion and two Dy(III)
ions, showing a bridging mode of µ3−η1:η1:η2.
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The coordination unit of [Dy7Co6(L1)6(L2)6(µ3-OH)6(OCH3)6Cl(CH3CN)6]2+ can be
divided into three shells. The first shell is the peripheral Co6 ring (Figure 2b) which is
formed from six Co(II) ions linked by six (L1)2− ligands with each Co(II) further chelated
by one (L2)2−. The second shell is the Dy6 ring (Figure 2c), in which each neighboring
two Dy(III) ions are triply bridged by three O atoms from one OH−, one CH3O−, and
one (L2)− ligand. The Co6 and Dy6 rings are consolidated through six (L1)2− and six
(L2)2− ligands, leading to the construction of a Russian doll-like Co6Dy6 metallacrown
ether (Figure 2d) with the Dy6 ring embedded in the Co6 ring. Interestingly, the Dy6 ring
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presents a planar conformation; however, the Co6 ring shows a chair conformation as
depicted in Figure 2e. The third shell is the innermost Dy(III) ion which is disordered
over two positions and is situated on the axial position of the S6 axis in the molecule. It
means that the innermost Dy(III) ion is encapsulated by a Dy6 metallacrown ether which
is further encapsulated by a Co6 ring, forming a Russian doll-like 3d–4f Cluster wheel
symbolized as “Dy(III)⊂Dy6⊂Co6” with the inner “Dy(III)⊂Dy6” disc protected by a Co6
ring. It represents the first kind of Russian doll-like cluster wheel with a lanthanide disc
encapsulated in a transition metal ring, although a lot of 3d–4f clusters have already been
reported with diverse skeletons such as icosahedron, icosidodecahedron, and ring [36–40].

2.2. Magnetic Properties

Under a direct current (DC) magnetic field of 1000 Oe, the change of molar magnetic
susceptibilities of 1–3 (Figure 3) with temperature (2–300 K) was measured. The χmT
values of 1–3 at 300 K are 109.52, 105.40, and 88.69 cm3 K mol−1, respectively, which
approach the theoretically calculated values of 110.44, 105.19, and 88.74 cm3 K mol−1 for
the corresponding free six transition metal ions (with g = 2) and seven lanthanide ions.
The value for compound 1 is higher than that expected due to the orbital contribution of
the Co(II) ions. With the temperature decreasing, the χmT values of 1–3 decrease slowly
in the high-temperature range and then quickly in the low-temperature range, with the
lowest values of 61.00, 94.31, and 54.29 cm3 K mol−1 at 2 K for 1 and 3, respectively.
This kind of behavior revealed in their χmT versus T curves is largely due to thermal
depopulation of the Mj sublevels of the lanthanide ions arising from the splitting of the
spin–orbit coupling ground term by the ligand crystal field and dipole–dipole interactions
between molecules [41].
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The isothermal magnetizations of 1–3 were measured as a function of field at different
temperatures of 2, 3, and 5 K, which were plotted as M versus H and M versus H/T curves
(Figures S5–S7). Their magnetizations increase fast at the beginning and then slowly with
the increasing field as revealed in both isothermal M versus H and M versus H/T curves.
Furthermore, their M versus H/T curves recorded at different temperatures do not overlap
in the high H/T range. These features help us to conclude the possible existence of magnetic
anisotropy, as well as possible low-lying excited states of their metal ions. The further
hysteresis measurements at 2 K for 1–3 (Figure S8) revealed just imperceptible hysteresis
loops [42,43].

Subsequently, the dynamic magnetic properties of 1–3 were studied in detail by mea-
suring their temperature- and frequency-dependent in-phase (χ′) and out-of-phase (χ′′) al-
ternating current (ac) magnetic susceptibilities. It revealed in Figure S9 nearly zero χ′′ value
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and obvious temperature dependence for the χ′ value with indistinguishable frequency
dependency of χ′ value for 1 under zero dc field. However, non-zero χ′′ value and obvious
temperature dependence χ′ value were observed for 2 and 3 (Figures 4, S10 and S11) un-
der zero dc field together with obvious frequency dependency of χ′ value. But no peaks
were found for the χ′′-v curves of all title clusters probably due to the quantum tunneling
effect (QTM). No appropriate external dc fields were found for the suppression of QTM.
Nevertheless, all of these can confirm the presence of slow magnetic relaxation in 2 and
3. Considering the fact of absence of maximums in their χ′′-v curves, the barriers of 2
and 3 were estimated by fitting their ln(χ′′/χ′) versus 1/T curves (Figure S12) based on
the equation of ln(χ′′/χ′) = ln(2πvτ0) + Ueff/kBT [44–46], giving Ueff/kB ≈ 0.53(8) K and
τ0 ≈ 7.6(2) × 10−6 for 2, and Ueff/kB ≈ 0.38(8) K and τ0 ≈ 8.0(4) × 10−6 for 3.
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The magnetic interactions between Ln(III) ions in 2 and 3, as well as between Ln(III)
ion and Ni(II) ion, are presumably weak because the 4f orbitals of Ln(III) ions are deeply
buried and shielded by 5p and 6s orbitals and, thus, cannot effectively overlap with the
valence orbitals of bridging atoms [47]. Furthermore, the Ni(II) ions in 2 and 3 are well
separated by the (L1)2− ligand with a separation of 6.0119(1) and 6.0342(1) Å, which does not
favor effective magnetic interaction between Ni(II) ions. The weak intermetallic magnetic
interaction, together with the coordination symmetries of single metal ions (especially
Dy(III) and Tb(III) ion) in 2 and 3, cannot induce enough coercive fields for suppressing
QTM, thus leading to poor magnetic performance of 2 and 3, such as the negligible opening
of magnetic hysteresis loop and low barrier [48–50].
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3. Materials and Methods
3.1. General Materials and Methods

All chemical reagents were commercially obtained and used directly. The Fourier
transform infrared (FT-IR) data of these complexes were collected on PerkinElmer Spectrum
One FT-IR spectrometer using the corresponding KBr Pellets in the wavenumber range of
4000–400 cm−1. The powder X-ray diffraction (PXRD) measurements were carried out on a
Rigaku D/max 2500 v/pc diffractometer equipped with Cu-Kα radiation (λ = 1.5418 Å) at
40 kV and 40 mA, with a step size of 0.02◦ in 2θ and a scan speed of 5 ◦min−1. Elemental
analyses for C, H, and N for the four complexes were performed on an Elementar Micro
cube C, H, N elemental analyzer.

3.2. Synthesis

3.2.1. Synthesis of [Dy7Co6(L1)6(L2)6(µ3-OH)6(OCH3)6Cl(CH3CN)6]Cl2·3H2O (1)

A methanol solution (1 mL) of DyCl3·6H2O (0.05 mmol, 0.0185 g), CoCl2·6H2O
(0.05 mmol, 0.0119 g), H2L1 (0.1 mmol, 0.0186 g), and an acetonitrile solution (1 mL) of HL2

(0.05 mmol, 0.0107 g) were mixed and subsequently added into an 18 cm-long Pyrex tube
with one end closed. After the following addition of trimethylamine (0.25 mmol, 35 µL), the
Pyrex tube was sealed under vacuum and put in an oven at 90 ◦C. After a reaction duration
of 1 day, it was slowly cooled to room temperature, giving red crystals with a yield of 31%
(calculated based on Dy). Elemental analysis (%) (C144H120N12O33Cl15Co6Dy7), calculated:
C, 37.85, H, 2.65, and N, 3.68. Found: C, 37.53, H, 2.76, and N, 3.85. IR (KBr pellet, cm−1,
Figure 1): 3410 s, 3054 w, 2926 m, 2928 m, 1583 w, 1492 s, 1448 s, 1434 s, 1372 s, 1289 s,
1245 m, 1105 w, 1042 m, 868 m, 756 s, 673 m, and 632 m.

3.2.2. Synthesis of [Dy7Ni6(L1)6(L2)6(µ3-OH)6(OCH3)6Cl(CH3CN)6]Cl2 (2)

The synthesis of 2 is similar to that for 1 using NiCl2·6H2O instead of CoCl2·6H2O.
The yield for 2 is about 22% (calculated on the amount of Dy). Elemental analysis (%)
(C144H114N12O30Cl15Ni6Dy7), calculated: C, 38.32, H, 2.55, and N, 3.72. Found: C, 37.98, H,
2.85, and N, 3.52. IR (KBr pellet, cm−1, Figure S2): 3417 s, 3056 w, 3009 w, 2973 w, 2937 w,
1582 w, 1492 s, 1462 s, 1433 s, 1364 s, 1289 s, 1251 m, 1109 w, 1041 m, 868 m, 748 s, 665 m,
and 607 m.

3.2.3. Synthesis of [Tb7Ni6(L1)6(L2)6(µ3-OH)6(OCH3)6Cl(CH3CN)6]Cl2 (3)

The synthesis of 3 is similar to that for 2 using TbCl3·6H2O instead of DyCl3·6H2O.
The yield for 3 is about 25% (calculated on the amount of Dy). Elemental analysis (%)
(C144H114N12O30Cl15Ni6Tb7), calculated: C, 38.53, H, 2.56, and N, 3.74. Found: C, 38.78, H,
2.50, and N, 3.52. IR (KBr pellet, cm−1, Figure S2): 3590 w, 3049 w, 3006 w, 2967 w, 2930 w,
2899 w, 2808 w, 2290 w, 1583 w, 1492 s, 1457 s, 1432 s, 1364 s, 1282 s, 1245 m, 1109 w, 1034 m,
868 m, 756 s, 665 m, 635 m, and 605 m.

4. Conclusions

In summary, we succeeded in obtaining three similar 3d–4f heterometallic wheel-like
Ln7M6 nano-clusters, in which seven square antiprismatic Dy(III) ions and six octahedral
Co(II) ions are linked by six (L1)−, six (L2)2−, six OH−, and six CH3O− ligands. The (L1)2−

ligand bridges one Dy(III) and two Co(II) ions with each of its two phenolic O atoms
linking one Dy(III) and one Co(II) ion. Each (L2)− ligand chelates one Co(II) ion and uses
its phenolic O atom to link this Co(II) ion and two Dy(III) ions. The most interesting
is that the innermost Ln (III) ion is encapsulated in a planar Ln6 ring which is further
embedded in a chair-conformation M6 ring, constructing a Russian doll-like 3d-4f cluster
wheel Ln(III)⊂Ln6⊂M6. This kind of Russian doll-like cluster wheel with a lanthanide disc
encapsulated in a transition metal ring is rarely reported. Magnetic tests showed that both
2 and 3 show obvious slow magnetic relaxation behavior with negligible opening of the
magnetic hysteresis loop.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28155906/s1. Figure S1. (a), (b), (c) correspond to the powder
diffraction patterns of complexes 1–3, respectively. Figure S2. Infrared spectra of complexes 2 (left)
and 3 (right). Figure S3. (a) Coordination mode diagram of Dy(III); (b) Coordination mode diagram
of Co(II); (c) Ligand (L1)2− coordination pattern diagram; (d) Coordination pattern of ligand (L2)−.
Figure S4. Metal skeleton of Co6Dy6 metallacrown ether in 1. Figure S5. M-H (a) and M-HT−1 (b)
curves of 1. Figure S6. M-H (a) and M-HT−1 (b) curves of 2. Figure S7. M-H (a) and M-HT−1 (b) curves
of 3. Figure S8. Hysteresis curves measured at 2 K for 1 (a), 2 (b), 3 (c) with the scan rate of 200 Oe/s.
Figure S9. Temperature-dependent (a) and frequency-dependent (b) ac magnetic susceptibilities
under zero dc field for 1. Figure S10. Temperature-dependent (a) and frequency-dependent (b)
ac magnetic susceptibilities under zero dc field for 2. Figure S11. Temperature-dependent (a) and
frequency-dependent (b) ac magnetic susceptibilities under zero dc field for 3. Figure S12. (a) and
(b) correspond to ln(χ′′/χ′) versus 1/T plots for complexes 2 and 3, respectively. Table S1. Crystal
data and structural refining parameters for 1–3. Table S2 Selected bond lengths (Å) and angles (º) for
complex 1. Table S3 Selected bond lengths (Å) and angles (º) for complex 2. Table S4 Selected bond
lengths (Å) and angles (º) for complex 3.
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