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Abstract: Breast cancer patients are characterized by the oncobiotic transformation of multiple
microbiome communities, including the gut microbiome. Oncobiotic transformation of the gut
microbiome impairs the production of antineoplastic bacterial metabolites. The goal of this study
was to identify bacterial metabolites with antineoplastic properties. We constructed a 30-member
bacterial metabolite library and screened the library compounds for effects on cell proliferation
and epithelial-mesenchymal transition. The metabolites were applied to 4T1 murine breast can-
cer cells in concentrations corresponding to the reference serum concentrations. However, yric
acid, glycolic acid, D-mannitol, 2,3-butanediol, and trans-ferulic acid exerted cytostatic effects, and
3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, and vanillic acid exerted hyperproliferative
effects. Furthermore, 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, 2,3-butanediol, and hy-
drocinnamic acid inhibited epithelial-to-mesenchymal (EMT) transition. We identified redox sets
among the metabolites (D-mannitol—D-mannose, 1-butanol—butyric acid, ethylene glycol—glycolic
acid—oxalic acid), wherein only one partner within the set (D-mannitol, butyric acid, glycolic acid)
possessed bioactivity in our system, suggesting that changes to the local redox potential may affect
the bacterial secretome. Of the nine bioactive metabolites, 2,3-butanediol was the only compound
with both cytostatic and anti-EMT properties.

Keywords: high content screening; butyric acid; vanillic acid; glycolic acid; D-mannitol;
trans-ferulic acid; 2,3-butanediol; 4-hydroxybenzoic acid; hydrocinnamic acid; 3-hydroxyphenylacetic
acid; epithelial-mesenchymal transition; proliferation; bacterial metabolite; dysbiosis; breast cancer;
metabolite signaling; microbiome; secretome

1. Introduction

Breast cancer is the most frequent cancer in women [1,2]. Breast cancer is characterized
by the disturbance of multiple microbiome compartments, termed oncobiosis [3]. Onco-
biosis affects the microbiomes of breast tissue [4,5], milk ducts [6], the tumor’s inherent
microbiome [7–21], the distal gut [22–42], and the urinary tract [13,43]. Oncobiosis support
of breast tumors is multifaceted. (1) Bacteria colonize the tumor tissue; (2) the immune
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system favors the tolerogenic state [44]; and (3) the gut microbiome’s capacity to produce
antitumor metabolites is suppressed [29–31,45–47].

The gut microbiome has a large capacity to produce a diverse set of bioactive metabo-
lites. These low-molecule-weight biomolecules can enter the systemic circulation and reach
different cell types in the human body, including cancer cells. This process is similar to the
action of hormones or paracrine signaling molecules. The first such “metabolite” was iden-
tified more than 50 years ago [48] using the observation that the gut oncobiome in breast
cancer has a larger capacity to reactivate conjugated estrogens via beta-glucuronidases
than the gut eubiome. Multiple cytostatic metabolites produced by the gut eubiome have
been identified in breast cancer, including lithocholic acid [29,49], cadaverine [30], indole
metabolites [31,32], and short-chain fatty acids [50,51]. These metabolites exert antineoplas-
tic effects, including modulation of cell proliferation and epithelial-mesenchymal transition
(EMT) [44]. As stated earlier, the metabolic capacity of the microbiome is suppressed in
breast cancer, and the capacity to produce known antineoplastic metabolites decreases in
breast cancer [29–31,45–47].

Given the enormous and diverse metabolic capacity of the (gut) microbiome, other
bacterial metabolites may also possess biological activity toward breast cancer cells. The
goal of this study was to identify bacterial metabolites with antineoplastic activities in
breast cancer.

2. Results
2.1. Metabolite Library Construction

Bacterial metabolites that interfere with human metabolism were identified via a liter-
ature search. The metabolites identified using this search were curated to eliminate falsely
identified metabolites (i.e., not produced in bacteria). The serum reference concentration of
the metabolites was established using literature searches (see Table 1).

A recent report [82] showed that tumors impact gut motility by modulating beta-
adrenergic receptors. Varying the speed of passage likely changes the redox environ-
ment of the GI tract [83], suggesting that the redox state of redox-labile metabolites may
change in breast cancer patients. Therefore, the redox partner of the applicable metabolites
(mannose—D-mannitol, TMA—TMAO, 1-butanol—butyric acid, ethylene glycol—glycolic
acid, oxalic acid) was introduced into the library, and the serum reference concentrations
were established using a literature search. The literature search did not yield results for
ethylene glycol; therefore, the same concentration was used as the redox partner with a
known reference concentration. The metabolites, serum reference concentrations, treatment
concentrations, and corresponding literature are listed in Table 1.

2.2. Development of High-Throughput Methods for Assessing Cell Proliferation

In previous studies, we identified and characterized a set of bacterial metabolites with
cytostatic activity [29–32]; however, the antiproliferative activity of the metabolites was
limited, and the SRB proliferation assay was not ideal for obtaining high-precision data
under these conditions. Therefore, we tested two Image-analysis-based nuclei counting
methods. Image segmentation and nuclei counting were performed using CellProfiler in
one method, and segmentation was performed using a deep learning (DL)-based method
developed by us, followed by nuclei counting using CellProfiler in the second method.

The SRB assay was unreliable at low cell densities in the range of 100–300 cells/well.
Furthermore, due to the inherent limitations of photometry, values above an absorbance
of 1.0 are not reliable, limiting the maximum number of cells that can be measured to
10,000–30,000 cells (Figure 1A). Values above an absorbance of 1.0 can be measured after
dilution, which may introduce errors. Image-analysis-based assays have a larger dynamic
range than the SRB assay. Both image-analysis-based assays were reliable for measuring
low cell numbers (Figure 1A). The analysis-based assays were also able to detect up to
100,000 cells/well. On the high end of the scale, the DL-based method was superior to the
CellProfiler’s built-in method (Figure 1A). In contrast to conventional methods, semantic
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segmentation models do not require parameter adjustment for every run. Of note, the
image-analysis-based assays identified fewer cells than introduced if the number of plated
cells was 1000–10,000. Visual inspection of the wells revealed that, at these densities,
cells adhered less to plates, leading to lower cell numbers. Hence, cell numbers did
indeed decrease in the culture plates (Figure 1B), suggesting that the image-analysis-based
assays are precise. Based on these results, we applied the image-analysis-based assays in
subsequent experiments.

Table 1. The specifics of the metabolites introduced to the metabolite library.

Metabolite Name Solvent Catalog Number Serum Reference
Concentrations (µM) Applied Concentrations (µM)

1 1-Butanol PBS Sigma B7906-500ML 0–0.27 [52] 0.005, 0.015, 0.044, 0.13, 0.4

2 1-Propanol PBS Sigma 96566-5ML-F 0–0.8 [52] 0.05, 0.1, 0.2, 0.4, 0.8

3 2,3-butanediol PBS Sigma B84904 0.5–0.9 [53] 0.48, 0.56, 0.66, 0.77, 0.9

4 3,4-dihydroxyphenyl acetic acid PBS Sigma 850217-14 0.0102–0.104 [54,55] 0.01, 0.018, 0.032, 0.058, 0.104

5 3-Hydroxyphenylacetic acid PBS Sigma H49901 0.11–0.174 [54] 0.106, 0.120, 0.136, 0.154, 0.174

6 3-Hydroxypropionic acid PBS Sigma 792659-1G 3, 6, 8 (individual values) [56] 0.5, 1, 2, 4, 8

7 4-aminobenzoic acid EtOH Sigma A9878-5G 5.01–32.0 [57] 0.3, 1.2, 3.6, 10.8, 32.4

8 4-hydroxybenzoic acid PBS Sigma 8218140250 0.019–0.035 [54] 0.019, 0.022, 0.026, 0.03, 0.035

9 4-Hydroxyphenylacetic acid PBS Sigma H50004-54 0.283–0.61 [54] 0.28, 0.36, 0.41, 0.5, 0.61

10 Acetic acid PBS VWR UN2789 23–254.4 [52,58–61] 15, 30, 60, 120, 240

11 Allantoin DMSO Sigma 05670 1.0–24.0 [62–64] 0.99, 2.2, 4.9, 10.8, 24

12 Butyric acid PBS Sigma B103500-5ML 1.39–14.15 [59–61] 1, 2, 4, 8, 16

13 D-alanine PBS Sigma A7377-5G 0–0.77 [65] 0.048, 0.96, 0.193, 0.385, 0.77

14 D-glutamic acid PBS Sigma G1001-1G 7.42–14.6 [65] 7.28, 8.66, 10.31, 12.27, 14.6

15 D-mannitol PBS Sigma M4125-10MG
no report, same

concentrations as
for D-mannose

6.25, 12.5, 25, 50, 100

16 D-mannose DMSO no data 13–73.87 [66–68] 6.25, 12.5, 25, 50, 100

17 Ethylene glycol PBS no data no data, toxic (1.56 mg/kg) 1, 3, 9,27, 81

18 Formic acid PBS Sigma F0507-500ML 11.84–224.5 [69] 10, 30, 90, 270, 810

19 Glycolic acid PBS Sigma 124737 6.1–69 [56,70] 1, 3, 9,27, 81

20 Hippuric acid PBS Sigma 112003 1.5–21.2 [54,71] 0.024, 0.12, 0.6, 3, 15

21 Hydrocinnamic acid EtOH Sigma 135232-5G 0.131–0.354 [72] 0.128, 0.165, 0.213, 0.274, 0.354

22 Isobutyric acid PBS Sigma I1754-100ML 1.02–14.15 [59,61] 1.02, 1.97, 3.80, 7.33, 14.15

23 L-pipecolic acid PBS Sigma P2519 1.2–3.72 [73] 0.25, 0.5, 1, 2, 4

24 oxalic acid PBS Sigma 75688 6.5–35.5 [74,75] 6.5, 9.9, 15.2, 23.2, 35.5

25 Propionic acid PBS Sigma P1386-1L 4.86–15.33 [59–61] 1.25, 2.5, 5, 10, 20

26 Shikimic acid DMSO Sigma S5375-10MG 0.03–0.23 [76] 0.01, 0.03, 0.09, 0.27, 0.81

27 trans-ferulic acid DMSO Sigma 52229 0.04–15.7 [54,71] 0.016, 0.08, 0.4, 2, 10

28 Trimethylamine (TMA) PBS Sigma 92260 0.3–14.44 [77,78] 0.3, 0.79, 2.1, 5.4, 14.35

29 Trimethylamine-N-oxide
(TMAO) PBS Sigma 317594 1.21–21.1 [79–81] 1.22, 2.48, 5.065, 10.33, 21.1

30 Vanillic acid PBS Sigma H36001 0.01–0.338 [54,71] 0.01, 0.024, 0.058, 0.140,0.338
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Figure 1. Validation of the methods used to assess cell proliferation. (A) The indicated number of 
cells were plated in 96-well plates for the SRB assay or PerkinElmer CellCarrier Ultra 96-well plates 
for the two high-content screening methods. On the following day, either the SRB assay or high-
content screening method was conducted. For high-content screening, the nuclei were stained with 
DAPI, images were segmented using CellProfiler or the deep learning-based method, and nuclei 
numbers were counted using CellProfiler. The red lines indicate a 45° line, indicating the same 
number of cells as seeded. (B) Representative phase-contrast images of the wells containing the 
indicated number of cells. Abbreviations: DL—deep learning. 
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proliferation of 4T1 breast cancer cells was assessed. Cells were treated with five 
metabolite concentrations spanning the reference concentrations listed in Table 1. 
Statistical analyses of the dose–response curves were performed independently. We 
identified seven bioactive metabolites: butyric acid, glycolic acid, D-mannitol, 2,3-
butanediol, trans-ferulic acid, 4-hydroxybenzoic acid, vanillic acid, and 3-
hydroxyphenylacetic acid (Figure 2). Formic acid displayed antiproliferative properties at 
the highest concentration; however, the highest concentration of formic acid considerably 
exceeded the upper end of the reference range (therefore, in Figure 1A, the significance 
symbol for formic acid is between brackets). However,yric acid, glycolic acid, D-mannitol, 
2,3-butanediol, and trans-ferulic acid were antiproliferative at the highest applied 
concentrations, while 4-hydroxybenzoic acid, vanillic acid, and 3-hydroxyphenylacetic 
acid supported proliferation at specific concentrations (Figure 2B).  

Figure 1. Validation of the methods used to assess cell proliferation. (A) The indicated number of cells
were plated in 96-well plates for the SRB assay or PerkinElmer CellCarrier Ultra 96-well plates for
the two high-content screening methods. On the following day, either the SRB assay or high-content
screening method was conducted. For high-content screening, the nuclei were stained with DAPI,
images were segmented using CellProfiler or the deep learning-based method, and nuclei numbers
were counted using CellProfiler. The red lines indicate a 45◦ line, indicating the same number of cells
as seeded. (B) Representative phase-contrast images of the wells containing the indicated number of
cells. Abbreviations: DL—deep learning.

2.3. Identification of Bacterial Metabolites with Pro and Antiproliferative Properties

The capacity of the bacterial metabolites from the molecule library to modulate the
proliferation of 4T1 breast cancer cells was assessed. Cells were treated with five metabolite
concentrations spanning the reference concentrations listed in Table 1. Statistical analyses
of the dose–response curves were performed independently. We identified seven bioac-
tive metabolites: butyric acid, glycolic acid, D-mannitol, 2,3-butanediol, trans-ferulic acid,
4-hydroxybenzoic acid, vanillic acid, and 3-hydroxyphenylacetic acid (Figure 2). Formic
acid displayed antiproliferative properties at the highest concentration; however, the high-
est concentration of formic acid considerably exceeded the upper end of the reference
range (therefore, in Figure 1A, the significance symbol for formic acid is between brackets).
However, yric acid, glycolic acid, D-mannitol, 2,3-butanediol, and trans-ferulic acid were
antiproliferative at the highest applied concentrations, while 4-hydroxybenzoic acid, vanil-
lic acid, and 3-hydroxyphenylacetic acid supported proliferation at specific concentrations
(Figure 2B).
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Figure 2. Identification of cytostatic bacterial metabolites in 4T1 breast cancer cells. The cells (800 4T1
cells/well) were plated in PerkinElmer CellCarrier Ultra 96-well plates and treated with the indicated
metabolites at the specified concentrations for 48 h. Measurements were repeated at least three times
using four technical replicates. Images were acquired and segmented using CellProfiler or the DL
algorithm. Nuclei were counted in segmented images using CellProfiler. Data are represented as
averages ± SDs of biological replicates. Values were normalized to vehicle-treated cells and expressed
as fold changes. Each metabolite was statistically analyzed separately. (A) A heatmap representation
of the effects of the metabolites on 4T1 cell proliferation. (B) The effects of the metabolites on 4T1
cell proliferation. Metabolite concentrations are displayed on the logarithmic axes. * and ** indicate
statistically significant differences between vehicle-treated cells (control) and cells treated with the
metabolite at p < 0.05 and p < 0.01, respectively. Abbreviations: DL—deep learning segmentation,
CP—CellProfiler’s built-in method segmentation.

2.4. Development of a High-Throughput Method for Assessing Epithelial-to-Mesenchymal Transition

The bacterial metabolites previously identified in breast cancer (lithocholic acid, ca-
daverine, indole derivatives, and short-chain fatty acids [44]) affected EMT. Therefore,
we assessed the effects of members of the metabolite library on EMT. The high-content
image analysis methodology was based on the observation that EMT changes cellular
morphology in breast cancer [29,84–86]. In parallel, we assessed the protein levels of EMT
markers for validation [29,84–86]. As a positive control for the induction of mesenchymal
transition, transforming growth factor β (TGFβ 10 ng/mL final concentration for 48 h) was
applied [87]. As a negative control (inhibition of EMT), we applied SB-431542 (2 µM final
concentration for 48 h), an inhibitor of TGFβ superfamily type I activating receptor-like
kinases [88]. The protein expression of mesenchymal transition markers (Zinc finger protein
SNAI1 (SnaiI) and vimentin) increased in response to TGFβ, while vimentin, but not Snail,
decreased in response to SB-431542 treatment in 4T1 cells (Figure 3A). Furthermore, visual
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inspection of the cells supported the TGFβ-induced mesenchymal and SB-431542-mediated
epithelial transition (Figure 3B). In good agreement with these results, TGFβ induced
increased proportions of mesenchymal cells, while SB-431542 decreased the proportions of
mesenchymal cells (Figure 3B), as shown by both high-content screening-based methods.
Based on these results, we concluded that the high-content screening-based methods reli-
ably assessed the proportions of epithelial and mesenchymal cells under these conditions.
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cells, but lower and higher concentrations were ineffective (Figure 5A). We verified these 
observations with Western blots. The 4T1 cells were treated with the effective 
concentration of the metabolites for 48 h, and the protein extracts were probed with anti-
SnaiI and vimentin antibodies. All metabolites, except 2,3-butanediol, reduced the 
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Figure 3. High-content screening-based methods can detect changes in cell morphology and indicate
EMT. (A) 1.5 × 106 4T1 cells were plated in Petri dishes and treated with TGFβ or SB-431542 for
48 h. Cellular proteins were assessed using Western blotting with the indicated antibodies. Sample
blots are shown along with their densitometric evaluation presented as means ± SD. Values were
normalized to vehicle-treated (control) cells. (B) 800 4T1 cells/well were plated in PerkinElmer
CellCarrier Ultra 96-well plates and treated with TGFβ or SB-431542 for 48 h. Nuclei were stained
with DAPI, and cells were visualized using Texas Red-X Phalloidin. The images were segmented
using the Harmony software (version 3.1.8) (PerkinElmer, Waltham, MA, USA) to identify cells with
epithelial or mesenchymal morphology. Proportions of mesenchymal cells were normalized to total
cell number and for inter-sample cell number differences. Normality was tested, and statistical
significance was calculated as described in the Methods. Representative fluorescence microscopy
images are presented. The scale bar equals 10 µm. *, **, and *** indicate statistically significant
differences between vehicle-treated (control) cells and treated cells at p < 0.05, p < 0.01, and p < 0.001,
respectively. Abbreviations: CTL—control, SB—SB-431542, TGFβ—transforming growth factor β.

2.5. Identification of Bacterial Metabolites Modulating EMT

Members of the metabolite library were assessed for EMT effects using high-content
screening. We identified 3-hydroxyphenylacetic acid, hydrocinnamic acid, 2,3-butanediol,
and 4-hydroxybenzoic acid (Figure 4). In all cases, we observed a V-shape curve, where an
optimal concentration of the compound significantly reduced the ratio of mesenchymal
cells, but lower and higher concentrations were ineffective (Figure 5A). We verified these
observations with Western blots. The 4T1 cells were treated with the effective concentration
of the metabolites for 48 h, and the protein extracts were probed with anti-SnaiI and
vimentin antibodies. All metabolites, except 2,3-butanediol, reduced the expression of
one mesenchymal marker, validating the results of the high-content screening method
(Figure 5B). For 2,3-butanediol, we observed a downward trend in the expression of the
EMT markers (Figure 5B).



Molecules 2023, 28, 5898 7 of 18

Figure 4. Identification of bioactive bacterial metabolites that suppress EMT. 800 4T1 cells/well were
seeded in PerkinElmer CellCarrier Ultra 96-well plates and treated with the indicated metabolites
at the concentrations specified in Table 1 for 48 h. The acquired images were segmented using the
Harmony software (version 3.1.8) (PerkinElmer) to identify cells with epithelial or mesenchymal
morphology. Proportions of the mesenchymal cells were normalized to total cell numbers within
a sample and to inter-sample cell number differences. Normality was assessed, and statistical
significance was calculated as described in the Methods. Each metabolite was statistically analyzed
separately. ** and *** indicate statistically significant differences between vehicle-treated (control)
cells and cells treated with a compound at p < 0.01 and p < 0.001, respectively. Abbreviations:
CC 1–5—concentrations indicated in Table 1, the number references increasing doses.
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Figure 5. Identification of bioactive bacterial metabolites that suppress EMT. (A) 800 4T1 cells were
plated on PerkinElmer CellCarrier Ultra 96-well plates and treated with the indicated metabolites
at the concentrations specified in Table 1 for 48 h. The acquired images were segmented using the
Harmony software (version 3.1.8) (PerkinElmer) to identify cells with epithelial or mesenchymal mor-
phology. Proportions of the mesenchymal cells were normalized to total cell number within a sample
and to inter-sample cell number differences. Normality was assessed, and statistical significance
was calculated as described in the Methods. Each metabolite was statistically analyzed separately.
(B) 1.5 × 106 4T1 cells were plated in Petri dishes and treated with the indicated metabolites at the
concentrations specified in Table 1 for 48 h. Cellular proteins were assessed using Western blotting
with the indicated antibodies. Sample blots and densitometry are shown (mean ± SD). Values were
normalized to vehicle-treated (control) cells. *, **, and *** indicate statistically significant differences
between vehicle-treated (control) cells and cells treated with a compound at p < 0.05, p < 0.01, and
p < 0.001, respectively.
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3. Discussion

Bacterial metabolite signaling plays an important role in regulating breast cancer
progression [44]. Bioactive bacterial metabolites and toxins elicit multiple effects on breast
cancer cells, including DNA instability, changes to cancer cell metabolism, EMT, cell
movement, cancer stem cell proportions, cell proliferation, metastasis formation, and
modulation of antitumor immune responses (reviewed in [44]). Most bacterial metabolites
and toxins are synthesized by the gut microbiome; however, the tumor microbiome may
also affect local metabolite and toxin levels (e.g., colibactin [4]). Most bacterial metabolites
have antineoplastic features, and enzyme levels responsible for the biosynthesis of these
metabolites are lower in breast cancer patients compared to controls (reviewed in [44]).

In this study, we identified nine bioactive metabolites that modulate cell prolifer-
ation and inhibit EMT, including butyric acid, vanillic acid, glycolic acid, D-mannitol,
trans-ferulic acid, 2,3-butanediol, 4-hydroxybenzoic acid, hydrocinnamic acid, and 3-
hydroxyphenylacetic acid (Figure 6A). The chemical nature of the metabolites is diverse,
similar to their biochemistry and receptors. Of note, we applied these metabolites in
concentrations corresponding to the physiological serum concentrations. The applied
concentrations were in the low micromolar or submicromolar range; therefore, it is likely
that the data presented here reflect the status of tumors.
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study. (A) Venn diagram of the bioactive metabolites highlighting their effects on cell proliferation
and EMT. The arrows indicate the direction of changes (up—enhancement, down—inhibition); the
green arrows indicate effects on cell proliferation, and the red arrows represent effects on EMT.
(B) The schematic representation of the possible effects of the redox potential of the environment on
the antiproliferative activity of the metabolites.

Butyric acid and glycolic acid can be classified as short-chain fatty acids. However, yric
acid plays multiple roles in breast cancer cells, including inhibitors of histone deacetylases
(epigenetic modulators), metabolic substrates, and ligands of free fatty acid receptors (re-
viewed in [44]. However, yric acid levels decrease in the feces of breast cancer patients [41].

D-mannitol is a polyol, while 2,3-butanediol is a diol. The capacity for 2,3-butanediol
synthesis is widespread among bacteria [89,90]. Importantly, 2,3-butanediol suppresses cell
proliferation and inhibits EMT. Hence, this compound has the best antineoplastic profile
among those assessed in this study.

Interestingly, among short-chain fatty acids and polyols, multiple redox metabo-
lite pairs were identified (D-mannitol—D-mannose, 1-butanol—butyric acid, ethylene
glycol—glycolic acid—oxalic acid; the active compounds are in bold); of which only one
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partner had cytostatic properties (Figure 6B). These data suggest that the redox environ-
ment may influence the bioactivity of the bacterial metabolome/secretome. A recent study
showed that in cancers, including breast cancer, ileopathy occurs, leading to slower intesti-
nal passage [82]. Slower passage changes the composition of the microbiome and may also
affect the redox balance in the GI tract [83,91].

Amino acid homeostasis is hampered in most breast cancer patients [92,93]. This is
reflected by the metabolites identified as bioactive in this study, which are mainly involved
in amino acid metabolism. Vanillic acid and trans-ferulic acid are derivatives of L-tyrosine.
These metabolites are found in extracts of bacteria or plants tested for anticancer activity.
Vanillic acid can act as a pro-oxidant and suppress cell proliferation [94].

Other compounds, such as hydrocinnamic acid, 3-hydroxyphenylacetic acid, and
4-hydroxyphenylacetic acid, contain an aromatic ring and a polar carboxylic acid moiety.
Lactic-acid-producing bacteria produce hydrocinnamic acid [95]. The flavonoid compound,
3-hydroxyphenylacetic acid, is generated via the degradation of quercetin derivatives,
which are synthesized by Clostridiales in the human microbiome [92–99]. The metabo-
lite, 3-hydroxyphenylacetic acid, has cytoprotective features [100] and can bind to the γ-
hydroxybutirate receptor [101,102]. The metabolite, 4-hydroxybenzoic acid, is synthesized
from chorismic acid and can bind to the estrogen receptor [103], peroxisome-proliferator-
activated receptor (PPAR)γ [104], and G-protein-coupled receptor 40 (GPR40) [104].

Interestingly, multiple metabolites identified in this study, including glycolic acid, hy-
drocinnamic acid, 2,3-butanediol, 3-hydroxyphenylacetic acid, and 4-hydroxyphenylacetic
acid, have antibacterial activity or are involved in quorum sensing [99,103,105–109]. This
implies that these metabolites modulate not only the mammary tumor cells but also the
microbiome.

Vanillic acid, 4-hydroxybenzoic acid, and 3-hydroxyphenylacetic acid supported
proliferation at a specific concentration, i.e., their dose–response curve had an inverted
V-shape. This behavior is similar to certain previously identified antineoplastic bacterial
metabolites, including indoxyl-sulfate [32] and indol propionic acid [31] (in both cases,
V-shape was observed). An inverted V-shape curve indicates the consecutive activation of a
receptor-inducing proliferation at low concentrations followed by the activation of another
receptor inhibiting proliferation at higher concentrations. Toxicity may also yield similar
features at high concentrations; however, the compounds were used in the reference range,
making this scenario unlikely.

4. Materials and Methods
4.1. Chemicals

All chemicals were purchased from Sigma (St. Louis, MO, USA) unless stated oth-
erwise. The source of the bacterial metabolites is provided in Table 1. TGFβ was from
Thermo Scientific (Waltham, MA, USA; Cat. No. #100.21), and SB-431542 was from Sigma
(Cat. No. S4317).

4.2. Cell Culture

The 4T1 murine breast cancer cell line was maintained in RPMI-1640 (Sigma) medium,
supplemented with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin, 2 mM
L-glutamine, and 1% pyruvate at 37 ◦C with 5% CO2. A2780 cells were cultured in
RMPI 1640 medium supplemented with 10% FBS, 2 mM glutamine, and 1% penicillin-
streptomycin. MCF-7 cells were maintained in Minimal Essential Medium (MEM, Sigma),
10% FBS (Sigma), 1% penicillin/streptomycin (Invitrogen, Waltham, MA, USA), and 2 mM
L-Glutamine. Capan2 (human pancreatic adenocarcinoma cells) were maintained in MEM
(Sigma; cat. no. M8042) containing 10% FBS, 1% penicillin-streptomycin, and 2 mM
glutamine at 37 ◦C with 5% CO2.



Molecules 2023, 28, 5898 11 of 18

4.3. Cytochemistry and Fluorescent Microscopy

Cells were grown on PerkinElmer CellCarrier Ultra 96-well (Waltham, MA, USA)
plates until 70% confluency. Samples were fixed with 4% formaldehyde for 15 min, per-
meabilized with 1% Triton-X 100, and blocked with 1% BSA/PBS solution. Nuclei were
labeled with DAPI (Thermo, Cat. No. R3706) for 5 min. Actin filaments were labeled
with Texas Red-X phalloidin (Thermo, T7471) for 1 h. Fluorescent images of the nuclei
were acquired at a resolution of 1080 × 1080 pixels (px) with a 10× objective (N.A. 0.3,
1.196 µm/px). DAPI signals (excitation/detection λ: 405/456) were detected in the whole
well with 21 fields. Morphology images (i.e., fluorescent detection of phalloidin-stained
cells) were acquired at 2160 × 2160 px image resolution, with a 20× objective (N.A 0.4,
0.299 µm/px). DAPI and Texas Red-X Phalloidin signals (excitation/detection λ: 561/599)
were detected in 25 fields from each well. Both image sets were acquired with PerkinElmer
Opera Phoenix High Content Screening System (Waltham, MA, USA).

4.4. Cell Morphology Analysis

The acquired images were segmented and analyzed using Harmony 4.8 software
(PerkinElmer). The nuclei and the cytoplasm were segmented and textured, and the signal
intensity and position of the segmented objects were calculated. Using the calculated mor-
phological properties of TGFβ1-treated, SB-431542-treated, and control cells, an embedded
linear regression model was trained to classify the cells into epithelial or mesenchymal
morphology groups.

4.5. Training Dataset—DAPI

The training dataset was created from a database of DAPI-stained images from A2780
human ovarian cancer, 4T1 mouse breast cancer, Capan2 human pancreatic cancer, and
MCF7 human breast cancer cell lines. Eighty-two images were selected as a training dataset
from our image database to provide the highest possible variations in a single image and
between images. Images were considered good examples if they had (1) relatively high or
low fluorescent signals, (2) contained staining errors or artifacts, or (3) were over-confluent
with nuclei of mixed nuclear morphology that covered a part of the well edge. Nuclei were
segmented with CellProfiler (Broad Institute, Cambridge, MA, USA) followed by manual
correction. The original dataset was augmented using the Albumentations (Python3) library,
including 90◦ rotation, cropping, and brightness changes. The augmentation resulted in
277 pairs of gray-scale images and the corresponding segmented images. The order of
the images in the augmented dataset was randomized and split into training, test, and
validation sets at a ratio of 80:10:10.

4.6. Training Parameters

Using this dataset, a VGG-UNet segmentation model was trained. The model’s
architecture was extracted from the Keras-segmentation 0.3.0 library (Python3). The model
was trained on a central processing unit for two epochs, eight images per batch through
33 steps. The model used for evaluating the validation dataset had a loss of 0.0512 and an
accuracy of 0.9874. The code is shared at the link provided in the “Data Availability” section.

4.7. Nuclei Counting

Nuclei were segmented using Cellprofiler’s (https://cellprofiler.org/, version 3.1.8)
integrated object segmentation method (adaptive Otsu method with three classes—middle
class assigned to background). The objects were counted on each image. Parallel to this,
the trained semantic segmentation model was applied as a substitute for CellProfiler’s
segmentation method, followed by object counting with CellProfiler.

https://cellprofiler.org/
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4.8. Sulforhodamine B Cell Proliferation Assay

The sulforhodamine B (SRB) assay was used to assess cell proliferation as described
in [110,111]. The timing of the proliferation assay was set up as a function of the doubling
time of the cell lines.

4.9. Western Blot

Western blotting was performed similar to [112,113]. Briefly, cells and tissues were
lysed with RIPA buffer (50 mM Tris, 150 mM NaCl, 0.1% SDS, 1% Nonidet P-40, 1 mM
Na3VO4, 1 mM NaF, 0.5% sodium deoxycholate, 1 mM phenylmethylsulfonyl fluoride,
and protease inhibitor mixture, pH 8.0) and boiled in 50 mM Tris, 2% (w/v) SDS, 3.34%
(v/v) glycerol, and 16.67 mM β-mercaptoethanol. Proteins were separated by 10% SDS-
PAGE and transferred onto a nitrocellulose membrane (Bio-Rad Laboratories, Supported,
Hercules, CA, USA). Antibodies used in this study were diluted in 5% BSA solution and
are shown in Table 2. The secondary antibody was an anti-rabbit IgG HRP-linked antibody
(Cell Signaling Technology, Danvers, MA, USA). Labeled proteins were detected using
the Chemidoc Touch Imaging System with Supersignal West Pico and Supersignal West
Femto ECL Kit (Thermo Fisher Scientific, Waltham, MA, USA). Blots were quantified using
densitometry using Image Lab (Bio-Rad) software (version 6.1). All blots are shown in the
Supplementary Materials.

Table 2. The antibodies used in the study.

Antibody Catalog Number Company Dilution

SnaiI 3879S Cell Signaling Technology 1:1000Vimentin 5741S

β-actin A3854 Sigma 1:20,000

4.10. Statistics

All graphs and statistical analyses were generated using GraphPad Prism v.8.0.1 soft-
ware. Normality was assessed using the Shapiro–Wilk test. If the dataset was normally
distributed or normally distributed after log transformation, one-way ANOVA was applied.
If normal distribution was not achieved, the Kruskal–Wallis test was performed. The
statistical tests can be accessed in the primary data files. The dose–response curve of the
metabolites was subjected to statistical analysis separately for each metabolite. P-values
are indicated in the figure captions.

5. Conclusions

In this study, we identified bacterial metabolites that can modulate the behavior
of breast cancer cells, similar to hormones. We screened a library of bacterial metabo-
lites and identified nine bioactive metabolites (butyric acid, vanillic acid, glycolic acid,
D-mannitol, trans-ferulic acid, 2,3-butanediol, 4-hydroxybenzoic acid, hydrocinnamic acid,
and 3-hydroxyphenylacetic acid). The 4T1 murine breast cancer cells were treated with
metabolites at concentrations corresponding to the reference serum concentrations of
the metabolites. This step is very important to avoid toxicity or off-target effects at
supraphysiological concentrations. However, yric acid, glycolic acid, D-mannitol, 2,3-
butanediol, and trans-ferulic acid exerted cytostatic effects, while 3-hydroxyphenylacetic
acid, 4-hydroxybenzoic acid, and vanillic acid exerted hyperproliferative effects on 4T1
cells. Furthermore, 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, 2,3-butanediol,
and hydrocinnamic acid inhibited epithelial-to-mesenchymal transition. We showed that
the local redox environment may affect the bioactivity of the metabolites; hence, the local
redox potential may affect the bacterial secretome and, consequently, the behavior of breast
cancer cells. Out of the nine bioactive metabolites, 2,3-butanediol was the only one with
cytostatic and anti-EMT properties. This study suggests that a large portion of the bacteri-
ally synthesized metabolites possess bioactivity, and these metabolites can modulate the
behavior of cancer cells.
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