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Abstract: Long-chain molecules play a vital role in agricultural production and find extensive use
as fungicides, insecticides, acaricides, herbicides, and plant growth regulators. This review article
specifically addresses the agricultural biological activities and applications of long-chain molecules.
The utilization of long-chain molecules in the development of pesticides is an appealing avenue for
designing novel pesticide compounds. By offering valuable insights, this article serves as a useful
reference for the design of new long-chain molecules for pesticide applications.
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1. Introduction

Plant pests, diseases, and weeds are significant challenges in agriculture, as they can
lead to decreased crop yields and pose threats to food safety. While resistant crop varieties
and other biological strategies have been employed to combat these issues, pesticides re-
main the primary means of control [1–3]. Among the various types of pesticides, long-chain
molecules—both natural and synthetic—are widely used for their efficacy as fungicides,
insecticides, acaricides, herbicides, and plant growth regulators (Figure 1). For the purposes
of this review, we define long-chain molecules as compounds with five or more atoms
(C, O, and S) in their chains. We exclude long-chain molecules containing nitrogen atoms
due to their unique effects on the biological activity of the compounds, such as their ten-
dency to form hydrogen bonds. In this article, we primarily focus on the agricultural
biological activities and applications of long-chain molecules.
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1. Introduction 
Plant pests, diseases, and weeds are significant challenges in agriculture, as they can 

lead to decreased crop yields and pose threats to food safety. While resistant crop varieties 
and other biological strategies have been employed to combat these issues, pesticides re-
main the primary means of control [1–3]. Among the various types of pesticides, long-
chain molecules—both natural and synthetic—are widely used for their efficacy as fungi-
cides, insecticides, acaricides, herbicides, and plant growth regulators (Figure 1). For the 
purposes of this review, we define long-chain molecules as compounds with five or more 
atoms (C, O, and S) in their chains. We exclude long-chain molecules containing nitrogen 
atoms due to their unique effects on the biological activity of the compounds, such as 
their tendency to form hydrogen bonds. In this article, we primarily focus on the agri-
cultural biological activities and applications of long-chain molecules. 

 
Figure 1. Classification of long-chain molecules in this article. 

  

Citation: Yin, F.; Qin, Z. Long-Chain 

Molecules with Agro-Bioactivities 

and Their Applications. Molecules 

2023, 28, x. https://doi.org/10.3390/ 

xxxxx 

Academic Editor: Ladislav Kokoska 

Received: 10 July 2023 

Revised: 31 July 2023 

Accepted: 31 July 2023 

Published: 3 August 2023 

 

Copyright: © 2023 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). Figure 1. Classification of long-chain molecules in this article.

2. Long-Chain Molecules Exist Widely in Nature

Long-chain molecules are prevalent in nature and are involved in vital physiological
processes in living organisms. These molecules exhibit diverse biosynthetic pathways
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and possess remarkable biological properties. This section provides a concise overview
of various natural long-chain molecules, focusing on their biosynthetic pathways and
biological activities.

In nature, fatty acids (FAs) have wide-ranging functions and are found in abundance.
They play important roles in energy storage, structural organization, and signaling pro-
cesses [4,5]. Plants utilize a complex enzymatic system called the plastid-localized fatty acid
synthase complex to synthesize fatty acids. This complex acts on acyl-intermediates that
are attached to acyl carrier proteins (ACPs). The synthesis process starts with acetyl-CoA,
and carbon dioxide is released through the condensation reaction between acetyl-CoA and
malonyl-ACP. Subsequent reactions lead to the formation of carbon-expanded, saturated
hydrocarbon chains from the intermediate 3-ketone. As a result of the fatty acid synthase
cycles, saturated C16 and C18 fatty acids are produced [6,7]. It is noteworthy that many
long-chain fatty acids exhibit significant biological activity. For instance, scleropyric acid
demonstrates anti-plasmodial activity, 2-hexadecynoic acid (1) (Figure 2) and 2-alkynoic
fatty acid have been found to exhibit antibacterial activity against mycobacterium tubercu-
losis, and linoleic acid exhibits antifungal activity [8–10]. Furthermore, oleic acid has been
shown to possess antifungal effects against Rhizoctonia solani, Pythium ultimum, Pyrenophora
avenae, and Crinipellis perniciosa [5,11].
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Natural products containing long-chain aliphatic nitriles are produced by two types of
bacteria: Gram-positive Micromonospora echinospora and Gram-negative Pseudomonas veronii [12].
Some of these nitriles have antimicrobial activity. For example, 3-pentadecenenitrile (2)
(Figure 2) has been found to be effective against bacteria such as Bacillus subtilis, Micrococcus
luteus, and particularly Staphylococcus aureus, including drug-resistant strains. Nitriles are
synthesized from fatty acids, which are first converted into amides and then dehydrated.
The process of chain elongation and dehydration is variable during fatty acid biosynthesis,
resulting in the formation of unbranched saturated or unsaturated nitriles with anω-7 double
bond. For instance, (Z)-11-octadeconitrile is an example of an unbranched nitrile, while
(Z)-13-methyl-tetracylcarbon-3-nitrile is an example of a methyl-branched unsaturated nitrile
with the double bond located at C-3.

Yaoshanenolides A (3a) and B (3b) are novel tricyclic spirolactones isolated from
the bark of Machilus yaoshansis [13]. These compounds contain long linear chains and
have exhibited non-selective cytotoxic activity against various human cancer cell lines.
Co-occurring obtusilactone A and/or isoobtusilactone A and dihydroisoobtusilactone are
believed to be biosynthetic precursors of yaoshanenolides A and B, both of which were
isolated from the Machilus genus. The biosynthesis of yaoshanenolides A and B involves an
enzyme-catalyzed Diels–Alder [4 + 2] cycloaddition between a molecule of the precursors
and a molecule of β-phellandrene, which has also been found in Machilus genus. This
is followed by either simultaneous or sequential allylic hydroxy rearrangement [13–15]
(Figure 3).
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Isoprenoid quinones, which contain a quinone head group and a poly-pentenyl tail of
varying length play a crucial role in bioenergetics as electron and proton carriers in the res-
piratory chain of most organisms [16]. They can be categorized into naphthoquinones and
benzoquinones based on the characteristics of their head groups and midpoint redox poten-
tials. Menaquinone (MK, 4d) belongs to the naphthoquinones, while ubiquinone (UQ, 4a),
plastoquinone (PQ, 4b), and rhodoquinone (RQ, 4c) belong to the benzoquinones [17]
(Figure 4). The biosynthetic pathway of isoprenoid quinones varies across species. For ex-
ample, in Escherichia coli, the biosynthesis of UQ8 (ubiquinone 8) initiates with
4-hydroxybenzoic acid (4-HB) and involves twelve proteins (UbiA to UbiK and UbiX).
First, UbiC removes pyruvate from chorismite to form 4-HB [18]. Then, the membrane-
bound UbiA prenylates 4-HB using octaprenyl diphosphate as a precursor for the side chain.
After prenylation, the UbiD–UbiX system decarboxylates 4-HB [19]. UQ8 biosynthesis in-
volves two O-methylation reactions catalyzed by the S-adenosyl-L-methionine-dependent
UbiG protein [20,21]. In this pathway, UbiE catal00yzes the C-methylation reaction, while
three class A flavoprotein monooxygenases (FMOs)—UbiH, UbiI, and UbiF—catalyze the
hydroxylation of carbon atoms C-1, C-5, and C-6 on the aromatic rings, respectively [22,23].
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3. Long-Chain Molecules with Agro-Bioactivities

Long-chain molecules exhibit a diverse assay of biological activities and are frequently
utilized as fungicides, insecticides, herbicides, and plant growth regulators in agricultural
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settings. Despite sharing the common feature of a long-chain molecular structure, these
compounds operate through a multitude of different mechanisms. Among these fungicides,
compounds can be classified based on their mechanism of action, which includes respira-
tory chain inhibitors, 14α-demethylation inhibitors, and DNA/RNA synthesis inhibitors.
Insecticides, on the other hand, include respiratory chain inhibitors, acetylcholinesterase
inhibitors, and sodium channel inhibitors. Herbicides, which are made up of long-chain
molecules, exhibit different mechanisms of action. For example, acetanilide compounds
inhibit the biosynthesis of long-chain fatty acids in plants. Additionally, some compounds
inhibit 4-HPPD, resulting in plant albinism and eventually death. In conclusion, long-chain
pesticide compounds are not only widely used but also complex. In addition to commercial
pesticides, there are many natural products or long-chain derivatives with pesticide activity.
In this section, we provide some examples of such compounds.

3.1. Phytopathogenic Fungicides Containing a Long Chain

Ametoctradin (5) [24,25] is a novel oomycete inhibitor with a unique chemical scaffold.
Spray applications of ametoctradin, which belongs to the triazolopyrimidine fungicide
class, can bring extensive benefits to various special crops. Field trials have demonstrated
that ametoctradin is highly selective and effective in preventing late blight and downy
mildew (Figure 5).
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On the molecular level, ametoctradin functions as an inhibitor of the respiratory bc1
complex found in oomycete crop pathogens. It achieves this by binding to either the
Qo-stigmatellin subsite or the Qi-site of cytochrome b within complex III of the respiratory
electron transport chain, thereby impeding electron transfer. As a consequence of its
action, the consumption of oxygen and the levels of intracellular ATP diminish rapidly
after ametoctradin treatment in oomycete pathogens. Due to its ability to hinder multiple
energy-intensive processes, such as zoospore formation and release, zoosporangia release,
germination, and motility, ametoctradin has been designated as a fungicide belonging to
the category of QoSI (quinone outside inhibitors) [24,26,27].

Pefurazoate (6), a novel imidazole compound, is a rice-seed disinfectant. As a fungi-
toxic agent, it is effective against seed-borne pathogenic fungi such as Gibbeyella fujikuyoi,
Pyricularia oryzae, and Cochliobolus miyabeanus [28]. Similar to other azole fungicides,
pefurazoate acts as by inhibiting the 14α-demethylation of 24-methylene dihydro lanos-
terol [28,29]. In addition to its sterilization and disease-control effects, pefurazoate also has
a positive effect on promoting seed germination and seedling growth, thereby promoting
healthy rice plant development (Figure 6).

Triflumizole (7) is one of the imidazole fungicides [30]. This fungicide is known for
its high efficiency, low toxicity, and low residual properties. It contains fluorimidazole
heterocyclic and exhibits both protective and therapeutic effects. Similar to pefurazoate,
triflumizole works by inhibiting ergosterol biosynthesis through interference with the
demethylation of the ergosterol skeleton at C-14 [31]. Triflumizole is widely used in various
fruit and vegetable production areas, such as those for rice, sweet corn, apples, grapes,
pears, and cherries, to control the growth and spread of powdery mildew [30,32] (Figure 6).
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Tridemorph (8) belongs to the morpholine fungicides [33]; it is a systemic fungicide,
as it is taken up by the leaves and roots. It acts as an inhibitor of ergosterol biosynthesis, es-
pecially through the inhibition of sterol reduction (sterol-∆14-reductase) and isomerization
(∆8 to ∆7-isomerase) [34]. This fungicide has a broad spectrum of activity and is commonly
used for the prevention and control of grain powdery mildew and Mycosphaerella spp. in
bananas [34,35] (Figure 6).

Dodine (9), commonly used as a protective fungicide, contains a guanidyl headgroup
and a dodecyl tail [36]. A variety of major mold diseases can be controlled by dodine
on fruit trees, vegetables, nuts, ornamental plants, and shade trees [37]. As a dodecyl
derivative of guanidinium salt, dodine differs from guanidinium salt because of the pres-
ence of a long hydrocarbon chain [38]. It attaches readily to the surfaces of negatively
charged microorganisms and can penetrate their membranes, thereby damaging cellular
structures [37] (Figure 7).
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Seboctylamine (10) is a kind of high-efficiency, low-toxicity, and spectral fungicide
developed in China [39]. Seboctylamine exhibits a pronounced killing and inhibitory effect
on various types of fungi, bacteria, and viruses. Moreover, it demonstrates a potent inhibi-
tion effect specifically on the growth of mycelium and the germination of spores [40]. The
mechanism of seboctylamine can produce ionization in aqueous solutions; the hydrophilic
group part is strongly electropositive, while the adsorption usually contains all kinds
of negatively charged bacteria and viruses. It inhibits the multiplication of bacteria and
viruses by causing bacterial proteins to coagulate and the polymer to form a film that blocks
the ion channels of these microorganisms, causing them to suffocate and die immediately,
thus achieving optimal bactericidal effects [39–41] (Figure 7).

Iminoctadine (11) is a non-systemic aliphatic nitrogen contact fungicide that exhibits
preventive effects [42]. It is highly effective against a wide range of fungal diseases caused
by ascomycetes, including gray mold, powdery mildew, sclerotinia, and others [43,44].
Iminoctadine affects the biosynthesis of fungal lipids, disrupts the function of fungal
cell membranes, and suppresses the formation of appressorium and mycelium through
inhibition of spore germination. Iminoctadine tris, on the other hand, is a compound result-
ing from the combination of iminoctadine with three alkylbenzene sulfonates. Likewise,
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iminoctadine triacetate refers to the triacetate salt of iminoctadine. This fungicide works by
disrupting the membrane function of the pathogen’s cells [45] (Figure 8).
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Copper octanoate (12) [46,47] is a kind of saturated fatty acid that combines copper
ions and caprylic acid, which has the action of contact. Copper octanoate can be used as a
fungicide and bactericide for leaf surfaces to control a variety of plant diseases in various
crops and landscape plants (Figure 8).

Octhilinone (13) is a DNA/RNA synthesis inhibitor that is effective against apple and
pear canker (Nectria galligena) as well as other bacterial and fungal diseases (Ceratocystis
spp.) of top fruits and citrus fruits [48]. Octhilinone is also one of the most frequently used
biocides in construction materials as an in-can or film preservative [49]. In addition to
being used as a preservative in many industrial applications, including cooling lubricants,
sealants, and adhesives, 2-octyl-2H-isothiazol-3-one (OIT, 14) is a well-known indoor
surface fungicide [50] with a strong ability to control mold. Debacarb (15) is used via
injection for the control of various fungal diseases of trees [51] (Figure 9).
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Ahluwalia et al. synthesized a series of oxime esters (16a−16q) with 3-ethoxy-4-
benzaldehyde oxime in the presence of triethylamine and acid chloride. The antibacterial
activity of three plant pathogens (Rhizoctonia bataticola, Fusarium udum, and Alternaria porii)
was evaluated in vitro. Compounds containing medium-long alkyl chains showed higher
activity than those containing long alkyl chains [52] (Figure 10).
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Compound 17 is a novel myrtenal oxime ester molecule designed and synthesized
by Lin et al. using ketol-acid reductoisomerase as the target enzyme. The results showed
that the growth inhibition rate of compound 17 on Brassica campestris was 64.2% and that
on Echinochloa crusgalli L. was 81.8% at 100 µg/mL. Meanwhile, compound 17 exhibited
certain in vitro antifungal activity against all tested fungi, such as Fusarium oxysporum f.
cummerinum, Physalospora piricola, Cercospora arachidicola, and Gibberella zeae [53] (Figure 11).
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1-Nonanol (18), which is the main component of cereal volatiles, has potential anti-
fungal activity against Aspergillus flavus. The damaging effect of 1-nonanol on the growth
of Aspergillus flavus is manifested by intracellular electrolyte leakage; reduced succinate
dehydrogenase, mitochondrial dehydrogenase, and ATPase activities; and reactive oxygen
species accumulation. We speculated that 1-nonanol can damage the membrane integrity
and mitochondrial function of Aspergillus flavus and may lead to the apoptosis of Aspergillus
flavus [54] (Figure 11).

Liu et al. prepared five quaternary ammonium salt (QAS) compounds (19)
(R = -benzyl (chloride, BNQAS), -dodecyl (C12QAS), -tetradecyl (C14QAS), hexadecyl
(C16QAS), and -octadecyl (C18QAS)), and their antifungal properties were tested
(Figure 12). The results indicated that C12QAS is effective against several apple fungi,
including Cytospora mandshuria, Botryosphaeria ribis, Physalospora piricola, and Glomerella
Cingulata. The antifungal activity of QAS is mainly related to the introduction of a long-
chain alkyl in the molecule. The long alkyl chains in QAS can change the geometry of QAS,
which can help the two flexible hydroxyl groups of QAS cross the cell membrane and enter
the cell to cause damage [55].
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Figure 12. The structure of QAS compounds.

Muhizi et al. synthesized different N-alkyl-β-D-glucosylamines (20a−20i) and evalu-
ated their antifungal activities. The results showed that these compounds have different
biological activities and that the antifungal activity of glucosylamines increases with the
length of the alkyl chain. DoGPA was more bioactive against all target strains than other
N-alkyl glucosamines and could be used to inhibit Fusarium proliferatum [56] (Figure 13).
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3.2. Insecticides/Acaricides Containing a Long Chain

Dinocap is a mixture of six isomers of dinitrooctylphenyl crotonate (2,4-DNOPC),
including ortho and para methylheptyl, ethylhexyl, and propylpentyl crotonate isomers [57].
It is a contact fungicide and acaricide that has been used to control mites in apple crops
and powdery mildew in orchard fruits, vegetables, and ornamental crops [58]. The new
meptyldinocap (21) is an improved version of the single 2,4-DNOPC methylheptyl isomer
with a better toxicological profile compared to the old dinocap. It is a non-inhalant acaricide
and a powdery mildew (Erysiphe necator) fungicide that shows both protectant and post-
infection activity [57] (Figure 14).
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Sulfuramid (22) is a potential bait agent that belongs to a novel class of insecticides
known as fluoroaliphatic sulfonamides [59]. It acts as a delayed-acting insecticide by
uncoupling oxidative phosphorylation and exhibits chronic toxicity. When insects consume
sulfuramid, it acts as a stomach poison, inhibiting their energy metabolism. Sulfuramid
has proven effective in controlling leaf-cutting ants (Atta spp. and Acromyrmex spp.) in
eucalyptus and pine plantations [60] (Figure 14).

Acequinocyl (23) is a commercially available acaricide that belongs to the naphtho-
quinone analog group. Acequinocyl acts by inhibiting mitochondrial respiratory complex
III. Its deacetylated metabolite contains free hydroxyl groups, which function as ubiquitin
analogs, and it is a powerful inhibitor of the Qo center [61]. Acequinocyl is commonly
used to control various herbivorous mites, including Tetranychus urticae [62]. Acequinocyl
exhibits a stronger killing effect on immature spider mites, while its toxicity to mammals is
relatively low. Additionally, it has a shorter persistence in the environment [63] (Figure 15).

Piericidins are a group of compounds isolated from actinomyces [64], particularly
from the genus Streptomyces. One of these compounds, called Piericidin A (24), is a natural
insecticide that is highly active against lepidoptera larvae. It was first isolated in the 1960s
from Streptomyces mobaraensis [65,66]. Piericidin A has a similar structure to coenzyme Q,
with a head group that resembles ubiquinone and a nitrogen atom in place of one of the
carbonyl groups. The hydrophobic tail of Piericidin A contains an isoprenoid group with a
hydroxyl group at its end [65]. Piericidin A acts as an antagonist to coenzyme Q, inhibiting
the activity of complex I [64] (Figure 15).
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Figure 15. The structures of compounds 23–26.

Pyrimidifen (25) is a potent insecticide that has proven effective in combatting various
mite species that pose a threat to fruits and vegetables. It exhibits efficacy against all life
stages of spider mites and is also capable of managing the population of diamondback
moths (Plutella xylostella L.). Pyrimidifen operates through the same mechanism of action as
other pyrimidine acaricides: inhibiting the electron transfer on complex I [67,68] (Figure 15).

The main structural feature of ACG (26) is an alkyl chain containing a methyl γ-lactone
ring at the end, 0~3 tetrahydrofuran rings on the alkyl chain, and a certain number of
oxygen-containing functional groups (such as hydroxyl, acetoxy, ketone, epoxide, etc.) or
a double bond; the number of carbon atoms is 35 or 37 [69]. According to the number
and spatial arrangement of THF in ACG, ACG can be divided into various types, such as
mono-THF acetogenins, adjacent bis-THF acetogenins, non-adjacent bis-THF acetogenins,
non-THF acetogenins, and so on. Due to the strong inhibitory effect of ACG on the
mitochondrial respiratory chain complex I of cells, most ACGs have good insecticidal
effects, and adjacent bis-THF acetogenins have the most obvious insecticidal effect [70,71]
(Figure 15).Demeton-S-methyl (27) is a widely used systemic organophosphorus insecticide
with a certain toxicity that is used to control aphids and red spiders in various crops.
Demeton-S-methyl irreversibly inhibits cholinesterases by phosphorylating their catalytic
serine [72,73] (Figure 16).
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Disulfoton (28), a kind of organophosphorus pesticide, is a systemic insecticide and
acaricide [74–77] that is normally applied as granules with the seed at sowing [78]. Disulfo-
ton has been extensively used across a wide range of crops to manage sap-feeding insects,
including aphids, mites, and thrips [76]. Its mode of action involves inhibiting the enzyme
acetylcholinesterase (AChE) [77,79], which leads to the accumulation of acetylcholine in
nerve endings in both the peripheral and central nervous systems. Consequently, disulfoton
poses a high level of toxicity to humans [80–82]. The World Health Organization (WHO)
has classified disulfoton as “extremely hazardous” (Figure 16).
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AMTSn (29), a small molecule containing methanethiosulfonate, was developed by
Pang as an inhibitor of AChE activity. It was found to irreversibly inhibit 99% of the AChE
derived from the green insect aphid (Schizaphis graminum) at a concentration of 6.0 mM.
Interestingly, there was no measurable inhibition of human AChE. Reactivation studies
using β-mercaptoethanol confirmed that this irreversible inhibition occurs by binding
AMTSn to a unique Cys residue found at the active site of AChE in aphids and other insects
but not in mammals. This discovery suggests that targeting this specific Cys residue could
potentially be used to develop insect-selective insecticides [83–86] (Figure 16).

Empenthrin (30) is a highly volatile synthetic pyrethroid with potent insecticidal
activity against houseflies and textile pests and a low toxicity to mammals [87,88]. The
efficacy of empenthrin is primarily attributed to the unique structure of its alcoholic part
and its high vapor pressure. This pyrethroid is formed through the combination of synthetic
ethynyl alcohol and chrysanthemic acid, in part mimicking the rethrolone skeleton found
in natural pyrethroids [89] (Figure 17).
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Juvenile hormone (JH) analogs, namely methoprene (31), hydroprene (32), and kino-
prene (33), are widely used in pest control due to their non-toxicity toward vertebrates
and other non-target organisms [90] as well as their rapid degradation after application
(Figure 18).
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Methoprene, the first synthetic insect juvenile hormone analog, is known for its efficacy
in pest control. In particular, S-methoprene is a highly effective form of this compound.
Acting as a synthetic insect juvenile hormone analog, S-methoprene operates through a
mechanism similar to that of natural juvenile hormones. It interferes with the normal
growth and development process of insects, causing diapause to occur, and disrupts
the development of larvae to adults, thereby inhibiting the reproduction of pests [91,92].
Methoprene has been proven to be particularly effective against harmful species of Diptera
and Coleoptera [93,94]. Furthermore, it has been applied in the prevention and control of
ants and animal fleas [95,96].

Hydroprene is effective against certain lepidopteran pests by imitating the actions
of naturally occurring JHs [97]. Application of hydroprene at the larval stage limits and
suppresses normal larval development. Larvae treated with hydroprene either fail to reach
adulthood or become abnormally sterile adults [98]. As an active ingredient, Kinoprene
exhibits particularly high activity against Homopteran insects.

In addition, Mori et al. prepared and bioassayed twenty-six juvenile hormone analogs
with varying molecular chain lengths using allatectomized fourth instar larvae of Bombyx
mori L. Their findings revealed that among methyl or ethyl esters, the optimal chain length
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for the high juvenile hormone activity on the silkworm is 17 atoms [99]. Additionally,
Kisida et al. reported the discovery of thiolcarbamates and their derivatives, which showed
strong larvicidal activities against the larvae of C. pipiens and A. aegypti, similar to JHs [100].

Oleic acid (34) can destroy insect cuticles, and its potassium and sodium salts can be
used as an insecticide against soft-bodied pests (aphids, whiteflies, and spider mites) on
vegetables, fruits, and ornamentals, as well as a fungicide against powdery mildew, while
oleic acid can also be used for weed control on uncultivated land [101–103]. In addition,
oleic esters are also widely used in the field of pesticides. For example, methyl oleate is
usually used as emulsifier and auxiliary for pesticides, which can increase the degree of
dispersion of the agent and improve the utilization rate of the pesticide [104–106], while
ethyl oleate can be used for the preparation of fungicides, acaricides [107,108], etc., which
have the advantages of high efficiency, no residue, a low production cost, environmental
protection, and excellent comprehensive performance (Figure 19).
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Figure 19. The structures of compounds 34–36.

Tyclopyrazoflor (35) is a pyridyl-pyrazole insecticide with a good killing effect against
sap-feeding insects. This compound belongs to a novel category of chemicals that effectively
manage infestations caused by Myzus persicae and sweet potato whitefly crawlers [109–112].
Unlike conventional ryanodine receptor insecticides, Tyclopyrazoflor exhibits a distinctive
structure characterized by a unique amide group (Figure 19). Capsaicin (36) is a natural
alkaloid obtained from the mature fruit of the capsicum [113]. Studies have shown that
capsaicin has a stimulating effect in various species, can function as a repellent, and can
also influence the egg-laying decisions of various insects [113–115]. As a botanical pesticide,
capsaicin exhibits several desirable characteristics, including high effectiveness, prolonged
duration, degradability, and non-toxicity (Figure 19).

Flupentiofenox (37) is a new trifluoromethyl thioether acaricide. It is a racemate that
contains chiral sulfur atoms. It has a novel structure with an unknown mechanism of
action. Notably, flupentiofenox demonstrates excellent activity against adult tetranychus
and larvae of the brown planthopper, even at low concentrations. As such, it can be used to
control harmful arthropods, including mites on fruits and vegetables and planthoppers on
rice [116] (Figure 20).
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Pyridalyl (38) is a highly efficient and low-toxicity insecticide with excellent control
efficacy against Lepidoptera and Thysanoptera pests [117]. Due to its unique chemical
structure and characteristic insecticidal profile [118], it has no cross-resistance with various
currently used insecticides in Plutella xylostella or Heliothis virescens, inferring that it may
have a new mechanism of action [119–121] (Figure 20).

Methyl neodecanamide(MNDA, 39) is an isomeric distribution of secondary amides
that has shown efficacy as an insect repellent [122,123]. MNDA can be used as insect
repellent for cockroaches, mosquitoes, moths, flies, fleas, ants, lice, spiders, ticks, and mites;
for this reason, it is a useful ingredient in household cleaners [122,123] (Figure 20).

2-(Octylthio)ethanol (40) [124] is a new microtoxic (nearly non-toxic) and highly
effective insect repellent that exhibits a strong ability to repel mosquitoes, flies, reptiles,
ants, bedbugs, and other insects (Figure 20).

Compound 41 (Figure 21) belongs to a series of C7-oxime ester derivatives
(n = 0~6,8,9,14,16) of obacunone prepared by Xiang Yu; its insecticidal activity against
the pre-third-instar larvae of oriental armyworm (Mythimna separata Walker) was evaluated.
A comparison of compound 41 (n = 4) with the precursor obacunone showed that com-
pound 41 (n = 4) displayed greater insecticidal activity with final mortality rates greater
than 60% [125].
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Fulde reported a series of dialkyl 2-bromo-l-(2,4-dichlorophenyl) vinyl phosphates
(42) that exhibited biological activity against the house fly (Musca domestica L.). The toxicity
of these compounds to flies was found to decrease with an increase in the length of the
alkyl chain. The methyl ester was identified as the most active compound, while the
2-methoxyethyl ester was the least active [126]. This suggests that the biological activity of
these compounds is not solely dependent on the length of the alkyl chain (Figure 21).

Escriba et al. synthesized a group of allyl esters of fatty acids (43a–43h) (Figure 21)
from glycerol. These compounds showed ovicidal activity against codling moth eggs,
and the alkyl chain length was inversely related to the ovicidal activity of the allyl esters.
Notably, the two compounds with longer alkyl chains showed significantly lower ovicidal
activity compared to the other compounds [127].

MGK-264 (44) [128–130] has been shown to enhance the insecticidal activity of pyrethrin,
pyrethroid, and carbamate insecticides. When used in conjunction with pyrethrin or al-
lethrin, this synergist is especially effective in preventing and controlling cockroach infesta-
tions. Importantly, MGK-264 does not possess any inherent toxicity in insects (Figure 22).
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Figure 22. The structures of compounds 44 and 45.

The semi-synthetic compound piperonyl butoxide (45) (Figure 22) is a methylene-
dioxyphenyl (MDP) compound derived from natural safrole extracted from sassafras
oil [131,132]. By inhibiting insect cytochrome P450 (CYP) and esterase enzymes, piperonyl
butoxide enhances the insecticidal activity of natural and synthetic pyrethroids and other
insecticides [133]. Piperonyl butoxide exhibits characteristics such as prolonging the drug-
holding time, broadening the insecticidal spectrum, reducing pesticide dosages, lowering
costs, and being safe and non-toxic.Insect pheromones and their analogs are a very large
family containing a vast number of long-chain molecules. These pheromones serve various
highly specific functions, such as attracting, stimulating, facilitating or inhibiting feeding,
promoting egg laying, facilitating mating, organizing assembly, alarming, and defending.
Due to the wide variety of insect pheromones (both commercialized and analogues) under
development, they were not reviewed in this paper.

3.3. Herbicides Containing a Long Chain

Flumiclorac-pentyl (46) is a post-emergence herbicide that exhibits selective efficacy
against broadleaf weeds in soybeans. Problematic weeds such as velvetleaf, prickly sida,
jimsonweed, and common lambsquarters can be effectively controlled with flumiclorac-
pentyl [134]. The herbicide is absorbed by the leaves and sheaths of plants, transmitted via
the phloem, and accumulates in the meristem region. Flumiclorac-pentyl demonstrates
resilience against acetyl-CoA carboxylase by hindering fatty acid synthesis, disrupting
cellular growth and division, and impairing lipid structures like membrane systems, ulti-
mately inducing plant death. Remarkably, flumiclorac-pentyl stands out among aromatic
oxyphenoxypropionic acid herbicides due to its exceptional safety profile for rice cultivation
(Figure 23).

Pethoxamid (47) (Figure 24) is a novel chloroacetamide herbicide that was developed
by Tokuyama in Japan through modification and repeated screening of the chemical struc-
ture and biological activity of the rice field herbicide thenylchlor. Pethoxamid is typically
applied to the soil as a pre-plant, pre-plant-incorporated, or pre-emergence herbicide [135].
It has shown effective weed control against broadleaved weeds such as redroot pigweed
(Amaranthus retroflexus L.), common lambsquarters (Chenopodium album L.), and ladysthumb
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(Polygonum persicaria L.) as well as annual grasses that include species from the foxtail
species (Setaria spp.) and large crabgrass (Digitaria spp.) [136,137]. Similar to pretilachlor,
pethoxamid inhibits the formation of very-long-chain fatty acids in responsive weeds and
is generally used to control weeds before they emerge [137,138].
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Pretilachlor (48) is a selective pre- or post-emergence herbicide that belongs to the
chloroacetanilide class (Figure 24). It is widely used to control broadleaved weeds, various
grasses, and sedges in transplanted and directly seeded paddy fields [139–148]. Pretilachlor
works by inhibiting the synthesis of very-long-chain fatty acids (VLCFAs) and cell division.

Butachlor (49) is one of the widely and extensively used herbicides that is primarily
used for controlling grass weeds and various broadleaved weeds in crops such as wheat,
rice, and other cereal crops [149,150] (Figure 24). It is a chloroacetamide herbicide that
inhibits early plant development by inhibiting the biosynthesis of long-chain fatty acids in
microsomes [151,152].

Monalide (50), which belongs to the class of aniline herbicides, is an important selective
herbicide for controlling weeds in vegetable crops. It is applied after the emergence of both
weeds and crops [153,154] (Figure 24).

Pyridate (51) is a common single-dose rice field herbicide that belongs to the thio-
carbamate herbicides and is a selective post-seedling herbicide (Figure 25). It is suitable
for controlling broadleaf weeds of wheat, rice, corn, and other cereal crops, especially
for porcine amaranth and some gramineous weeds. It works by blocking the weed’s
photosystem II process, leading to rapid degradation of the weed’s cell walls [155].
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Pentanochlor (52) is a selective, contact herbicide that is absorbed through leaves [156]
(Figure 25). Used for selective weeding of carrot, celeriac, celery, fennel, parsley, parsnips,
and other plants before and after seeding as well as for the pre-seeding of tomato and some
flower crops.

Bicyclopyrone (53) is a highly effective broad-spectrum herbicide that demonstrates
exceptional selectivity for use in corn, sugar beet, and grain fields (Figure 26). As a
member of the 4-hydroxyphenylpyruvate dioxygenase (4-HPPD) inhibitor herbicide fam-
ily, bicyclopyrone is responsible for inhibiting the activity of 4-HPPD, a non-heme iron
(II)-dependent dioxygenase. Consequently, the biosynthesis of carotenoids is impeded,
leading to albinism in the plant meristem and ultimately causing plant death [157–163].
The application of bicyclopyrone is very flexible; it can be used from pre-sowing to post-
emergence, and it also works well in different environmental conditions and different
planting methods.
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Tolpyralate (54) is a novel selective herbicide for controlling weeds in corn crops. It
demonstrates effective control over a broad spectrum of grasses and broadleaves while
exhibiting excellent selectivity for corn [164] (Figure 26). Tolpyralate is a new 4-HPPD-
inhibitor that belongs to the benzoylpyrazole family that affects sensitive weeds by in-
terrupting the biosynthesis of plastoquinone and tocopherol and stopping the synthesis
of carotenoid pigments [163,165]. In comparison to other herbicides of the same class,
tolpyralate delivers comparable or superior weed control in annual broadleaves and
grasses [166,167].

Syringomycin (55), which is derived from Pseudomonas syringae, is a large amphiphilic
molecule with a polar peptide head and a hydrophobic 3-hydroxy fatty acid tail of variable
length (from C10 to C14) that binds to N-terminal serine residues via an amide bond [168]
(Figure 27). The mode of action of syringomycin is assembly into macromolecules and
insertion into the cell membrane to form pores that can freely permeate cations, resulting
in the rapid necrosis of plant tissues [169].
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Sarmentine (56) is a natural product from Piper longum L. that has been patented as
an herbicide (Figure 27). Sarmentine destroys the plant cuticle, leading to cell membrane
damage followed by rapid drying and eventually tissue death [168].

Citral (57) is a diterpene component in many plant essential oils that also has been
patented as an herbicide (Figure 27). Citral vapor disrupts microtubule polymerization in
Arabidopsis seedlings [170], but it may have a new target for disrupting mitosis because
citral affects microtubule polymerization differently than other mitotic inhibitors used as
herbicides [168].

Cloquintocet-mexyl (CLM, 58) is a quinoline-based herbicide safety agent that selec-
tively protects certain crops from herbicide injury without reducing the biological activity
of target weeds [171–173]. CLM is always used in conjunction with clodinafop-propargyl
for the effective control of isoproturon-resistant small-seed canary grass biotypes (Phalaris
minor Retz.) as well as other broad-leaved weeds (Triticum aestivum) [174] while protecting
crops from herbicide damage (Figure 28).
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3.4. Plant Growth Regulators Containing a Long Chain

Plant growth regulators are defined as natural or chemically synthesized substances
that play a role in plant development or metabolism.

In 1964, C6-C18 high-carbon primary alcohol was identified as a promising tobacco
bud suppressor. Extensive research conducted by tobacco chemists and growers from
various countries revealed that n-decanol (59) exhibited the most effective suppression,
followed by n-octanol (60) and n-dodecanol (61). Due to its excellent biodegradability
and composition of only carbon, hydrogen, and oxygen, high-carbon primary alcohol has
gained significant popularity within the international tobacco industry for its non-toxic
and non-residual characteristics [175,176] (Figure 29).
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TRIA (62), a primary saturated alcohol, is classified as a plant growth regulator
found in the epicuticular waxes of upper plant surfaces that stimulates physiological and
biochemical processes in many crops [177,178] (Figure 29). Relatively low concentrations of
triacontanol promote the growth of most crops, including rice (O. sativa L.) and maize (Zea
Mays L.) [179,180]. Currently, TRIA has been used to improve plant tolerance to abiotic
stresses such as low temperature, drought, salt stress, and heavy metals [179,181,182].
It is noteworthy that under abiotic stress, exogenous application of TRIA can promote
plant growth, increase photosynthetic pigment content, and increase compatible osmolyte
accumulation [183,184]. TRIA can also reduce stress by regulating the expression of certain
genes [182,185].

Pelargonic acid (63) is a fatty acid widely found in nature that occurs not only in
animals and plants but also in volatile organic compounds in soil [186,187] (Figure 29). It
can be used as a blossom-thinning agent to prevent alternate-year cropping of apples [188].
Pelargonic acid, in the form of its salts and formulations, is also utilized as a non-selective
herbicide suitable for gardens [186,189]. As a contact non-selective herbicide, it functions
by attacking the cell membrane, resulting in cell leakage and the subsequent breakdown of
membrane acyl lipids [187,190].

Prohydrojasmon (64) is a synthetic analog of jasmonic acid (JA) developed as a plant
growth regulator [191]. Jasmonic acid (JA) and its derivatives are higher plant growth
regulators that are important in regulating physiological processes such as senescence,
fruit ripening, coloration, and pigment accumulation. It is believed that these compounds
can improve crop quality by increasing anthocyanin, glucosinolate, terpene, and phenolic
levels, all of which contribute to the quality of crops [192–195]. The application of PDJ as
a plant growth regulator is mainly focused on fruits, including apples, oranges, mangoes
and grapes [191,196,197]. PDJ has similar effects to endogenous JAs and has been shown
to affect a variety of physiological processes, including senescence, leaf abscission, fruit
ripening, coloration, and pigment accumulation. Other studies have shown that PDJ
can also induce bioaccumulation of the above-mentioned secondary compounds, thus
improving crop quality [191] (Figure 30).
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3.5. Long-Chain Molecules with Rodenticidal Activity

Vitamin D, also known as calciferol, is a complex lipophilic molecule. Biologically,
it is similar to other pseudo-steroids. Ergocalciferol (vitamin D2, 65) and cholecalciferol
(vitamin D3, 66) are two of the most important and major examples; they are prohormones
with very similar chemical structures but different side chains that are involved in calcium
and phosphorus metabolism in animals [198]. Ergocalciferol can be used either alone for
rodent control or in combination with 0.025% warfarin and 0.005% difenacoum, which
are effective combinations for controlling anticoagulant-resistant or -susceptible rats and
mice [199]. Ergocalciferol promotes bone calcification and tooth growth in animals and is
not harmful to individuals when consumed in small amounts, but if an excessive amount is
consumed, calcium in the blood can rise rapidly, leading to tissue calcification and eventual
death. Cholecalciferol is also a rodenticidal agent with similar properties (Figure 31).
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In addition, there are other kinds of long-chain molecules with agro-bioactivities,
such as some organic sulfites [200] and non-ionic surfactants [201] like ammonium lauryl
sulfate and triethanolamine lauryl sulfate, etc. Natural extracts are also an important
source of long-chain molecules with agro-bioactivities [202–204]. For example, the crude
plant extracts of Chenopodium ambrosioides, Conyza dioscordisis, and Convolvulus arvensis are
effective against stored grain pests; the extract components are mainly long-chain fatty
acid esters of hexadecanoic, arachidonic, and octadecanoic acids [203]. The hexane (HE)
extract of D. insularis showed high acaricidal activity against the bovine tick by reducing
oviposition and hatching rates [202], which may be related to chemical compounds such
as palmitic acid, ethyl hexadecanoate, linolenic acid, and ethyl linolenoate. Zhu et al.
purified nine new diphenyl ethers via fermentation using the endophytic fungus Epicoccum
sorghinum L28. Compounds 67a–67e are long-chain diphenyl ethers, and compounds 67f
and 67g contain ester segments formed by natural long-chain fatty acids and hydroxyl
groups in diphenyl ether benzyl alcohol units (Figure 32). They have strong inhibitory
activities against F. oxysporum and C. musa, which may be a defense tool induced by host
chemicals. It can help hosts resist Fusarium and Colletotrichum, which widely infect
mangrove plants [205].
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4. Conclusions and Prospects

In summary, this paper focused on long-chain molecules with pesticide activity, high-
lighting the importance of the long chain in determining biological activity. The antifungal
activity of glucosamine analogs increases with longer alkyl chains, while the ovicidal activ-
ity of allyl esters of fatty acids decreases with longer alkyl chains. Long-chain fatty acids
with carbon chain lengths of C9~C11 exhibit the best herbicidal activity, indicating variable
effects of long-chain tails on biological activity in different molecules. The introduction of
long-chains in molecules can alter their geometry and physicochemical properties, offering
opportunities for pesticide innovation and agricultural development. Designing long-chain
compounds with these properties is an area of interest in pesticide research.

In addition, long-chain molecules exhibit a diverse range of biological activities in agri-
cultural production, making significant contributions to the effective control of agricultural
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diseases, pests, and weeds while also having a strong economic value. Many agricultural
bioactive long-chain molecules possess the advantages of high efficiency and low toxicity.
In recent years, several new pesticide products such as seboctylamine, tyclopyrazoflor, and
flupentiofenox have been continuously introduced. Furthermore, further research is needed
to better understand the mechanism of action and structure–activity relationship of certain
long-chain molecules. This will facilitate the development of innovative modifications and
compound synthesis, ultimately promoting the wider application of long-chain molecules
in agricultural production. The contribution of long chains to the biological activity of these
molecules will be a subject that warrants special attention and further research.
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