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Abstract: Licorice, a widely used traditional Chinese medicine, contains more than 300 flavonoids
and more than 20 triterpenoids, which have potential medicinal value and can prevent the growth of
tumor cells by blocking the cell cycle, affecting the regulation of the apoptosis gene of tumor cells,
and inhibiting tumor cell angiogenesis. However, many of the compounds in licorice still have the
drawbacks of poor solubility, significant toxic side effects, and low antitumor activity. This article
reviews the structural modification of effective antitumor active ingredients in licorice, thus providing
a theoretical basis for further investigation of licorice and the development of new antitumor drugs.
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1. Introduction

A serious condition that endangers human health is cancer. Licorice is the dried
root and rhizome of the legumes Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., and
Glycyrrhiza glabra L. [1], which has the effect of tonifying the spleen and invigorating
qi, clearing heat and detoxification, acting as an expectorant and cough suppressant,
reducing pain, and harmonizing various medicines [2,3]. Licorice has both direct and
indirect effects on tumors, including disruption of the cell cycle [4], induction of apopto-
sis and autophagy [5,6], inhibition of cancer cell migration and spread [7], regulation of
immunity [8], etc. It also benefits from a long-lasting action time, a wide range of targets,
multiple pathways, and minimal toxic side effects. But, many licorice monomeric com-
pounds still suffer from poor solubility, significant toxic side effects, and weak antitumor
effectiveness. However, plenty of licorice’s monomeric compounds still suffer from issues
such poor solubility, significant toxic side effects, and weak antitumor effectiveness when
used in clinical settings. In light of these shortcomings, numerous research teams, both
domestically and internationally, use cutting-edge science and technology to chemically
alter the antitumor components of licorice in order to produce derivatives with high bio-
logical activity and good solubility and create novel antitumor medications. To provide a
theoretical foundation for the continued development and application of licorice, this paper
primarily analyzes the scientific progress of structural alterations of helpful antitumor
chemical components in licorice.

2. Ingredient Research
2.1. Flavonoids

The basic parent nucleus of licorice flavonoids is 2-phenylchromonone, which refers
to a series of compounds formed by two benzene rings (A and B rings) connected to each
other by three carbon atoms. Most have the basic skeleton of C6-C3-C6 (Figure 1).
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9 licoflavon C20H18O4 [12] 

10 kumatakenin C17H14O6 [13] 
11 naringin C27H32O14 [14] 
12 isoangustone A C25H26O6 [15] 
13 genkwanin C16H12O5 [16] 
14 uralenol C21H18O7 [15] 
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(1) Etherification: Xiang et al. [17] used apigenin as raw materials to obtain six 
apigenin derivatives by introducing methyl ether and difluoromethyl ether at the 7th 
position of the A ring, difluoromethyl ether at the 4′ position of the B ring, difluoromethyl 
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2.1.1. Flavonoids

The following 15 different kinds of flavonoids have the most frequently found in
licorice (Table 1), while apigenin (Figure 2) has received more research attention for its
structural changes and antitumor abilities. Following a review of the pertinent literature, it
emerged that apigenin’s structural change focused mainly on the following categories:

Table 1. Licorice flavonoid compounds.

Serial Number Name of the Compound Molecular Formula Reference

1 schaftoside C26H28O14 [9]
2 vicenin-2 C27H30O15 [9]
3 isoshaftoside C26H28O14 [9]
4 shaftoside C26H28O14 [9]
5 isoviolanthin C27H30O14 [9]
6 isoschaftoside C26H28O14 [10]
7 violanthin C27H30O14 [10]
8 apigenin C15H10O5 [11]
9 licoflavon C20H18O4 [12]
10 kumatakenin C17H14O6 [13]
11 naringin C27H32O14 [14]
12 isoangustone A C25H26O6 [15]
13 genkwanin C16H12O5 [16]
14 uralenol C21H18O7 [15]
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Figure 2. The structure of apigenin.

(1) Etherification: Xiang et al. [17] used apigenin as raw materials to obtain six apigenin
derivatives by introducing methyl ether and difluoromethyl ether at the 7th position of the
A ring, difluoromethyl ether at the 4′ position of the B ring, difluoromethyl ether in the 7′

position of the A ring and 4′ position of the B ring at the same time, and bromine atoms at
the 6th and 8th positions of the A ring at the same time, and the anti-liver cancer activity
of the derivatives was studied in vitro (Scheme 1). The results showed that compound 3
(6,8-dibromo-7,4-dimethoxy-5-hydroxyflavone) had the strongest anti-liver cancer activity,
with a potency 12.09 times that of the lead apigenin and 11.05 times that of the chemotherapy
drug 5-FU, and the structure–activity relationship analysis speculated that it may be related
to its simultaneous methyl etherification and bromination, and Cardenas et al [18] also
found that the introduction of Cl or Br atoms at the C6 position of the flavonoid A ring can
enhance its antitumor activity.
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Scheme 1. Synthetic route of apigenin etherified derivatives.

(2) Alkylation: According to Nikaido, T. et al. [19], the presence of isoprene groups
in flavonoids greatly increased their lipophilicity, which can enable compound molecules
to exhibit strong affinity for biofilms, which in turn can cause a significant increase in
biological activity. The structure of apigenin includes three hydroxyl groups, namely,
4′, 5, and 7, and the activities of the various locations vary. Daskiewicz, J.B. et al. [20]
protected phenolic hydroxyl groups at position 7 and 4′ with chloromethyl methyl ether,
phenolic hydroxyl etherification and the introduction of isoprene at position C-5, and then
they rearranged σ migration, migrated the 5-position isoprene group to position 8 on the
skeleton, and finally deprotected to obtain 8-isoprenylapigenin (Scheme 2). Activity tests
showed that the introduction of isoprene at the 8th position of apigenin could significantly
inhibit the proliferation of HT-29 in human colon cancer cells and promote their apoptosis.
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(3) Esterification: Aminophosphate is a phosphorus-containing analogue of natural
amino acids; the introduction of amino phosphate can often enhance the antitumor ac-
tivity of the parent drug, and some phosphoramide nitrogen mustard derivatives, such
as cyclophosphamide, have been applied because of their good anticancer activity [21].
In order not to affect the amide bonds and ester bonds in the amino phosphate structure
introduced by apigenin, Han, T [22] chose acetylation under the action of pyridine and
acetic anhydride to protect the 4′, 5, and 7 hydroxyl groups, because the hydroxyl group
on the 7th position is in the 4-position carbonyl group, the electron-absorbing effect of the
carbonyl group enhanced the 7-hydroxyl acidity, so compared with other hydroxyl groups,
it was easier to remove the 7-position hydroxyl group, obtain 4′, obtain 5-diacetylapigenin
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at its 7th position deprotector, and remove 4′. The results show that the five compounds
could inhibit tumor cell proliferation to varying degrees, showing good tumor proliferation
inhibition activity, especially B (substituent is leucine), D (substituent is alanine), and E
(substituent is valine), with better activity, and the IC50 values were 25, 26.2, and 21 µmol/L,
respectively, which has certain theoretical and practical significance for the development of
drugs for the treatment of cervical cancer (Scheme 3).
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(4) Formation of complexes: Modern research has demonstrated that rare earth metals
have unique electronic structures, bonding properties, and high coordination numbers.
By forming complexes with naturally occurring substances that have pharmacological
activity, these metals can enhance or expand the pharmacological effects of the original
ligand, and their toxicity is significantly decreased. Lanthanum nitrate and apigenin were
used to create the lanthanum apigenin complex for the first time. The complex’s antitumor
activity was tested on the cervical cancer cell line Hela, and the results revealed that it
significantly inhibited cell proliferation when the concentration was higher than 30 ug/mL.
The inhibitory impact grows over the same period of time as the compound concentration
increases; at the same concentration point, the inhibitory effect rose as the complex’s
action duration grew longer. It has greater biological activity than the ligand apigenin [23]
(Scheme 4).
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2.1.2. Flavonols

Currently, licorice contains mostly the following eight flavonols (Table 2), and in the
study of structural modification of its antitumor components, galangin (Figure 3) and
quercetin (Figure 4) have been reported more.

Table 2. Licorice flavonol compounds.

Serial Number Name of the Compound Molecular Formula Reference

1 licoflavonol C20H18O6 [24]
2 galangin C15H10O5 [25]
3 kaempferol C15H10O6 [16]
4 isoquercetin C21H20O12 [16]
5 astragalin C21H20O11 [16]
6 narcissin C28H32O16 [26]
7 isoquercitrin C21H20O12 [27]
8 quercetin C15H10O7 [28]
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Fields of exploration into galangin’s structural change are outlined in the following order:
(1) At position 8, nitrogenous basic groups are inserted: With galangin as the starting

material, Luo, Y et al. [29] introduced several nitrogen-containing heterocyclic compounds
at the 8th position of its structure through the Mannich reaction (Scheme 5). The product’s
antitumor activity was then evaluated using the MTT method, and the results shown that
compound 2c and 2d had substantially higher proliferative inhibitory activity than galangin
(IC50: 11.37 and 13.57 µmol/L) on human prostate cancer PC-3M. It was concluded that
the addition of galangin 8-position nitrogenous heterocycles may be responsible for the
augmentation of derivative activity after compound 2d’s proliferation inhibitory activity
on human colon cancer LOVO cell lines had been raised 5.22-fold.
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Scheme 5. Synthetic route of galangin nitrogenous derivatives.

(2) Introduction of substituents at positions 3, 5, 7: Zhao, L et al. [30] conducted
research on the effect of hindering the proliferation of human myeloid leukemia K562
cells through the inclusion of benzyl, acetyl, isopropyl, and trifluoromethyl substituents
at positions 3, 5, and 7 of galangin to synthesize 12 derivatives (Figure 5). It turned out
that when the 3-position hydroxyl group of galangal was benzylated, the activity also fell
significantly when the 3rd and 7th hydroxyl groups of the parent nucleus underwent benzyl
substitution, showing that the retention of the 7-position hydroxyl group was crucial for
activity. However, more research on the structure–activity correlations is required because
there are not many structural modifiers.
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Additionally, studies have shown that quercetin in licorice has chemopreventive
and antitumor effects, and it has inhibitory effects on human prostate cancer [31], breast
cancer [32], lung cancer [33], lymphoma [34], ovarian cancer [35], and other malignant
tumor cells; however, because quercetin is a planar molecule, its spatial structure is rel-
atively tightly stacked, and it is not easily dispersed by solvents or solutes, making its
water solubility poor (<7 µg/mL); this affects its pharmacokinetic properties, and the
bioavailability after entering the human body is low (the peak plasma concentration is only
0.13~7.60 µmol/L) [36], thereby restricting the clinical use of quercetin as an anticancer
medication, making its structural modification of particular importance. To summarize the
study development of structural modification of quercetin in antitumor in recent years, the
following three aspects are mainly considered:

(1) Hydroxyl esterification: Because quercetin has a total of five hydroxyl groups, its
hydroxyl groups are typically selectively esterified. Mulholland, P. J et al. [37] and Golding,
B. T et al. [38] used quercetin as a launching material, using it in different positions of
hydroxyl groups to react differently, selectively maintaining hydroxyl groups to obtain
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compound 4, and then adjusting it with ethyl isocyanatoacetate to obtain compound 5. The
synthesis of QC12 is shown in Scheme 6. After compound 5, dehydroxyprotector undergoes
ester hydrolysis under acidic conditions to produce 3′-(N-carboxymethyl) carbamoyl-3,
4′, 5, 7-tetrahydroxyflavone (QC12), the derivative introduces glycine groups to increase
its water solubility. Informal phase I clinical trials demonstrate that QC12 can inhibit the
growth of human ovarian cancer A2780 cells and block cell proliferation in the late S stage
and early G2, making it a new water-soluble anti-cancer lead compound (Scheme 6).
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(2) Hydroxy ether formation: Liu, Q. et al. [39] used rutin as the starting material, followed
by the Williamson ether reaction, amidation reaction, and Pd/C catalytic hydrodebenzyl to
produce 13 quercetinamide derivatives (Scheme 7). When this series of derivatives was tested
for antitumor activity, the results revealed that the antitumor activity had increased, with
compound 7–13 having the greatest inhibitory effect on human esophageal squamous cell
carcinoma cells EC109 (IC50 = 10.25 µmol L−1) was significantly superior to the parent drug
quercetin (IC50 = 31.884 µmol·L−1) and 5-FU (IC50 = 41. 738 µmol·L−1).
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(3) Formation of metal complexes: Quercetin is a particularly powerful metal chelating
agent that can coordinate with a variety of metal ions to form complexes owing to its
distinctive planar chemical structure, the presence of hydroxyl groups, and the presence
of carbonyl groups. In relation to research by Ksenija et al. [40], quercetin lanthanum
complexes have a potent cytotoxic effect on human cervical cancer cell lines (Hela) at
concentrations between 100 and 1000 mmol mL−1 when exposed for a duration of three
hours. Low-dose complexes will have the same biological effect on tumor cells without
the negative side effects associated with high drug concentrations, making them potential
antitumor medications.

2.1.3. Isoflavones

Isoflavones are important components in licorice, with phytoestrogen activity, which
can inhibit the proliferation of a variety of cancer cells. Now, more licorice isoflavones
have been discovered, primarily the following 37 compounds (Table 3), and the structural
alteration of their antitumor components, formononetin (Figure 6) and genistein (Figure 7),
is being researched more.

Table 3. Licorice isoflavone compounds.

Serial Number Name of the Compound Molecular Formula Reference

1 licoisoflavone A C20H18O6 [41]
2 eurycarpin A C20H18O5 [42]
3 formononetin C16H12O4 [43]
4 eurycarpin B C20H16O5 [42]
5 gancaonin G C21H20O5 [36]
6 licoricone C22H22O6 [44]
7 afromosin C17H14O5 [45]
8 odoratin C17H14O6 [46]
9 prunetin C16H12O5 [47]

10 genistein C15H10O5 [48]
11 ononin C22H22O9 [42]
12 licoagroside A C23H25O12 [49]
13 lupiwighteone C20H18O5 [50]
14 2,3-dehydrokievitone C20H18O6 [51]
15 gancaonin H C25H24O6 [52]
16 glycyroside C27H30O13 [53]
17 calycosin C16H12O5 [54]
18 glabrene C20H18O4 [55]
19 2′-hydroxyisolupalbigenin C25H26O6 [56]
20 licoricone C22H22O6 [55]
21 glicoricone C21H20O6 [55]
22 3′,6′-diethoxyfluorescein C24H20O5 [55]
23 3,7-dimethyl licoflavonol C22H24O6 [15]
24 glabrizoflavone C20H18O6 [57]
25 6,8-di-(dimethylallyl)-genistein C25H26O5 [58]
26 glyzarin C18H14O4 [59]
27 isoglabrone C20H16O5 [60]
28 parvisoflavone B C20H16O6 [56]
29 3′,4′-dihydroxy-7-methoxyisoflavone C16H12O5 [10]
30 derrone C20H16O5 [51]
31 parvisoflavones A C20H16O6 [51]
32 isoglabrone C20H16O5 [51]
33 glycybridin D C25H26O4 [55]
34 glycybridin E C25H24O4 [55]
35 glycybridin J C21H22O6 [55]
36 semilicoisoflavone B C20H16O6 [42]
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As an important class of antitumor drugs, nitrogen mustard derivatives are the gen-
eral term of β-chloroethylamine compounds, including mono β-chloroethanamine and
bis β chloroethanamine [61]. At present, the synthesis is relatively simple, the cost is
low, and there are many nitrogen mustard drugs that have been used in clinical prac-
tice, but there are still shortcomings such as large adverse reactions, low treatment effi-
ciency, poor selectivity, etc. Hu, K et al. [62] produced 15 nitrogen mustard derivatives
of frmononetin with frmononetin as the mother in a straightforward five-step reaction
involving nitrification, phenolic hydroxyetherification, reduction, amino substitution, and
chlorine substitution. He then tested the target compounds’ effects on the human cancer
cell lines HCT-116, DU-145, Hela, and SGC-7901 for their ability to inhibit tumor growth,
and in vitro antitumor activity experiments showed that compound 6d had a significant
effect on HCT-116 cells, and its IC50 was 3.80 µmol/L, which was stronger than that of the
parent drug manganthocyanin (IC50 = 60.97 µmol/L) and the positive control mephalan
(IC50 = 20.90 µmol/L), respectively. And, the results can be inferred that the introduction
of formononetin in the 7-position hydroxyl group and nitrogen mustard in the 3′ position
can enhance the inhibitory effect on tumor cells (Scheme 8). In order to create two novel
NO donor-type anthocyanin derivatives, Xin, F et al. [63] connected NO donor fragments
on 7-position phenolic hydroxyl groups using the design principle of synergistic prodrugs
(Scheme 9).
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Likewise, genistein has been highly regarded by the medical community in many
different nations as a preventive agent for tumor cells because it has the advantage of not
destroying normal cells. Although genistein has a significant first-pass effect and weak
lipophilicity and hydrophilicity, this makes it difficult to reach the goal of therapeutic
therapy of disorders due to limited bioavailability. As a result, its structure has undergone
various changes to increase bioavailability. The following three aspects are where the
structural change is currently concentrated.

(1) Modification of 7-position hydroxyl groups: Based on the lipophilicity and biodegrad-
ability of the derivatives, Polkowski, K et al. [64] synthesized an assortment of genistein
glycoside derivatives (Figure 8). Studies on the survival of cells in cultivation and cytotoxi-
city have revealed that hydrophilic glycosides have substantially lower anticancer activity
than free glycoside ligands. However, compared to genistein, lipophilic glycosides exhibit
a markedly stronger anticancer activity. On the tumor cells Balb/c3T3, Popiołkiewicz’s [65]
lipophilic genistein derivatives had a minimum inhibitory concentration of 5 mol/mL,
which was a factor of ten lower than genistein’s.
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(2) Structural modification of 4′-position hydroxyl group: By adding nitro to the
4′-position of the genistein backbone, Jin, Y et al. [66] constructed genistein nitro deriva-
tives (Figure 9). Results highlighted that, with the exception of the parent compound
nitrogenitrin, which exhibited strong antitumor activity, the antitumor effects of the other
compounds were less potent than those of the mother compound. It was also evident that
the isoflavones’ 7-position hydroxyl group may be the active essential component.



Molecules 2023, 28, 5855 11 of 20

Molecules 2023, 28, x FOR PEER REVIEW 11 of 21 
 

 

Popiołkiewicz’s [65] lipophilic genistein derivatives had a minimum inhibitory 
concentration of 5 mol/mL, which was a factor of ten lower than genistein’s. 

 
Figure 8. Genistein glycoside derivative structure. 

(2) Structural modification of 4′-position hydroxyl group: By adding nitro to the 4′-
position of the genistein backbone, Jin, Y et al. [66] constructed genistein nitro derivatives 
(Figure 9). Results highlighted that, with the exception of the parent compound 
nitrogenitrin, which exhibited strong antitumor activity, the antitumor effects of the other 
compounds were less potent than those of the mother compound. It was also evident that 
the isoflavones’ 7-position hydroxyl group may be the active essential component.  

 
Figure 9. Structural formula of genistein nitro derivative. 

(3) Structural modification of 2 or 3 hydroxyl groups: Zhang, L et al. [67,68] 
synthesized more than 50 derivatives of genistein, and they tested the antitumor activity 
in vitro, in which the 7- and 4′ hydroxyl groups were replaced with ethoxycarbonylformyl 
groups in all derivatives; the results showed that the antitumor activity had the lowest 
IC50 (8.5 µmol/L), which was higher than that of the positive control 5-fluorouracil (IC50 
= 13.4 µmol/L), which indicated that the replacement hydroxyl group introduced a 
lipophilic group. It can significantly improve the antitumor activity and lipophilicity of 
genistein derivatives.  

2.1.4. Chalcones 
At the moment, there are 24 different types of chalcones (Table 4) found in licorice. 

While researching the structural modifications of these compounds that make them 
antitumor active, many researchers discovered that isoliquiritigenin (Figure 10) is 
connected by two benzene rings, A and B, through the cross-conjugation of propenone. 
The connected bridge has three atoms, thus facilitating a large degree of selection freedom 
and a large spatial range of induction fit with the receptor.  

Table 4. Licorice chalcone compounds. 

Serial Number Name of the Compound Molecular Formula References 
1 isoliquiritigenin C15H12O4 [55] 
2 isoliquiritin C21H22O9 [12] 
3 licuraside C26H30O13 [12] 

Figure 9. Structural formula of genistein nitro derivative.

(3) Structural modification of 2 or 3 hydroxyl groups: Zhang, L et al. [67,68] synthesized
more than 50 derivatives of genistein, and they tested the antitumor activity in vitro, in
which the 7- and 4′ hydroxyl groups were replaced with ethoxycarbonylformyl groups in all
derivatives; the results showed that the antitumor activity had the lowest IC50 (8.5 µmol/L),
which was higher than that of the positive control 5-fluorouracil (IC50 = 13.4 µmol/L),
which indicated that the replacement hydroxyl group introduced a lipophilic group. It can
significantly improve the antitumor activity and lipophilicity of genistein derivatives.

2.1.4. Chalcones

At the moment, there are 24 different types of chalcones (Table 4) found in licorice.
While researching the structural modifications of these compounds that make them antitu-
mor active, many researchers discovered that isoliquiritigenin (Figure 10) is connected by
two benzene rings, A and B, through the cross-conjugation of propenone. The connected
bridge has three atoms, thus facilitating a large degree of selection freedom and a large
spatial range of induction fit with the receptor.

Table 4. Licorice chalcone compounds.

Serial Number Name of the Compound Molecular Formula Reference

1 isoliquiritigenin C15H12O4 [55]
2 isoliquiritin C21H22O9 [12]
3 licuraside C26H30O13 [12]
4 licochalcone A C21H22O4 [12]
5 licochalcone B C16H14O5 [12]
6 neoisoliquiritin C21H22O9 [12]
7 echinatin C16H14O4 [69]
8 glycybridin A C20H20O5 [51]
9 glycybridin B C20H22O5 [51]
10 glycybridin C C25H30O5 [51]
11 kanzonol Y C25H30O5 [51]
12 kanzonol C C25H28O4 [51]
13 kanzonol B C20H18O4 [51]
14 licoagrochalcone A C20H20O4 [51]
15 paratocarpins B C25H26O4 [51]
16 isobavachalcone C20H20O4 [51]
17 chalconaringenin4-O-glucoside C21H22O10 [70]
18 3-hydroxylicochalcone E C21H22O5 [70]
19 licoagrochalcone D C21H22O5 [70]

20
[6′′,6′′-dimethylpyran-(2′′,3′′4,5)]-3′-

γ,γ-dimethylally-2′,3,4′-
thrihydroxychalcone

C25H26O5 [71]

21 licoagrochalcone C C21H22O5 [60]
22 kanzonol C C25H28O4 [60]
23 4-hydroxylonchocarpin C20H18O4 [72]
24 licoagrochalcone B C21H20O4 [49]
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Figure 10. The structure of isoliquiritigenin.

Methoxy, -methyl, aryl, and 2′-oxygen-containing groups can be appended to its
A ring for boosting its anti-mitotic activity [73,74]. Also, Ma, Y [75] added 10 Mannich
groups (Scheme 10) to the A ring 3′-methyl position of 3′-methy lisoliquiritigenin, including
dimethylamine, morpholine, cyclohexane, and diisopropylamine. Experiments in mice
confirmed that the inhibition rate exceeded than that of isoglycyrrhizin, with diisopropy-
lamine derivatives having the highest inhibition rate. The inhibition rate of isoliquiritigenin
S180 tumor cells at 180mg·kg−1 was 71.68%. Yang, X et al. [76] and Xu, F et al. [77] dis-
covered that isoliquiritigenin analogues prevented the spread of human cervical cancer
cells and that they all had a clear pro-apoptosis effect on SiHa and HeLa cells at a dosage
of 100 µg/mL. Activity was increased by adding a single methoxy or hydroxyl group to
the isoliquiritigenin B ring’s third position. Although still powerful, the activity of the
reduction of one hydroxyl group in the second position of the A ring is less than that of
isoliquiritigenin. One hydroxyl group’s activity was decreased at the second position of the
A ring, one hydroxyl group was added to the third position of the B ring, and one methoxy
group’s activity was added to the fourth position, showing that the hydroxyl groups had
been added. It was demonstrated that 3-methoxy isoliquiritigenin had a better apoptotic
impact than isoliquiritigenin in the experiments on averting the proliferation of human
liver cancer Bel-7402, and the highest possible apoptosis rate could reach 93.5% and 85%,
respectively (Scheme 11).
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2.1.5. Dihydroflavonoids

There has been little research conducted on the structural modification of antitumor
activities for the following 22 dihydroflavonoids (Table 5) that typically occur in licorice.

Table 5. Licorice dihydroflavonid compounds.

Serial Number Name of the Compound Molecular Formula Reference

1 glabrol C25H28O4 [78]
2 glabranin C20H20O4 [55]
3 liquiritigenin C15H12O4 [55]
4 glabranin isomer C20H20O4 [79]
5 liquiritin C21H22O9 [12]
6 liquiritin apioside C26H30O13 [12]
7 pinocembrin C15H12O4 [80]
8 licoflavanone C20H18O5 [80]
9 xambioona C25H24O4 [51]

10 shinflavanone C25H26O4 [51]
11 (2S)-abyssinone I C20H18O4 [51]
12 euchrenone a5 C25H26O4 [51]
13 naringenin C15H12O5 [51]
14 abyssinone II C20H20O4 [51]
15 naringin C27H32O14 [51]
16 pinocembroside C21H22O9 [9]
17 shinflavone C25H26O4 [55]
18 licoagrodin C45H44O9 [81]
19 neoliquiritin C21H22O9 [81]
20 3′-prenylnaringenin C21H22O9 [82]
21 cyclolicoflavanone C20H20O5 [82]
22 glabranine C20H20O4 [82]

Liquiritigenin is a flavonoid found in licorice roots. Ren, J et al. [83] discovered that
glycyrrhizin along with methyl hydrazinodithioformate were refluxed in ethanol under
acidic conditions to form hydrazone, and the methyl dithioformate group was hydrolyzed
to thioformate, which was subsequently combined with the corresponding amines under
the catalysis of dicyclohexylcarbodiimide (DCC) to obtain a series of glycyrrhizin thiourea
derivatives (Scheme 12); the authors also evaluated its effect on human leukemia cells
(K562), cytotoxic activity of seven tumor cell lines of human prostate cancer cells (DU-145),
human gastric cancer cells (SGC-7901), human colon cancer cells (HCT-116), human breast
cancer cells (MCF-7), human liver cancer cells (HepG2), human cervical cancer cells (Hela),
and a normal cell line of human renal epithelial cells (293); and, in vitro anticancer activity
indicates that most derivatives have certain activity against K562 and DU-145, and from the
structure–activity relationship, the authors theorize that the introduction of an amithiourea
group at the 4-C position of glycyrrhizin can improve anticancer activity.
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2.2. Triterpenoids

Nowadays, licorice mostly contains the following 29 triterpenoid components (Table 6),
and glycyrrhetinic acid (Figure 11) is being explored more in relation to the structural
modifications of the following chemicals that have antitumor activity.

Table 6. Licorice triterpene compounds.

Serial Number Name of the Compound Molecular Formula Reference

1 glycyrrhizic acid C42H62O16 [84]
2 glycyrrhetinic acid C30H46O4 [84]
3 glycyrrhizin C42H62O16 [84]
4 glycyrrhetol C30H48O3 [12]
5 glabric acid C30H46O5 [12]
6 liquoric acid C30H44O5 [12]
7 glabrolide C30H44O4 [12]
8 isoglabrolide C30H44O4 [12]
9 ursolic acid C30H48O3 [80]
10 betulin C30H50O2 [80]
11 lupeol C30H50O [80]
12 licorice-saponin M3 C48H74O19 [85]
13 licorice-saponin N4 C54H84O23 [85]
14 licorice-saponin O4 C54H84O24 [85]
15 licoricesaponin G2 C42H62O17 [85]
16 18α-licorice-saponin G2 C42H62O17 [85]
17 macedonoside A C42H62O17 [85]
18 29-hydroxy-glycyrrhizin C42H62O16 [85]
19 licorice-saponin A3 C48H72O21 [85]
20 24-hydroxy-licorice-saponin A3 C48H72O22 [85]
21 22β-acetoxyl-glycyrrhizin C44H64O18 [85]
22 licorice-saponin H2 C42H62O16 [12]
23 licorice-saponin R3 C48H74O20 [86]
24 licoricesaponin S3 C48H75O20 [86]
25 uralsaponin C C42H64O16 [86]
26 18α-glycyrrhizic acid C42H62O16 [10]
27 18β-glycyrrhizic acid C42H62O16 [10]
28 licorice-saponin P2 C42H62O17 [10]
29 betulic acid C30H48O3 [87]



Molecules 2023, 28, 5855 15 of 20

Molecules 2023, 28, x FOR PEER REVIEW 15 of 21 
 

 

5 glabric acid C30H46O5 [12] 
6 liquoric acid C30H44O5 [12] 
7 glabrolide  C30H44O4 [12] 
8 isoglabrolide  C30H44O4 [12] 
9 ursolic acid C30H48O3 [80] 

10 betulin C30H50O2 [80] 
11 lupeol C30H50O [80] 
12 licorice-saponin M3  C48H74O19 [85] 
13 licorice-saponin N4  C54H84O23 [85] 
14 licorice-saponin O4  C54H84O24 [85] 
15 licoricesaponin G2  C42H62O17 [85] 
16 18α-licorice-saponin G2 C42H62O17 [85] 
17 macedonoside A  C42H62O17 [85] 
18 29-hydroxy-glycyrrhizin C42H62O16 [85] 
19 licorice-saponin A3 C48H72O21 [85] 
20 24-hydroxy-licorice-saponin A3  C48H72O22 [85] 
21 22β-acetoxyl-glycyrrhizin  C44H64O18 [85] 
22 licorice-saponin H2 C42H62O16 [12] 
23 licorice-saponin R3  C48H74O20 [86] 
24 licoricesaponin S3 C48H75O20 [86] 
25 uralsaponin C  C42H64O16 [86] 
26 18α-glycyrrhizic acid C42H62O16 [10] 
27 18β-glycyrrhizic acid C42H62O16 [10] 
28 licorice-saponin P2 C42H62O17 [10] 
29 betulic acid C30H48O3 [87] 

 
Figure 11. The structure of glycyrrhetinic acid. 

Glycyrrhetinic acid is usually structurally modified to change the activity due to the 
weak antitumor activity of the parent nuclear structure. According to a survey of the 
pertinent scientific literature, the structural change in glycyrrhetinic acid that gave it its 
antitumor effect focuses mostly on four different regions: the A ring modification, the C 
ring modification, the E ring modification, and the multi-ring modification. The hydroxyl 
group at position C-3 on the A ring, the unsaturated carbonyl group at position C-11 on 
the C ring, and the carboxyl group at position C-30 on the E ring all contain functional 
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(1) A ring structure modification: In accordance with the drug stitching principle, the 
hydroxyacetylation at glycyrrhetinic acid C-3 was linked to matrine and melphalan under 
the action of (COCl)2, respectively, and two new glycyrrhetinic acid acetylated derivatives, 
a and b, were synthesized (Scheme 13); and, the antitumor activity in vivo showed that 
compounds a and b had a significant inhibitory effect on hepatoma cell SMMC-7721, with 

Figure 11. The structure of glycyrrhetinic acid.

Glycyrrhetinic acid is usually structurally modified to change the activity due to the
weak antitumor activity of the parent nuclear structure. According to a survey of the
pertinent scientific literature, the structural change in glycyrrhetinic acid that gave it its
antitumor effect focuses mostly on four different regions: the A ring modification, the C
ring modification, the E ring modification, and the multi-ring modification. The hydroxyl
group at position C-3 on the A ring, the unsaturated carbonyl group at position C-11 on the
C ring, and the carboxyl group at position C-30 on the E ring all contain functional groups
that are most appropriate for modification.

(1) A ring structure modification: In accordance with the drug stitching principle, the
hydroxyacetylation at glycyrrhetinic acid C-3 was linked to matrine and melphalan under
the action of (COCl)2, respectively, and two new glycyrrhetinic acid acetylated derivatives,
a and b, were synthesized (Scheme 13); and, the antitumor activity in vivo showed that
compounds a and b had a significant inhibitory effect on hepatoma cell SMMC-7721, with
IC50 values of 85.7 and 178.2 µmol/L, respectively, and animal experiments showed that
they were almost non-toxic to normal liver cells. It is expected to be a candidate for
liver-targeted therapy [88]. In addition, in order to improve the polarity of glycyrrhetinic
acid, Csuk, R et al. [89] prepared different glycyrrhetinic acid C-3 aminoalkyl derivatives
(Scheme 14), and these derivatives were tested for antitumor activity; the results showed
that compared with glycyrrhetinic acid, all amino compounds showed significant activity,
and the activity changed with the change in carbon number, and when the number of
carbon atoms was 6, the activity was the highest, and the IC50 was 0.6–3.0 uM.
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(2) C ring modification: The structural modification research of the C ring mainly
focuses on the carbonyl group at the C-11 position; Fiore, C et al. [90] and Mauro, S et al. [91]
believe that the carbonyl group at the C-11 position is the main cause of the apoptotic
activity of GA derivatives, but the study of Csuk, R et al. [89] shows that the existence
of C-11 carbonyl group is not directly related to the apoptotic activity of the compound;
therefore, the relationship between the existence of C-11 carbonyl group and apoptotic
activity needs to be further studied.

(3) E ring modification: Liu, Y et al. [92] synthesized a series of glycyrrhetinic acid
derivatives by introducing nitro radicals and amino acid fragments into glycyrrhetinic acid,
and compound 6j (Figure 12) with tryptophan amino group and piperidine nitro group in
these derivatives has the strongest cytotoxicity (GI50 is 13.7~15.0 µM), five times stronger
than glycyrrhetinic acid, and it is speculated that adding nitro and amino acid fragments to
the C-30 carboxyl group of glycyrrhetinic acid may help improve its cytotoxicity.
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(4) Polycyclic modification: The polycyclic modification of glycyrrhetinic acid is mainly
concentrated on the A, C and E rings, among which the structural modification of A ring
and E ring is the most prominent. Shen, L.H et al. [93] found that modifying both the
C-3 hydroxyl group and C-30 carboxyl group had antitumor activity, and they found that
when the carbon chain length of the linker group was 2~4, the activity increased with the
extension of the carbon chain length, and when the carbon chain length of the linker group
was 5, the activity decreased. Additionally, they discovered that the compound’s anticancer
effect was increased when C-3 and C-30 were present with nitrate moieties simultaneously.

3. Conclusions and Outlook

In recent times, some advancements have been made in the study and development
of licorice-based antitumor pharmaceuticals, but there are still several issues that limit
the creation and application of the therapeutic substance. The three main challenges
are the ones that follow: (1) Liquiritin and glycyrrhizic acid ammonium salt have been
designated as standard compounds to determine the quality of licorice in the Chinese
Pharmacopoeia 2020 edition, but given that many other compounds have been found



Molecules 2023, 28, 5855 17 of 20

to have good pharmacological activity, it is advised to update the quality evaluation
method to create more thorough, systematic, and standardized quality evaluation standards
for licorice herbs, with the objective being to increase the efficiency of their utilization.
(2) The research on the antitumor mechanisms is discussed from multiple viewpoints, the
research is fragmented, and there is a lack of systematic and comprehensive analysis. The
chemical structure modification of licorice antitumor drugs focuses mainly on flavonoids
and triterpenoids, while carbohydrates and coumarins are less studied. (3) Licorice can
detoxify hundreds of poisons and has the ability to harmoniously combine and detoxify
different medications. Licorice is advantageous to the drug resistance brought on by
anticancer medications and the sensitivity of tumor cells, according to fundamental research
findings, although there are few clinical studies and insufficient links to basic research.
As a result, future research on and the use of licorice will make use of pertinent network
pharmacology, bioinformatics, and other converged technologies.
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