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Abstract: The identification of new targets to address unmet medical needs, better in a personalized
way, is an urgent necessity. The introduction of PARP1 inhibitors into therapy, almost ten years ago,
has represented a step forward this need being an innovate cancer treatment through a precision
medicine approach. The PARP family consists of 17 members of which PARP1 that works by poly-
ADP ribosylating the substrate is the sole enzyme so far exploited as therapeutic target. Most of
the other members are mono-ADP-ribosylating (mono-ARTs) enzymes, and recent studies have
deciphered their pathophysiological roles which appear to be very extensive with various potential
therapeutic applications. In parallel, a handful of mono-ARTs inhibitors emerged that have been
collected in a perspective on 2022. After that, additional very interesting compounds were identified
highlighting the hot-topic nature of this research field and prompting an update. From the present
review, where we have reported only mono-ARTs inhibitors endowed with the appropriate profile of
pharmacological tools or drug candidate, four privileged scaffolds clearly stood out that constitute
the basis for further drug discovery campaigns.

Keywords: PARPs; PARPs inhibitors (PARPi); mono-ARTDs; selective inhibitors; chemical probes

1. Introduction

Post-translational modifications (PTMs) are a series of chemical reactions involving
the attachment of different groups into a target protein. More than 400 different PTMs have
been identified able to affect protein structure, functions and working as essential regulators
of cellular processes. Being these modifications involved in signal transduction, gene
expression regulation, gene activation, DNA repair and cell cycle control, their disruption
or alteration is responsible for cellular dysfunction and various pathologies [1].

Among the most common PTMs, such as phosphorylation, ubiquitylation, acetylation,
or methylation, ADP-ribosylation plays essential roles both in prokaryotic [2] and eukary-
otic cells [3]. It is catalyzed by ADP-ribosyltransferases (ARTs) and, in mammalian cells,
most of them belong to the class of diphtheria-toxin-like ADP-ribosyltransferases (ARTDs)
which comprises poly-ADP-ribose polymerases (PARPs) and tankyrases (TNKS) [4,5].

There are 17 PARP enzymes, they share a common catalytic domain able to bind the
substrate β-nicotinamide adenine dinucleotide (NAD+) and transfer ADP-ribose units of
NAD+ to acceptor nucleophilic amino acids residues of target proteins, with the nicoti-
namide portion that is released as a by-product (Figure 1). Although proteins represent the
principal targets of PARPs, these enzymes also modify nucleic acids, both phosphorylated
DNA and RNA ends, representing another physiologically relevant form of reversible
ADP-ribosylation signaling [6,7].

Based on the PARP catalytic activity, the ADP-ribose can be attached to the target
protein in form of monomer (MARylation) or polymers (PARylation). The poly-ADP-
ribosylation is catalyzed by four out 17 PARP enzymes, PARP1 and 2 and TNKS1 and 2
(referred to as poly-ARTs) [8]. The polymers can be characterized up to 200 units of ADP-
ribose linear or branched every 20–30 units; however, oligomers from 2 to 20 units are
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more widespread. With the exception of PARP13 that is inactive, all the other enzymes
catalyse the mono-ADP-ribosylation (mono-ARTs), with PARP9 that is reported to be able
to MARylate ubiquitin only when complexed with an E3 ubiquitin ligase [9].
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Figure 1. Schematic representation of PARPs catalytic domain and mono-/poly-ADP-ribosylation of 
target protein mediated by PARPs using NAD+ as co-substrate. The key interactions of NAD+ with 
the PARPs donor site are also shown. The amino acids marked in red belong to the catalytic triad, *: 
Glu is replaced by hydrophobic residue in mono-ARTs. X = acceptor amino acid of the target protein. 

Similar to other transient biological processes, the ADP-ribosylation relies on synthe-
sis and degradation mechanisms; indeed, ADP-ribosylation is reversed by various 
“eraser” involved in the degradation at the various points of the chain: PARP glycohydro-
lase (PARG) turns the PARylation into MARylation, while other enzymes, such as TARG, 
ADP-ribosylhydrolase 3 (ARH3), or macrodomains, depending on the type of acceptor 
amino acid, cleave the ADP-ribose-aminoacid linkage [12–14]. 

The first member of the family, PARP1, was discovered in 1963 and plays an im-
portant role in the detection and repair of DNA single-strand breaks (SSBs) [15]. In partic-
ular, the DNA damage is rapidly detected by PARP1 and their interaction allows the 
PARylation of multiple proteins, including chromatin-associated proteins [16], which are 
essential for the activation of the DNA damage repair machinery. PARP1 is also able to 
auto-modify itself, determining a conformational modification responsible for its detach-
ment from the DNA helix. PARP2 and PARP3 also play key roles in the DNA damage 
repair with some common functions and redundancy in structure, particularly between 
PARP1 and PARP2 [17]. 

The roles of these enzymes in the DNA repair made them drug targets of special 
interest. In cancer cell lines with defective breast cancer genes 1 and 2 (BRCA1/2), the 
PARP’s roles emerged as even more essential for the survival [18,19]. Indeed, by inhibiting 

Figure 1. Schematic representation of PARPs catalytic domain and mono-/poly-ADP-ribosylation
of target protein mediated by PARPs using NAD+ as co-substrate. The key interactions of NAD+

with the PARPs donor site are also shown. The amino acids marked in red belong to the catalytic
triad, *: Glu is replaced by hydrophobic residue in mono-ARTs. X = acceptor amino acid of the
target protein.

The differences of the catalytic activity derive from variances in the catalytic triad of
amino acids: the first position of the triad is occupied by a histidine (H) both in mono-
and poly-ARTs, while glutamine and tyrosine replace histidine in PARP9 and PARP13,
respectively [10]. The second amino acid is represented by tyrosine (Y) in all the PARP
subfamilies. This H-Y motif is essential for the correct accommodation of NAD+ and,
as demonstrated by the inactive members, the loss of even one of them prevents the
catalytic activity. Indeed, the conserved histidine forms a H-bond with the 2-OH of the
adenosine ribose, while the tyrosine generates a π-π stacking with the nicotinamide moiety
(Figure 1) [10]. In the third position of the triad, a glutamate (E) residue characterizes the
poly-ARTs (H-Y-E) and it is involved in the elongation of the ADP-ribose chain. Glutamate
is replaced by a hydrophobic residue, such as leucine or isoleucine in the mono-ARTs
(H-Y-Φ), thus preventing the polymerase activity [11].



Molecules 2023, 28, 5849 3 of 27

In the PARPs catalytic domain, two main sub-sites can be recognised: donor site and
acceptor site (Figure 1), surrounded by donor (D) and acceptor loops, respectively. The
donor site binds NAD+ and is composed of a nicotinamide (NI) site, phosphate binding site
and adenine ribose (ADE) site. In the NI site, the most important interactions are generated
by π-π interactions between highly conserved tyrosine residues and nicotinamide ring and
by three H-bonds between serine and glycine residues and the amide group of nicotinamide.
In the acceptor site, instead, the enzyme interacts with the macromolecule to be modified
and it is also the site in which the elongation of ADP-ribose chains occurs.

Similar to other transient biological processes, the ADP-ribosylation relies on synthesis
and degradation mechanisms; indeed, ADP-ribosylation is reversed by various “eraser”
involved in the degradation at the various points of the chain: PARP glycohydrolase
(PARG) turns the PARylation into MARylation, while other enzymes, such as TARG, ADP-
ribosylhydrolase 3 (ARH3), or macrodomains, depending on the type of acceptor amino
acid, cleave the ADP-ribose-aminoacid linkage [12–14].

The first member of the family, PARP1, was discovered in 1963 and plays an important
role in the detection and repair of DNA single-strand breaks (SSBs) [15]. In particular, the
DNA damage is rapidly detected by PARP1 and their interaction allows the PARylation of
multiple proteins, including chromatin-associated proteins [16], which are essential for the
activation of the DNA damage repair machinery. PARP1 is also able to auto-modify itself,
determining a conformational modification responsible for its detachment from the DNA
helix. PARP2 and PARP3 also play key roles in the DNA damage repair with some common
functions and redundancy in structure, particularly between PARP1 and PARP2 [17].

The roles of these enzymes in the DNA repair made them drug targets of special
interest. In cancer cell lines with defective breast cancer genes 1 and 2 (BRCA1/2), the
PARP’s roles emerged as even more essential for the survival [18,19]. Indeed, by inhibiting
these enzymes, a selective cell death of the diseased cells is achieved based on a synthetic
lethality [20], a phenomenon in which the occurrence of a single genetic event is tolerable for
cell survival, whereas the co-occurrence of multiple genetic events results in cell death [21].
Thus, in 2014, the first PARP inhibitor (PARPi), olaparib [22], was approved by FDA and
EMA, followed by three other congeners: rucaparib (2016) [23], niraparib (2017) [24] and
talazoparib (2018) [25]. In addition, veliparib [26] is approved for use under an orphan
designation, and it is in phase III clinical trials, while the last drug entered the clinical trial
is saruparib, the first really selective PARP1 inhibitor, which is currently in phase I/II of
clinical trials.

The approved drugs are used to treat cancers such as ovarian, breast, peritoneal, or
prostate with BRCA1/2 mutations, which for breast and ovarian cancers account for 10–15%
frequency [18,27,28]. Recent studies have shown that the susceptibility to PARPi treatment
can also go beyond the BRCA1/2 mutation, suggesting that other mechanisms of action can
contribute to their anticancer effects, including the so-called “trapping” effect [19,29,30].

The other poly-ARTs, TNKS1/2, which play a key role in the Wnt/β-catenin signaling
control [31,32], have been also largely explored as anticancer targets and, although no in-
hibitors are on the market, many TNKS inhibitors continue to appear in the literature [33,34],
with the selective TNKS inhibitor STP1002 [35] and the dual TNKS/PARP1-2 inhibitor
E7449 (stenoparib) [36] that are in phase I and II, respectively, of the clinical trials.

Respect to poly-ARTs, the mono-ARTs are characterized to a lesser extent, with an
interest that has increased in recent years highlighting important biological roles, as men-
tioned below, that elect them as very promising targets for future drug design. Most
important, their inhibition let to foresee a wider therapeutic applications respect to poly-
ARTs, covering also non-oncological disorders such as inflammation and neurological
diseases [37].

About 10 years ago the first small molecules inhibitors of mono-ARTs appeared in the
literature, and over time, a handful of compounds expanded their chemical space, with
two of them that entered clinical trials as anticancer or anti-inflammatory. However, there
is still an urgent need to dispose of proper chemical tools for interrogating the biological
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roles of these underexplored enzymes and to expand the range of druggable targets. Since
the first perspective on mono-ARTs inhibitors, published in early 2022 [38], five additional
compounds have been disclosed that, for their potency and selectivity, represent a precious
step forward in the mono-ARTs field. This prompted us to prepare the present review where
we have analyzed these compounds along with the previous most promising mono-ARTs
inhibitors, highlighting as only a few privileged scaffolds are able to furnish compounds
with the desired profile of chemical probe or clinical candidate.

The inhibitors herein reported should inspire the medicinal chemist’s community to
further invest on this field in order to identify even more potent and selective inhibitors
that could culminate in innovative drugs.

Mono-ARTs Functions

Mono-ARTs have gained the attention of the scientific community in 2008 when
PARP10 was identified as the first mono-ART member. Since then, the consideration has
been growing and they emerged as therapeutically powerful enzymes with important roles
in many key processes such as the regulation of apoptosis and cell replication, the stress
and immune response modulation or the neurodevelopment (Figure 2).
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PARP10 plays disparate roles: cooperating with the proto-oncoprotein c-Myc, it reg-
ulates the cell cycle and apoptosis [39]; while its interaction with PCNA is essential for
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the restart of the replication fork in the presence of DNA damage [40]. In addition, being
that PARP10 is involved in the MARylation of some kinases, including the mitotic kinase
Aurora-A, it was recently demonstrated that PARP10 depletion leads to defects on the
G2/M phase transition [41]. Finally, PARP10 is also involved in Wnt signaling, in which
Gsk3β has been identified as one of its targets, and, thus, it has been linked to immune
regulation and metabolism [42]. From a pathological point of view, it was shown that
PARP10 supports cell growth during the late G1-S cell cycle phase and improves the DNA
damage tolerance during S phase [43]. Of note, a potential role of PARP10 in inflammation
can also be envisioned: as a part of NF-kB signaling, it inhibits the nuclear translocation of
the transcription factor p65 thus reducing gene expression [44].

PARP14 is the most studied member with many roles already described. It is a well-
known transcription co-factor in macrophages where it suppresses the IFN-γ response [45,46]
and it is able to regulate STAT6 and IL-4-mediated transcription [47]; PARP14 is also
involved in various signal transduction pathways, including the NF-kB pathway with
a stimulatory effect [48] and the JNK1-JNK2 axes with an inhibitory activity [49], and,
finally, it also regulates mRNA stability. More than 100 proteins have been identified as
PARP14 targets, which are involved in translation, DNA repair or metabolism [50]. For
all the above essential roles, a PARP14 dysregulation has been already linked to a series
of pathologies. Concerning its involvement in cancer disease (recently reviewed [51]),
it was found that PARP14 is overexpressed in multiple solid and liquid tumors such as
large B cell lymphoma [52], multiple myeloma [49], prostate cancer [53] and hepatocellular
carcinoma [54] (Table 1). In particular, MARylation of histone deacetylase (HDAC) 1 and
2 by PARP14, in turn activated by the IL4-STAT6 pathway, promotes the activation of
factors essential for gene transcription. In addition, PARP14 overexpression, mediated by
JNK2, negatively regulates JNK1-dependent apoptosis in the 80% of multiple myeloma [49].
Moving to inflammation, by amplifying STAT6- and STAT3-driven transcription [45,47],
PARP14 is involved in Th2/Th17 signaling in immune response [55], and elevated PARP14
expression is found in tissues derived from patients with idiopathic pulmonary fibrosis,
atopic dermatitis and psoriasis, as well as in epithelial and inflammatory cells.

Another mono-ART for which numerous biological roles have emerged is PARP7.
It is expressed in multiple cell and tissue types. It is a key effector of signaling and
gene expression, with regulatory roles in androgen receptor, estrogen receptor and liver
X receptor transcription [56–58]. PARP7 is also involved in the negative regulation of
kinase TBK1 [58]. In particular, PARP7 was proposed to reduce the sensitivity of the
INF-I mediated response to cytosolic nucleic acids. The latter activity is also related to
the PARP7 involvement in tumor progression. Indeed, the typical genomic instability
that characterizes cancer cells could lead to the releasement of nucleic acids in the cytosol.
Through a nucleic acid–sensing mechanism, the cell activates cGAS-STING and RIG-I,
resulting in cell death or immune recognition mediated by the IFN-I pathway [59]. In
some kind of cancer cells, however, no IFN-I activation can be detected. This is mainly
caused by the mono-ADP ribosylation of TBK-1 mediated by PARP7, which prevents IFN-I
activation [60]. For this reason, PARP7 inhibition could represent a valid anticancer strategy
based on immunomodulatory effects through IFN-I response restoration that can allow the
immune recognition of cancer cells and reverse immunoevasion [61]. In this way, the tumor
cell progression is directly influenced and, indirectly, antitumor immune cells are also
modulated [62]. Besides the immunomodulatory effect, it was also suggested that PARP7
could play a role in ovarian cancer growth and invasion by MARylating α-tubulin, thus
promoting the microtubule instability [63]. On the contrary, it was also found that PARP7
works as negative regulator of estrogen receptor α (ERα) in MCF-7 cells, highlighting its
role in the control and suppression of human breast cancer [64].

PARP12 is a mono-ART localized at the trans-Golgi network that possesses antiviral
functions and is involved in the oxidative stress response. In particular, it exerts the antiviral
activity, mainly against Zika [65], Chikungunya [66] and SARS-CoV-2 [67] viruses, by in-
hibiting the cellular RNA translation and by promoting the proteasome degradation of viral
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proteins, as also demonstrated by its overexpression upon viral infections [68]. In addition,
under stress conditions, such as oxidative stress, heat or osmic shock, PARP12 moves from
the Golgi complex to the stress granules, thereby promoting the stress response [69–71].
PARP12’s activity has been linked also to cancer diseases (Table 1), even if the role still
remains elusive and controversial. Indeed, it seems to work as tumour suppressor in
hepatocellular carcinoma metastasis [72] but, in contrast, PARP12 is upregulated in MCF7
breast cancer [73] where it is involved in resistance to chemotherapy.

For all the other mono-ARTs, the physiopathology remains largely undefined with
only a few data reported for PARP6, PARP11, PARP15 and PARP16. PARP6 regulates the
G2-M phase cell cycle progression [74,75], and was also linked to the neurodevelopment,
from late embryonic to the early postnatal stage, as demonstrated by its high levels in
the hippocampus region of the brain [76]. For PARP11, an involvement in the IFN-I
mediated response is reported [58,77]. PARP15 and PARP16 regulate the stress response,
the former by promoting the stress granule formation [69,70], while PARP16 is involved in
the unfolded protein response.

About their pathological roles, particularly in cancer diseases (Table 1), PARP6 con-
tributes to the maintenance of centrosome integrity by MARylating the checkpoint ki-
nase and promoting the breast cancer growth [78], while PARP15 is overexpressed in
B-aggressive lymphoma [79] and acute myeloid leukemia [80]. They are also involved in
non-oncological diseases, especially inflammation and allergic diseases, with a major in-
volvement of PARPs 11, 15 and 16 that critically participate to the innate immune response
regulations by inducing inflammatory cytokines such as IL-1, IL-6 or TNF-α and other
pro-inflammatory mediators [60].

For a comprehensive overview of the mono-ARTs functions, the readers are directed
to the following reviews [60,81–85].

Table 1. Mono-ARTs and their involvement in cancer disease.

Mono-ART Cancer Type

PARP6 MDA-MB468 and HCC1806 breast cancers a

PARP7 Advanced metastatic solid tumours b

PARP10 Ovarian cancer c

Breast cancer d

PARP12 MCF7 breast cancer e

PARP14

Large B cell lymphoma f

Multiple myeloma g

Prostate cancer h

Hepatocellular carcinoma i

PARP15 B-aggressive lymphoma j

Myeloid leukaemia k

a Ref. [78]; b Ref. [61]; c Ref. [41]; d Ref. [86]; e Ref. [73]; f Ref. [52]; g Ref. [49]; h Ref. [53];i Ref. [54]; j Ref. [79];
k Ref. [80].

2. Specific Mono-ARTs Inhibitors

The many physiopathological roles that continuously emerge for mono-ARTs, along
with the possibility to exploit them as drug targets for disparate diseases, definitely ask
for the identification of specific inhibitors, that, in parallel, represent precious tools to fully
dissect their biology.

The number of mono-ARTs inhibitors is still very scarce with most of them that
recognize more than one subfamily of PARPs [38]. However, a handful of inhibitors
endowed with a high grade of selectivity for a mono-ART subfamily, coupled with nM
potency, has been identified, especially in the very recent time, and they are the focus of
the present paper. From this medicinal chemistry review, four nitrogen-rich heterocycles
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emerged as particularly privileged for obtaining potent and selective mono-ART inhibitors.
We have sorted them based on their chemical scaffold; when available, the identification
strategy, the hit-to-lead optimization and SAR studies, have been also reported.

2.1. Phthalazin-1(2H)-one

Phthalazinone-based compounds have been reported for a variety of biological func-
tions, with zopolrestat and azelastine that are in clinical use as antidiabetic and anti-
histaminic, respectively, and various compounds that work as kinase inhibitors [87], or
hepatitis B virus capsid inhibitors [88].

Phthalazinone is a well-known scaffold also in the poly-ARTs inhibitors field, which
already furnished many compounds such as olaparib along with fluzoparib [89], which is
under clinical development.

More recently, this scaffold was exploited also for the synthesis of various mono-ARTs
inhibitors.

In 2023 Cohen et al. [90] were able to identify a potent and specific inhibitor for the
mono-ART PARP7, compound KMR-206 (1) (Figure 3). The authors started from the pan
inhibitor Phthal01 (2) (Figure 3) [91], inhibiting PARP1 (IC50 = 21 nM), PARP2 (IC50 = 28 nM)
and PARP7 (IC50 = 14 nM) and following the same approach applied in 2018 to obtain the
specific PARP11 inhibitor ITK7 (see Figure 7 below) [92], a propynyl group was added at
C-6 position, obtaining compound 1. As expected, the hydrophobic substituent allowed to
maintain the same potent activity of 2 against PARP7 with IC50 = 13.7 nM also reducing
the affinity for poly-ARTs (PARP1 IC50 > 3 µM; PARP2 IC50 = 1 µM), with >200 and 75-fold
selectivity for PARP7 over PARP1 and PARP2, respectively. Even if derivative 1 showed
some activity also against PARP10 and PARP11 (IC50 = 179 and 134 nM, respectively), a
good selectivity profile (>10-fold over PARP10 and 11) was maintained. In in-depth studies,
compound 1 inhibited PARP7 auto-MARylation (in HEK293T cells) with IC50 = 8 nM, while
decreased the cellular viability (in NCI-H1373 cell line) with a good EC50 = 104 nM, resulting
however less potent of the PARP7 inhibitor RBN-2397 (EC50 = 17.8 nM, see Figure 6 below),
which is under clinical development.
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A few other phthalazinones are worthy of mention due to their very potent activity
against different mono-ARTs, with AZ108 (3) and DB008 (4) (Figure 4) that have been
reported as the most potent inhibitors of PARP6 and PARP16, respectively, ever reported
until now. In particular, AZ108 (3) was identified by AstraZeneca by assaying the in-
house quinazolinone- and phthalazinone-based PARPi collection. It inhibited PARP6 with
IC50 = 83 nM, but also PARP1 and PARP2 (IC50 = 30 nM) [74]. Although not specific, its
anti-MDA-MB-468 breast cancer activity, in xenograft models, seems directly related to the
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PARP6 inhibition, which is responsible for blocking the centrosome clustering and inducing
multipolar spindle.

DB008 (4) [93], (Figure 3) was identified more recently, in 2022, by Cohen et al., and
was developed starting from olaparib that, besides the activity on PARP1 and 2, also inhibits
PARP16 with IC50 = 3 µM. To achieve specific PARP16 inhibition, the authors replaced the
terminal cyclopropyl moiety with an acrylamide in order to generate a covalent interaction
with the Cyst169, uniquely present in PARP16 D-loop and added an ethynyl group at the
C-6 position to reduce the affinity for poly-ARTs [92,94]. These modifications allowed to
reach an IC50 value of 275 nM against PARP16 but, contrary to the expectation, the C-6
hydrophobic group was well tolerated by PARP2 that was inhibited even more potently
(IC50 = 139 nM).

Compounds 1 and 4 demonstrated that the introduction of a hydrophobic substituent
in C-6 position is not sufficient for mono-ARTs selectivity over poly-ARTs, differently from
the SAR delineated for the quinazolinone scaffold (see below). This could be related to a
slight different accommodation of the two scaffolds in the nicotinamide pocket.

Molecules 2023, 28, x FOR PEER REVIEW 9 of 30 
 

 

 
Figure 4. Structure and enzymatic activity of phthalazinones AZ108 and DB008. 

In 2022 Lehtiö et al. reported a set of different phthalazinone-based derivatives. They 
were designed to improve the potency of some benzamide PARP10 inhibitors (5, Figure 
5) [95,96], through the rigidification of the amide to give 2,3-dihydrophthalazine-1,4-dio-
nes (Figure 5). Differently from the previously mentioned phthalazinone derivatives, the 
presence of a carbonyl group at C-1 position instead of bulky substituents, caused the 
complete lack of activity against poly-ARTs (PARP1 and PARP2 IC50s > 100 µM), with 
compound 6 that inhibited only PARP10 and PARP15 with a potency of 140 nM and 400 
nM, respectively. This dual PARP inhibitor was not cytotoxic in both HEK293T and HeLa 
cells, and the activity on PARP10 was confirmed in cellular context (HeLa cells) with EC50 
value in the low µM range [95]. 

 
Figure 5. Structure and enzymatic activity of dihydrophthalazindione 6, derived from structural 
rigidification of benzamide 5. 

2.2. 4,5-Dihydropyridazin-3(2H)-one 
The 4,5-dihydropyridazin-3(2H)-one scaffold has gained attention in the recent dec-

ades for biological, medicinal and agricultural reasons [97–99]. Regarding the medical ap-
plications, the pyridazinone nucleus was exploited to develop compounds with antiplate-
let, cardiotonic, anti-infective, and antidiabetic properties [100].  

Concerning the PARP field, while the pyridazinone scaffold was never exploited to 
obtain poly-ARTs inhibitors, it recently furnished the most potent and specific PARP7 in-
hibitors. It can be regarded as a simplification of phthalazinones, being the essential part 
responsible for the three hydrogen bonds that allow it to mimic the nicotinamide.  

In 2021, Ribon Therapeutics reported RBN-2397 (7, atamparib) (Figure 6) [61], as de-
rived from the structural optimization of an unselective PARPi (whose structure was not 
disclosed), identified by screening an in-house library. Based on the crystal structure of 7 
with a mutated PARP12 mimicking PARP7, the pyridazine group mimics the nicotina-
mide by interacting with the NI pocket, while the 4-(5-(trifluoromethyl)pyrimidin-2-yl)-
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In 2022 Lehtiö et al. reported a set of different phthalazinone-based derivatives.
They were designed to improve the potency of some benzamide PARP10 inhibitors (5,
Figure 5) [95,96], through the rigidification of the amide to give 2,3-dihydrophthalazine-1,4-
diones (Figure 5). Differently from the previously mentioned phthalazinone derivatives,
the presence of a carbonyl group at C-1 position instead of bulky substituents, caused the
complete lack of activity against poly-ARTs (PARP1 and PARP2 IC50s > 100 µM), with
compound 6 that inhibited only PARP10 and PARP15 with a potency of 140 nM and 400 nM,
respectively. This dual PARP inhibitor was not cytotoxic in both HEK293T and HeLa cells,
and the activity on PARP10 was confirmed in cellular context (HeLa cells) with EC50 value
in the low µM range [95].
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2.2. 4,5-Dihydropyridazin-3(2H)-one

The 4,5-dihydropyridazin-3(2H)-one scaffold has gained attention in the recent decades
for biological, medicinal and agricultural reasons [97–99]. Regarding the medical applica-
tions, the pyridazinone nucleus was exploited to develop compounds with antiplatelet,
cardiotonic, anti-infective, and antidiabetic properties [100].

Concerning the PARP field, while the pyridazinone scaffold was never exploited to
obtain poly-ARTs inhibitors, it recently furnished the most potent and specific PARP7
inhibitors. It can be regarded as a simplification of phthalazinones, being the essential part
responsible for the three hydrogen bonds that allow it to mimic the nicotinamide.

In 2021, Ribon Therapeutics reported RBN-2397 (7, atamparib) (Figure 6) [61], as
derived from the structural optimization of an unselective PARPi (whose structure was
not disclosed), identified by screening an in-house library. Based on the crystal struc-
ture of 7 with a mutated PARP12 mimicking PARP7, the pyridazine group mimics the
nicotinamide by interacting with the NI pocket, while the 4-(5-(trifluoromethyl)pyrimidin-
2-yl)-piperazine moiety extends towards the ADE site (Figure 6). The compound was very
potent in inhibiting PARP7 with IC50 value < 3 nM and kd of 0.22 nM measured by SPR. It
was very selective with >50-fold over all the whole panel of PARPs. Its activity prevented
the PARP7-mediated MARylation of multiple proteins in PARP7-overexpressing SK-MES-1
with IC50 = 2 nM, demonstrating also its cell-permeability.
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interactions between RBN-2397 and the catalytic domain of a mutated PARP12 mimicking PARP7 are
also schematically shown.

The specific inhibition of PARP7 by 7 allowed to restore the IFN-I response. This
restoration was also responsible for the antitumor effect detected on CT26-tumor bearing
mice when treated with the compound. Indeed, the tumor growth was inhibited at doses
of >30 mg/Kg for 6 weeks. The activity on PARP7 and, indirectly on IFN-I response, was
confirmed by the absence of regression on PARP7 KO tumor-bearing mice and reduced
activity in CT26-tumor bearing immunodeficient NOG mice. In addition, KO PARPs 1, 2,
and 3 did not affect the activity of 7, supporting PARP7 as its unique target.

From human xenograft studies, 7 emerged as active in four lung cancer types with
complete tumor regression on NCI-H1373. In 2019, it was the first mono-ART inhibitor
progressed to clinical trials and it is currently in phase I as anticancer for the treatment of
advanced or metastatic solid tumors (NCT04053673) and advanced squamous non-small
cell lung carcinoma (NCT05127590).
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A recent study showed also an effect on prostate cancer based on the inhibition of the
mono-ADP-ribosylation of androgen receptor (AR). As a consequence, the assembly of the
complex formed by AR, PARP9 and E3 ligase DTX3L is inhibited, thereby preventing the
AR-mediated transcription. Differently from the immunomodulatory effect observed in the
other cancer cell lines, in this case, the antitumor activity is mainly related to the ability of
the compound to freeze PARP7 into the nucleus, generating cytostatic and cytotoxic effects
and without blocking a specific phase of cell cycle [101].

The interesting anticancer activity of compound 7 demonstrates, for the first time, that
anticancer drugs can be also obtained through mechanisms of action that go beyond the
classic synthetic lethality or trapping.

In 2022, compound 7 became the starting point for a study performed by Gu et al. [102].
Through a simple bioisosteric replacement of the flexible ethoxy linker of 7 with a rigid
azetidine group, compound I-1 (8) was created (Figure 6) [102]. It emerged as more
specific for PARP7 mainly over poly-ARTs PARP1 and PARP2. Indeed, while the activity of
compound 8 on PARP7 was maintained in the same range of 7 (IC50 = 7.6 nM), it inhibited
PARP1 at 5 µM (versus 37 nM for 7) and PARP2 at 546 nM (17 nM for 7). Compound 8
was also endowed with good PK profile in ICR mice through both intravenous and oral
administration, also better than that of 7, tested in parallel, in terms of absorption, exposure,
half-life and clearance, and it was non-toxic up 50 µM in normal hepatocytes. However,
evaluating its antiproliferative activity in NCI-H1373 cell line, 8 showed a minimal effect
when compared with 7. On the contrary, in CT26 colon carcinoma syngeneic model mouse,
oral doses at 25, 50, or 100 mg/kg twice a day determined 67% of tumor growth reduction,
while 7 only 30%, probably due to the differences on PK properties.

2.3. Quinazolin-4(3H)-one

Quinazolinone is a ubiquitous structural fragment in medicinal chemistry imparting
a broad range of biological activities [103]. This scaffold gave potent compounds active
as anticancers such as raltitrexed (thymidylate synthetase inhibitor) currently in use for
the treatment of colon-rectal cancer and ispinesib (inhibitor of kinesin spindle protein)
currently in phase II clinical trials for the treatment of breast cancer; in parallel, many other
compounds have been reported in the literature as anticonvulsant [104], anti-Flu [105], and
anti-inflammatory agents [106].

Its wide use is also due to the easy accessibility with a range of cheap and feasible
synthetic routes [103]. Quinazolinone is also widespread in the PARPi field with many
examples both for poly-ARTs [107–110] and mono-ARTs [92,94,111]. It perfectly accom-
modates in the NI site by interacting with highly conserved residues: the NH generates
a H-bond with glycine while the carbonyl generates a H-bond with OH of serine; π-π
interactions are then performed between the core and tyrosine.

To date, three quinazolinone-based compounds are known for their potent and selec-
tive activity for a subfamily of mono-ARTs: the PARP11 inhibitor ITK7 (9) [92], and the
PARP14 inhibitors RBN012759 (10) [94] and RBN3143 (11) [111] (Figure 7).

In the search for selective mono-ARTs inhibitors, in 2018, Cohen et al. [92] performed
a structure-guided design starting from the pan quinazolinone 12 (Figure 7) and trying to
take advantages of the main different feature of the catalytic triad of PARPs: a hydrophobic
residue that occupies the third position on mono-ARTs in the place of the poly-ARTs
glutamate. A small set of compounds were prepared by introducing a small hydrophobic
group such as methyl, ethynyl or propynyl at the C-7 position of the quinazolinone scaffold.
Similarly to the starting compound 12, all of the synthesized analogues bear different
aromatic rings at the C-2 position that were linked through a methyl sulphide bridge.
The evaluation of the compounds on a large panel of poly- and mono-ARTs validated
the hypothesis since all the compounds did not recognize poly-ARTs, while showing
micromolar activity against some mono-ARTs.

Derivative 9 emerged as the best compound showing potency and high specificity
toward PARP11 (Figure 7), with IC50 = 14 nM and ≥200-fold selectivity over all the other
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PARPs. The compound was also able to enter HeLa cells and inhibit intracellular PARP11
activity with EC50 = 13 nM, while no PARP1 or PARP10 inhibition was detected. It is
characterized by a propynyl group at the C-7 position coupled with a 2-pyrimidine ring
that, reaching the less conserved D-loop region, is responsible for specificity for this
subfamily of mono-ARTs.

Few years later, following the same strategy, Cohen et al. [93] used the propynyl group
coupled with the phthalazinone nucleus, but in this case the designed compound 4 was
not selective.
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The other quinazolinone-based compounds were both identified by Ribon Therapeu-
tics. In 2021, by screening an in-house PARP-preferring compounds library on PARP14,
compound 13 was identified that inhibited the enzyme at 1 µM. Since the thiopyridine
at the C-2 position extended toward the D-loop, the authors decided to replace it with a
thio-trans-cyclohexanol to interact with an Asp1685, a residue uniquely present in PARP14
and PARP15 D-loop. The successive modification involved the shift of the hydrophobic
substituent from position 8 to position 7 and its replacement with a cyclopropylmethanol.
Analogously to compound 9, the presence of a hydrophobic substituent at this position pre-
vented interactions with the glutamate residue of poly-ARTs, while improved the affinity
for mono-ARTs. In this way, they obtained derivative 10 (Figure 7) that showed a PARP14
IC50 = 3 nM and it was 300 to 1000-fold selective over the other PARPs. PARP14 was also
inhibited in cellular context in a dose-dependent manner in CFPAC-1 (ductal pancreatic
adenocarcinoma cells); PARP14 engagement was also confirmed in in vivo experiments



Molecules 2023, 28, 5849 12 of 27

by treating C57BL/6 mice with oral doses of 300 and 500 mg/kg of compound for 7 days,
without observing body weight loss. In addition, the compound showed good pharmacoki-
netic properties with appreciable solubility and permeability coupled with reduced MDR-1
efflux pump affinity.

In a successive study, Cho et al., demonstrated the potential usefulness of 10 also in
allergic lung inflammation, in mouse model. In particular, it was observed that the specific
PARP14 inhibition reduced all the typical features of allergic response, including IgE levels
and mucus formation, after mice allergy induction by Alternaria alternata [112].

One year later, the strict analogue 11 (Figure 7) was also disclosed, having tetrahy-
dropyran and N-acetyl piperidine, at C-2 and C-7, respectively. It was tested against a
PARPs panel, through an enzymatic activity assay or time-resolved fluorescence resonance
energy transfer (TR-FRET) probe displacement assay, showing IC50 < 5 nM on PARP14,
with >300-fold selectivity over all the other PARPs. The compound inhibited also efficiently
PARP14-mediated ADP-ribosylation in cellular context with EC50 = 3 nM and suppressed
the markers when tested in preclinical models of lung skin and gastrointestinal inflamma-
tion. Being potent, safe and well tolerated in preclinical models, it was progressed to phase
I clinical trials for atopic dermatitis (NCT05215808) [113].

The three quinazolinone-based compounds clearly demonstrate that very minor mod-
ifications can strongly modulate the specificity of the compounds. To achieve adequate
potency and selectivity the best strategy resides in extending the compounds toward:
(i) the third amino acid of the triad granting the selectivity for mono-ARTs over poly-ARTs;
(ii) the D-loop that, being not conserved, could allow specificity for a single mono-ARTs.
Both goals can be achieved by extending the positions C-7 and C-2 of the scaffold, respec-
tively: hydrophobic substituents are required in C-7 position, while disparate aromatic
or nonaromatic substituents can be placed in C-2, with a methyl sulphide spacer that
seems preferred.

2.4. [1,2,4]Triazolo[3,4-b]benzothiazole

In 2023, the [1,2,4]triazolo[3,4-b]benzothiazole (TBT) scaffold has emerged as new
chemical entity (NCE), particularly suitable to obtain PARPi [114]. TBT is underexplored
in medicinal chemistry with only a few pharmacologically active compounds developed
as anti-inflammatory, anticonvulsant or antifungal agents [115,116]. On the other hand,
1,2,4-triazole is a well-known structure found in some drugs with antifungal (flucona-
zole, itraconazole), anxiolytic (alprazolam) or antiviral (ribavirin) [117] activity along
with many other pharmacologically active compounds that continue to appear in the
literature [118–120]. Many properties make the 1,2,4-triazole a suitable pharmacophore,
such as the high stability, its dipole character, solubility, rigidity and ability to generate
H-bonds, and its bioisosterism with ester, carboxylic acid and amide. Thanks to its ability
to work as nonclassical amide bioisoster, in recent years it was included in the design of
TNKS1/2 and PARP1/2 inhibitors [121–123], where it mimics the nicotinamide portion of
NAD+. The inclusion of 1,2,4-triazole on the tricyclic TBT expanded its use giving PARPi
with very versatile profile.

The TBT scaffold perfectly fixes on the NI site, with the nitrogens in positions 1 and 2
of the scaffold that mimic the lone pair of the nicotinamide oxygen and generate the H-
bonds with glycine and serine. The aromatic portion of the tricycle generated, instead, π-π
interactions with the tyrosine residue.

Of note, the TBT derivatives were not rationally designed as nicotinamide mimetic,
but they were identified by screening the open chemical repository library of the National
Cancer Institute against PARP10, from which OUL40 (14) (Figure 8) emerged as able to
inhibit this enzyme with IC50 = 3.2 µM. It inhibited however other mono- and poly-ARTs
in the same µM range. A first optimization campaign, involving the synthesis of about
30 analogues modified both on the benzene ring and the C-3 position, led to compounds
selective for one or another PARP subfamily, depending on the substituents pattern. The
presence of an amino group in position 3 gave OUL243 (15) (Figure 8) that although still
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active on poly-ARTs, showed a markedly increased potency against PARP10 (IC50 = 25 nM),
resulting in 10–1000-fold selectivity.
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The presence of a couple of methoxy groups instead gave compound OUL232 (16)
(Figure 8), that with an IC50 = 7.8 nM, is the most potent PARP10 inhibitor ever reported.
It is also the most potent PARP15 and the first PARP12 inhibitor reported in the literature
(IC50 = 56 and 160 nM, respectively). Not inhibiting poly-ARTs up to concentrations of
10 µM, 16 emerged as highly selective for mono-ARTs. The co-crystallographic structure of
16 with a mutated PARP15 mimicking PARP10 showed that the 3-amino group works as an
anchor point able to generate the same H-bond that the nicotinamide NH2 generated with
glycine residue, justifying its crucial role in imparting potent activity. The activity of 16 on
PARP10 was confirmed in a HeLa cell model (colony formation assay) with EC50 = 150 nM.
The compound was deprived of cytotoxicity both in HEK293T and HeLa cells and pre-
liminary pharmacokinetic profile suggested good phase I metabolic stability in human
liver microsomes, with >99% of unchanged compound and the same good stability was
observed in MeOH, PBS buffer and human plasma incubated at 37 ◦C (>24 h). Derivative
16 exhibited suboptimal GI permeability (PAMPA) with low membrane retention, while
the BBB permeability, although suboptimal, was 10-fold higher (Papp 0.143 × 10−6 cm/s)
than that of the clinical PARPi olaparib (Papp 0.016 × 10−6 cm/s), tested in parallel.

The high versatility of the TBT scaffold in providing selective PARPi was also reflected
by 7-hydroxy derivative OUL245 (17) (Figure 8), that, in this case, specifically and potently
inhibited PARP2 at 44 nM, with even 10-fold selectivity also over the strict parent PARP1.
While this specificity was not justified by the co-crystal structure, its selectivity for poly-
ARTs over the mono-ARTs derived by the presence of a hydrogen bond between OH group
and the catalytic glutamate residue.
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3. Applications of Specific ARTs Inhibitors

Most of the above reported inhibitors are endowed with the proper profile: (i) that
under appropriate optimization could lead to clinical candidates and furnish future drugs;
(ii) to be used as chemical probes; (iii) to be manipulated as protein degraders.

3.1. Specific Inhibitors as Precious Chemical Probes

Over the past decades, many protocols and techniques have been developed for interro-
gating the cell biology; for an overview of the main methodologies and techniques used for
studying these enzymes, the readers are directed to the following reviews [81,124,125].

In parallel, the availability of high-quality chemical probes is increasingly necessary
to permit the visualization of biomolecules in live cells, the cell signaling regulation, the
identification of druggable targets and providing the basis for drug development.

To be used as chemical tools, the compounds should satisfy at least some basic criteria,
such as permeability, potency and selectivity. If they suffer of poor selectivity or inadequate
potency, misleading results could be generated. In the PARP context, the main obstacle
is represented by poor selectivity since most of the inhibitors reported to date, including
those in therapy, work as NAD+ mimetics and, being the NAD+ pocket highly conserved
among the subfamilies, they usually recognize more than one enzyme.

Working with chemical probes could have the main advantages to inhibit a specific
function of the target protein providing a greater control if compared with, for example, the
RNA interference that gives a complete protein knockdown, deleting its multiple functions.

The labelling of chemical probes can expand their use. The compounds can be labelled
before their use or in situ by exploiting bioorthogonal chemistry.

The pre-labelling can be carried out by attaching fluorophores allowing to visualize the
compound during biological processes; however, these moieties are typically bulky groups
that can dramatically affect both the pharmacokinetic profile and the target engagement.
Radioactive labelling represents a valid alternative that can be used in various stages of the
drug development, form the early phases of the hit discovery up to the clinical trials helping
in the determination of pharmacokinetic and pharmacodynamic properties, as well as in
the ADME evaluation. Nonetheless, also this approach presents limitations, including the
susceptibility of some isotopes to the exchange, especially during in vivo experiments [126].
The bioorthogonal chemistry can overcome some of the mentioned issues. More than
20 different bioorthogonal reactions have been developed, such as copper-assisted azide-
alkyne cycloaddition (CuAAC), strain promoted azide alkyne cycloaddition (SPAAC), and
inverse electron demand Diels-Alder reaction (IEDDA) (Figure 9). These techniques require
a very minor manipulation of the identified chemical probe by introducing a suitable
reactive group such as alkyne or azide that react in cellular context with the counterpart
(azide or alkyne) in a specific manner (the groups are not present in living system) and in
biocompatible conditions.

In the PARPs field, many poly-ARTs inhibitors have been exploited as tools, with
most of them represented by radiolabelled compounds, which are also emerging as promis-
ing tumor imaging agents [127–130]. On the contrary, a very few examples of clickable
compounds are known [131–134].

Concerning mono-ARTs, the labelling strategy have been exploited in a very few cases.
In 2020, using the pyridazinone derivative RBN010860 (18) (Figure 10) [135], which is active
in the sub-micromolar range against multiple mono-ARTs and also active on poly-ARTs,
Ribon Therapeutics prepared two distinct probes in order to develop high-throughput
in vitro and cellular biophysical assays. Compound 18 was connected through a flexible
chain linked to the piperidine NH, to a biotin moiety or the fluorescent group 590SE,
generating derivatives RBN011147 (19) and RBN01198 (20) (Figure 10), respectively. The
biotinylated derivative was useful for the development of a TR-FRET, while the fluorescent
probe was used for the bioluminescence resonance energy transfer (BRET). Of note, both
the compounds maintained the same potency of the progenitor 18.
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From this work, pyridazinone was confirmed as a very suitable chemical entity to
develop mono-ARTs inhibitors. Compared to previous derivatives 7 and 8, compound 18
is characterized by an isoindoline bicycle instead of the flexible linkers, suggesting that C-5
position can tolerate disparate substituents for further analogues.

Until now, only derivative 4 (Figure 4) was instead used as chemical probe in situ; the
presence of the ethynyl group at the C-6 position, besides conferring potent activity against
PARP16, made it a clickable compound [93]. Through a CuAAC reaction, the ethynyl
group of 4 reacted with tetramethylrhodamine- (TAMRA) azide in cell lysates, allowing the
monitoring and then confirmation of the covalent interaction of the inhibitor with PARP16.
In addition, the click reaction was also useful for determining the proteome-wide selectivity
of derivative 4, for which PARP16 was confirmed as major target.
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Most of the inhibitors described in this review have the appropriate profile of chemical
probes to be used as such or after labelling and we expect for these compounds a wide
application in the next future.

3.2. Protein Degraders as Alternative to Catalytic Inhibitors

An approach alternative to the catalytic inhibition of the enzyme is represented by its
degradation through the chemically mediated targeted protein degradation (TPD) approach.
It emerged as a new potential therapeutic modality with possible advantages in terms of
side effects, dosing, drug resistance and “undruggable” target modulations [136]. The most
representative example of TPD is proteolysis-targeting chimera (PROTAC), which was the
founder and still the most exploited [137]. PROTACs are heterobifunctional molecules
consisting of a ligand that binds the protein of interest (POI), a moiety (e.g., thalidomide and
its derivatives, or nutlin-3) recruiting an E3 ligase (e.g., MDM2, cIAP1, CRBN, VHL), and
an appropriate linker joining these two functionalities. PROTACs concomitantly recognize
the POI and recruit the E3 ubiquitin ligase which promotes target polyubiquitination and
subsequent destruction by the proteasome (Figure 11A).
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Figure 11. Schematic representations of: (A) PROTAC approach: the PROTAC is a heterobifunctional
molecule consisting of a POI ligand that recognizes the protein; an E3 ligase ligand that binds the E3
ubiquitin ligase; and a linker. Once the ternary complex POI-PROTAC-E3 ubiquitin ligase is formed,
the target protein will be subjected to ubiquitination and then degradation via proteasome. (B) Hyt
approach: Hyt is a heterobifunctional molecule consisting of a POI ligand that recognizes the protein;
a hydrophobic tag that mimics the protein misfolding; and a linker. Once the Hyt recognizes the
protein, it recruits cellular chaperone proteins and allows the target degradation via proteasome.

Although PROTACs have been successfully applied in the degradation of different
types of proteins with some that already entered clinical trials [138], this technology still has
many disadvantages particularly related to the pharmacokinetic profile of the compounds
characterized by high molecular weight, low water solubility, molecular rigidity and low
permeability [139,140].

In recent years, the PROTAC approach has been also applied to PARPs field, with
the first example of PARP1 PROTAC dating back to 2019 based on niraparib [141]. All
the PARP1 PROTACs reported until now were generated from the clinically approved
PARPi including rucaparib, veliparib, niraparib and olaparib, with the last one that was the
most used ligand that was always extended from the piperazine nitrogen with a variety of
linkers. Indeed, from the PARP1 co-crystal structure, it was observed that the cyclopropyl
ring, bound to the piperazine nitrogen could be replaced without dramatically affecting
the affinity; in addition, it is located close to an opening of the ligand-binding pocket,
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thus suggesting the possibility to introduce bulky substituents. Concerning the linkers, it
was observed that their length, flexibility and composition thinly regulated the PROTAC
degradation and selectivity; the typical thalidomide was, instead, the most exploited moiety
recruiting the E3 ligase.

All of PARP PROTACs showed good antiproliferative activity, strictly related to the
target degradation, with low µM to nM IC50 values, comparable or slightly better to that of
their parental catalytic inhibitors. Olaparib-based SK-575 (21, Figure 12A) [142] emerged
as the most potent and efficacious degrader reported to date that achieved DC50 values in
the picomolar range (228 pM to 578 pM) in a panel of five different cancer cell lines and
effectively induced PARP1 degradation in SW620 xenograft tumor tissues in mice with the
effect persisting for >24 h.
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developed for non-oncological diseases.

The PROTACs concept was also expanded by generating dual-targeting PROTACs to
simultaneously degrade two different targets. In particular, trifunctional compounds 22
and 23 (Figure 12B) were prepared by connecting a central linker (black) to three different
moieties: olaparib (magenta) for the PARP1 engagement, gefitinib (blue) for the interaction
with EGFR, and CRBN/VHL E3 ligase ligand (red) [143]. When tested on epidermal
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carcinoma A431 cell lines, the compounds were able to efficiently degrade both PARP1 and
EGFR. However, besides the double targeting they showed reduced drug-like properties
that require further optimization.

As known, many of the current PARP1 inhibitors possess both catalytic inhibition
and trapping activities. While PARP1 trapping and its cytotoxic effects are desirable in
cancer treatment, this could be a limitation when planning to use PARPi in non-oncological
conditions [144] such as ischemia-reperfusion injury [145] or neurodegenerative diseases. In
these pathologies, PARP1 is hyperactivated and represents the main mechanism of NAD+

depletion, responsible for energy crisis and necrosis. The development of a PROTAC
could expand the use of PARPi also in these non-oncological diseases. Indeed, the protein
degradation determines the same effects of a PARP1 catalytic inhibition, thus allowing
protection of the cells from the genotoxic effects determined by NAD+ and ATP depletion,
but, in parallel, avoids the undesirable DNA damage and cell growth inhibition caused
by the trapping. The hypothesis was validated by the PROTAC iRucaparib-AP6 (24)
(Figure 12C) [146] that, when tested in C2C12 muscle cells and primary cardiomyocytes,
potently caused the PARP1 degradation in the low nM range and, differently from the
progenitor rucaparib, protected the cells from the death.

Moving to mono-ARTs field, only the PROTAC developed by Ribon Therapeutics for
PARP14 has been reported (Figure 13) [147]. The heterobifunctional compound derived
from a quinazolinone-based derivative, RBN01242 (25), that specifically and potently in-
hibited PARP14 with IC50 = 18 nM. Compound 25 was functionalized both in position
2 and 7, by using the same strategy already applied for obtaining derivatives 9–11. By
manipulating the nitrogen of the piperidine, the compound was elaborated into the PRO-
TAC RBN12811 (26) (Figure 13) by introducing a flexible linker to which thalidomide was
attached. The inhibitory potency of the derived PROTAC was maintained in the same
range of that of 25, with IC50 = 10 nM and still maintained a selectivity > 200-fold over
the other PARPs. In addition, when tested on KYSE-270 cells the degradation mechanism
mediated by ubiquitin-proteasome pathway was confirmed.

The high potency and selectivity of compound 26 suggest that PARP14 well tolerates
bulky substituents extending from the C-2 position of the quinazolinone scaffold, this SAR
insight could be further explored in the future.
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Along with the very exploited PROTAC approach, alternative TPD strategies have also
emerged, such as hydrophobic tagging (HyT), SNIPER, molecular glue, LYTAC, antibody-
based PROTAC (AbTAC), glueTAC and autophagy-based PROTAC [148,149]. Until now,
only the HyT strategy has been used in the PARPs field, but it is still in its infancy with
only one compound, based on olaparib, reported in 2020 [150].

A hydrophobic tagged compound is constituted by a ligand that specifically binds the
POI, a hydrophobic and bulky group (e.g., admantane, fluorene, pyrene, tert-butyl carba-
mate protected arginine) and a variable and flexible linker tethering the two moieties. By
exploiting this approach, the protein destabilization is obtained thanks to the hydrophobic
fragment that, localizing into the protein surface, mimics target protein misfolding, thus
causing the degradation by proteasome or autohpagosome pathway (Figure 11B). Com-
pared to PROTAC, this strategy offers several advantages including better physiochemical
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and pharmacokinetic properties due to a lower molecular weight and the elimination of
the risk of teratogenic side effects from thalidomide-derived CRBN ligands.

Olaparib was, again, selected as protein ligand moiety, while fluorene emerged as
the best hydrophobic tag, which was linked to warhead with a two-carbon spacer. Being
responsible for the targeted protein misfolding, the obtained compound 27 (Figure 14) effi-
ciently promoted PARP1 degradation via the proteasome-dependent pathway. Compared
to olaparib, 27 showed a better antitumor activity on triple negative breast cancer, also
due to its ability to cause the unfolded protein response (UPR) activation and encourage
apoptosis and autophagy [150].
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4. Conclusions and Future Perspectives

In the cancer precision medicine field, PARPi have represented an important step for-
ward since 2014, when olaparib was approved followed by three other PARP1/2 inhibitors
used as single agents or in combination for the treatment of BRCA1/2 deficient tumours,
revolutionizing for example the handling of advanced ovarian cancer. They work mainly
based on a synthetically lethal effect, but additional mechanisms justify their advantageous
application, including a contribution by pan PARPs inhibition.

With respect to PARP1/2, the most abundant and best studied members of the PARP
family that work as poly-ADP-ribosyltransferases, the studies on mono-ARTs, to which
14 out 17 PARPs belong, date back to just over 20 years ago [151]. Since then, the research
around these enzymes has rapidly expanded, clarifying their physiopathological functions
and highlighting their potential as drug targets. Playing key roles in DNA damage, apop-
tosis and cell cycle regulation, they have been already linked to diseases such as cancer
and inflammation. Other disparate pathological conditions in which these enzymes are
involved continue to emerge [124], that however need for specific mono-ARTs inhibitors
to be fully dissected. Most important, specific mono-ARTs inhibitors could represent
next-generation drugs. Indeed, even if the polypharmacology could be beneficial in some
cases, the promiscuous interactions with the multiple targets, including multiple PARPs
subfamilies, could be harmful and responsible for serious off-targets effects. This has been
already confirmed for poly-ARTs inhibitors, where the new drugs are moving toward
specific PARP1 inhibitors.

Unfortunately, mono-ARTs inhibitors are still scarce mostly because of the high sim-
ilarity of the catalytic domain where almost all of the inhibitors work. For example, the
classical nicotinamide bioisoster benzamide has been widely used to design both poly-
ARTs and mono-ARTs inhibitors [95,96,152–155] but none of them emerged as particularly
specific. The most specific and potent mono-ARTs inhibitors were collected in this review
underlining some privileged scaffolds: monocycle pyridazinone, bicycles quinazolinone
and phthalazinone, and tricycle triazolobenzothiazole.

Phthalazinone and its quinazolinone isoster, already largely exploited for poly-ARTs
inhibition, were confirmed as suitable also for achieving mono-ARTs inhibitors, such as the
phthalazinone derivative KMR-206 (1), selective for PARP7, and quinazolinones derivatives:
RBN012759 (10) and RBN3143 (11), selective for PARP14, and ITK7 (9), selective for PARP11.

The other two privileged scaffolds are pyridazinone and TBT that, being not used
before even for obtaining poly-ARTs inhibitors, have emerged as NCEs within PARPi field.
In particular, pyridazinone-based compounds RBN-2397 (7) and I-1 (8) showed a specificity
for PARP7, while TBT was more versatile, giving derivatives specific for one or another
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subfamily. Based on the substitution pattern, compounds such as OUL232 (16), which is
selective for PARP10, or OUL245 (17), that showed a preference for PARP2, were obtained.

All of the compounds reported in this review represent valid chemical probes to fully
dissect the physiophatological roles of mono-ARTs enzymes, and, most important, for
some of them the pharmacological effect of their inhibition has been already successfully
investigated.

The clear therapeutic potential of mono-ARTs inhibitors is also confirmed by the
increasing interest of pharmaceutical industries, such as AstraZeneca or Ribon Therapeutics.
Ribon Therapeutics efforts have already led to RBN-2397 (7) and RBN3143 (11), which
entered clinical trials as anticancer and anti-inflammatory, respectively, confirming mono-
ARTs as valid drug targets, not only in cancer where they represent a new weapon for the
treatment of cancers without BRCA mutations, but also in other diseases, expanding the
horizon of PARPi-based therapies.

In summary, from this review it emerged that (i) few scaffolds are able to give specific
inhibition, mostly because they came by screening PARPs-preferred proprietary libraries;
(ii) the same scaffold furnishes compounds with different selectivity profiles, under minor
manipulation; (iii) with rare exceptions, no clear SAR emerged.

Thus, starting from the above catalytic inhibitors, we invite the medicinal chemists
to undertake hit-to-lead optimization campaigns to achieve specific compounds for each
of the mono-ARTs subfamily, both as precious chemical probes and future drugs with
many potential therapeutic applications. A few alternative approaches that are almost
underexplored in the mono-ARTs field are protein degradation, as mentioned before, or
macrodomain inhibition, where a few examples of inhibitors were already developed for
PARP14 [156,157], but could be beneficial also for PARP9 and 15, equally characterized
by macrodomains.
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ADE adenine ribose
ARTs ADP-ribosyltransferase
ARTDs diphtheria-toxin-like ADP-ribosyltransferases
BRCA breast cancer gene
BRET bioluminescence resonance energy transfer
CuAAC copper assisted azide alkyne cycloaddition
ERα estrogen receptor
HDAC histone deacetylase
Hyt hydrophobic tagging
HR homologous recombination
IEDDA inverse electron demand Dies-Alder reaction
NAD+ β-nicotinamide adenine dinucleotide
NCE new chemical entity
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NHEJ non-homologous end joining
NI nicotinamide
PARPs poly-ADP-ribose polymerases
PARPi PARP inhibitors
PCNA proliferating cell nuclear antigen
POI protein of interest
PROTAC proteolysis-targeting chimera
PTMs post-translational modifications
SPAAC strain promoted azide alkyne cycloaddition
SSBs single strand breaks
TBT [1,2,4]triazolo[3,4-b]benzothiazole
TNKS tankyrase
TPD targeted protein degradation
TR-FRET time-resolved fluorescence resonance energy transfer
β-TrCP β-transducin-repeat containing protein
UPR unfolded protein response
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