
Citation: Pusparini, R.T.; Krisnadhi,

A.A.; Firdayani. MATH: A Deep

Learning Approach in QSAR for

Estrogen Receptor Alpha Inhibitors.

Molecules 2023, 28, 5843. https://

doi.org/10.3390/molecules28155843

Academic Editors: Igor F. Tsigelny,

Huiyong Sun, Peichen Pan and

Jingyu Zhu

Received: 31 May 2023

Revised: 24 July 2023

Accepted: 24 July 2023

Published: 3 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

MATH: A Deep Learning Approach in QSAR for Estrogen
Receptor Alpha Inhibitors
Rizki Triyani Pusparini 1,2,*,†, Adila Alfa Krisnadhi 1,*,† and Firdayani 2,†

1 Tokopedia-UI AI Center of Excellence, Faculty of Computer Science, Universitas Indonesia,
Depok 16424, Indonesia

2 Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation
Agency (BRIN), Jakarta 10340, Indonesia; firdayani@brin.go.id

* Correspondence: rizki.triyani@ui.ac.id (R.T.P.); adila@cs.ui.ac.id (A.A.K.)
† These authors contributed equally to this work.

Abstract: Breast cancer ranks as the second leading cause of death among women, but early screening
and self-awareness can help prevent it. Hormone therapy drugs that target estrogen levels offer
potential treatments. However, conventional drug discovery entails extensive, costly processes. This
study presents a framework for analyzing the quantitative structure–activity relationship (QSAR)
of estrogen receptor alpha inhibitors. Our approach utilizes supervised learning, integrating self-
attention Transformer and molecular graph information, to predict estrogen receptor alpha inhibitors.
We established five classification models for predicting these inhibitors in breast cancer. Among
these models, our proposed MATH model achieved remarkable precision, recall, F1 score, and
specificity, with values of 0.952, 0.972, 0.960, and 0.922, respectively, alongside an ROC AUC of 0.977.
MATH exhibited robust performance, suggesting its potential to assist pharmaceutical and health
researchers in identifying candidate compounds for estrogen alpha inhibitors and guiding drug
discovery pathways.

Keywords: artificial intelligence; molecular graph structure; Transformer; estrogen receptor alpha;
breast cancer; QSAR

1. Introduction

The National Cancer Institute estimates for the United States for 2023 are that approxi-
mately 297,790 new cases of invasive breast cancer will be diagnosed in women and that
43,170 women will die from breast cancer [1]. From 2017 to 2022, 7.8 million living women
were diagnosed with breast cancer, making it the most prevalent cancer, globally [2].

Approximately 80% of breast cancer cases are estrogen-receptor-(ER)-positive [3].
In those cases, the proliferation of cancer cells is stimulated by estrogen receptor alpha
(ERα), a protein activated by the estrogen hormone. Consequently, endocrine therapy is
often employed as one of the treatment choices. Prescribing an appropriate endocrine
therapy requires finding the necessary active compounds, called ERα inhibitors, that can
block the growth-increasing effect of the estrogen hormone on breast cancer cells: in effect,
this can slow or even stop the cancer progression completely. This treatment approach may
be preferred over chemotherapy, because it often uses less toxic drugs than those used in
chemotherapy [4].

However, finding the appropriate ERα inhibitors is generally challenging and time-
consuming, because of the large amounts of in vitro trial-and-error needed. Modern drug
design shortens the time needed to find the appropriate key compounds, by employing
various computer-aided analyses before in vitro. One such analysis is called QSAR, whereby
one can predict the desired response variables (Y), such as physicochemical properties,
bioactivity, toxicity, and chemical reactivity [5–9], based on a set of molecular descriptor
properties as the predictor variables (X) [10].
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Nowadays, many QSAR developments apply a multi-objective QSAR approach to
drug discovery [11]. Traditional QSAR methods have transitioned towards machine learn-
ing (ML) models, including deep learning (DL) models, to achieve more diverse variations
in the resulting predictors. ML, which encompasses DL as a subset, allows the construction
of models directly from the data, without assuming specific data distributions. These
models use large datasets and complex algorithms to identify patterns and relationships
between chemical structures and biological activity [12].

The State-of-the-Art DL method for QSAR analysis of ERα inhibitors is the so-called
molecule-attention Transformer (MAT) proposed by Maziarka et al. [13], which is based on
the Transformer model [14]. The original Transformer was originally intended to model
sequence-to-sequence problems, by predicting an output sequence based on some input
sequence [15]. The key aspect of this model is using self-attention scoring among all
the sequence elements, which enables the model to understand contextual relationships
between them. This capability allows the Transformer to be used extensively in natural
language processing, such as machine translation, sentiment analysis, etc. Motivated by
the use of SMILES, which encodes chemical molecules as sequences, MAT adapted the
Transformer to the problem of predicting ERα inhibitors from a given SMILES encoding of
chemical compounds, by adding self-attention scoring based on inter-atomic distances and
molecular graph structures.

This paper proposes MATH (molecule-attention Transformer plus hydrogen bond),
an improvement of MAT, for predicting ERα inhibitors by augmenting self-attention scor-
ing with intramolecular hydrogen bond information. This modification stems from the
observation by Kuhn et al. [16] that intramolecular hydrogen bonds (H-bonds) also strongly
influence the interaction between chemical compounds. A particular H-bond’s strength
depends on the donor and acceptor species, the environment, and the interaction angle.
H-bonds are important in drug receptor interactions and in the structural integrity of many
biological molecules [17].

We compared MATH to three baseline models for classifying estrogen receptor alpha
inhibitors. The first baseline was MAT, by Maziarka et al. [13], which does not take into
account the strength of intramolecular hydrogen bonds in the candidate compounds.
In addition, we also performed a comparison to the SMILES Transformer work, by Honda
et al. [18], who trained a Transformer by decoding textual representations, in an attempt to
reproduce the results from Maziarka et al. [13] Finally, similarly to what Honda et al. [18]
had done in their study, we also trained, as the third baseline, an MLP model whose input
was the ECFP of the candidate compounds. The fingerprint itself was developed by Rogers
and Hahn [19], and it is often assumed to contain the strongest predictors for molecular
property prediction problems.

Our research contributes to the classification of candidate compounds as estrogen
receptor alpha inhibitors in breast cancer therapy, by introducing intramolecular hydrogen
bond information, using two representational approaches:

• The first approach incorporates hydrogen bond presence as a Boolean matrix, provid-
ing insights into the compound’s structure and interaction with the estrogen receptor.

• The second approach includes detailed intramolecular hydrogen bond information,
quantifying bond strength through donors, acceptors, and distances.

By integrating intramolecular hydrogen bond information, our model’s accuracy is an
improvement, facilitating drug research, discovery pathways, and identification of active
compounds for breast cancer therapy.

The initial section of our study investigates related work, serving as the foundation for
method selection. The second section elucidates the intricacies of data collection and pre-
processing techniques, while comprehensively outlining the two approaches employed in
MATH: one utilizing Boolean representation, and the other incorporating various threshold
variations, with each approach being assessed alongside corresponding evaluation metrics.
Next, we compare MATH performance against the baseline method. Finally, our findings
are discussed, and potential future directions explored.
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2. Related Work

In recent years, various approaches have been proposed for classifying and predicting
the bioactivity of compounds inhibiting estrogen receptor alpha, ranging from the QSAR
modeling approach to artificial intelligence (AI) methods, such as machine learning (ML)
and deep learning (DL). For example, Tong et al. [20] developed a QSAR model using
CoMFA analysis to predict the binding affinity of estrogenic chemicals to ER alpha and
ER beta receptors. Then, Ribay et al. [21] developed a computational model, combining
the QSAR approach and the similarity search, to predict the binding potential of small
molecules to estrogen receptors. Meanwhile, Cotterill et al. [22] compared the classification
performance of several QSAR models, molecular docking, and molecular dynamics, in
predicting the binding of endocrine-disrupting chemicals (EDCs) to estrogen receptors
(ERα). Moreover, Zekri et al. [23] developed (QSAR) to investigate the relationship between
indazole derivatives and estrogen receptor alpha (ERα), using multiple linear regression
(MLR), and to analyze the compound structure and activity of the compound. However,
the mentioned results required further experiments, to determine the predictive activity
and to explore additional structural features affecting biological activity.

Research on the bioactivity of compounds has seen significant growth, using ML
and DL methods. This second approach uses existing data to train predictive models.
However, this approach is hindered by the lack of currently available datasets related to bio-
activity [24]. Previous approaches, such as the hybrid method by Wallach et al. [25] and the
domain-knowledge-based approach by Feinberg et al. [26], aimed to address this. DL has
been valuable in molecular property prediction, using handcrafted representations, such
as SMILES and fingerprints [27]: this technique enables virtual screening, by generating
fixed-sized fingerprints of proteins and small molecules.

Furthermore, the use of deep learning in molecular property prediction is increasing.
For instance, Wang et al. [28] and Honda et al. [18] have employed pre-trained Transform-
ers [14], using text representations (SMILES) as input for molecular data. Honda et al. [18]
showed that a decoding-based approach increases the efficiency of the data model. A sim-
ilar method was proposed by Ciallella et al. [29], by exploring the use of fingerprints to
predict compound activity. This study shows that criteria are still needed in selecting chem-
ical descriptors. By contrast, to add information regarding the actual structure of the model
and to avoid using linear (textual) molecular representations as input, we adapted MAT by
Maziarka et al. [13]. They developed a Transformer with augmentation self-attention of
molecular graphs to the chemical structure [14], which is essential for achieving robust em-
pirical performance. Additionally, we employed domain-specific pre-training based on Wu
et al. [30]. Table 1 provides a summary of the closest related work in the field of molecular
representation methods for classifying active or inactive compounds. The three works eval-
uated were the SMILES Transformer (ST), the molecule-attention Transformer (MAT), and
our proposed molecule-attention Transformer plus hydrogen bond (MATH). Each method
aims to enhance classification accuracy by effectively representing molecular structures.
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Table 1. Summary of closest related work and our proposed method of molecular representation for
classifying active or inactive compounds.

Study Method Aims/Purpose

Honda et al. [18] SMILES Transformer (ST)
Generate SMILES Transformer (ST) fingerprints based on unla-
beled SMILES data. Study molecular representations, and com-
pare text-based models to graph convolution.

Maziarka et al. [13] molecule-attention Trans-
former (MAT)

Train the MAT model with additional feature engineering, in-
cluding adjacency matrix and distance matrix, into self-attention
Transformer calculations and molecular graphs.

Ours
molecule-attention Trans-
former plus hydrogen bond
(MATH)

Develop the MATH model based on MAT, with additional feature
engineering of intramolecular hydrogen bonds, on self-attention
Transformer calculations and molecular graphs. Feature engineer-
ing includes two representations: (1) presence of a molecule using
an existence matrix of 1 and 0; (2) hydrogen bond strength (donor,
acceptor, and distance).

3. Results

We conducted two experiments, to evaluate the performance of prediction mod-
els for estrogen receptor alpha inhibitors. In the first experiment, we reproduced and
compared MAT by Maziarka et al. [13], SMILES Transformer (ST) by Honda et al. [18],
and extended-connectivity fingerprinting (ECFP). Additionally, we extended the MATH
model, by incorporating intramolecular hydrogen bond information as parameters.

In the second experiment, we compared the performance of these four models, to
assess their predictive capabilities. We aimed to determine if MATH could achieve State-
of-the-Art results, making it a potential candidate for the virtual screening of estrogen-
receptor compounds.

According to the first experiment, we used pre-trained weights of ST [18] and ECFP [19]
for the MLP model with the ChEMBL206 dataset in CSV format. The Transformer in-
spires ST and learns molecular fingerprints via unsupervised pre-training of a sequence-
to-sequence language model, using the vast corpus of SMILES. ECFP is commonly used
because of its outstanding performance in molecular structure comparisons. Both use
the SMILES fingerprints approach, which is a textual representation. We augmented the
self-attention built upon MAT, to use the actual information from the structure. This al-
lowed us to avoid the use of linearized molecules, which we expected would be a better
inductive bias for the model [13]. The addition of the adjacency matrix, distance matrix,
and hydrogen bond was done in MATH.

We evaluated our model’s performance in the second experiment, using precision,
recall, F1 score, specificity, and ROC AUC on the test data. The specificity metric is crucial,
especially for imbalanced datasets such as ours, as it helps us understand the model’s
ability to identify true negatives (inactive compounds) and to distinguish them from false
positives (active compounds), providing a comprehensive view of its efficacy in predicting
estrogen receptor alpha inhibitors.

By incorporating specificity into our evaluation, we were able to better define the
model’s applicability domain, ensuring more reliable extrapolation of predictions within
the chemical space. This makes our model more robust in drug discovery and candidate
screening for estrogen-receptor compounds. The results indicated that the MATH model,
with a distance tolerance threshold of 3.0, outperformed the other models, regarding
precision, recall, F1 score, and specificity. The comparison of the evaluation results is
presented in Table 2, including results for ST, ECFP, MAT, MATH (Boolean), and MATH
with performance at various thresholds (distance 2.2–4.0 Å).
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Figure 1 shows a bar chart of the comparison of ST, ECFP, MAT, MATH (Boolean), and
MATH (dist < 3.0 Å), in which it can be seen that the MATH model with distance (3.0 Å)
outperformed the other models.

Table 3 presents the confusion matrix of MATH (dist < 3.0 Å) as the best-performing
model, chosen based on its highest F1 score, which was achieved during five-fold cross-
validation for training and testing.

Table 2. Comparison of MATH with Boolean representation to MATH using different threshold
variations against multiple baselines. The first baseline is MAT without considering intramolecular
hydrogen bonds by Maziarka et al. [13]. Additionally, the ST and MLP models using ECFP by
Honda et al. [18] are included for reference.

ROC AUC Precision Recall F1 Score Specificity

ST 0.770 0.571 0.707 0.631 0.559
ECFP 0.868 0.609 0.800 0.692 0.662
MAT 0.946 0.912 0.951 0.931 0.860
MATHbool 0.973 0.955 0.953 0.954 0.920
MATH (dist < 2.2) 0.967 0.944 0.960 0.952 0.913
MATH (dist < 2.4) 0.970 0.940 0.975 0.957 0.906
MATH (dist < 2.6) 0.971 0.943 0.958 0.950 0.910
MATH (dist < 2.8) 0.966 0.941 0.951 0.946 0.908
MATH (dist < 3.0) 0.977 0.952 0.972 0.960 0.922
MATH (dist < 3.2) 0.969 0.948 0.959 0.953 0.922
MATH (dist < 3.4) 0.962 0.933 0.977 0.955 0.892
MATH (dist < 3.6) 0.959 0.936 0.972 0.954 0.904
MATH (dist < 3.8) 0.966 0.940 0.968 0.954 0.913
MATH (dist < 4.0) 0.962 0.943 0.960 0.951 0.910

Figure 1. Bar chart comparing the experimental results of ST, ECFP, MAT, MATH (Boolean),
and MATH (dist < 3.0 Å) models, highlighting the model with the highest evaluation metrics.
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Table 3. Confusion matrix of the MATH (dist < 3.0 Å) with the highest F1 score model from five-
fold cross-validation.

Predicted Value

Active Inactive

Actual label
Active 181 2

Inactive 10 148

4. Discussion

One of the therapies applied in breast cancer is endocrine therapy using estrogen
receptor alpha inhibitors. Research for new drugs is ongoing, as are the limitations and
weaknesses of the existing ones. The search for new compounds could be done by looking
at the profiles of compounds that have been previously reported, and then examining
their similarities, or by performing a QSAR evaluation. Developments in computer science
have rendered it possible to apply this analysis through machine learning or deep learning
approaches with much available data.

Deep learning has successfully represented molecules, using the ST, ECFP, MAT,
and MATH models.

Table 2 presents evaluation metrics for models, including ROC AUC, precision, recall,
F1 score, and specificity, to predict estrogen alpha inhibitors. The MATHbool model exhib-
ited exceptional precision (0.955), recall (0.953), and F1 score (0.954). It made fewer false
positive predictions, while effectively identifying the most positive instances. The MATH-
dist ≤ 3.0 model also performed impressively in precision (0.952), recall (0.972), and F1
score (0.960), achieving a good balance between identifying positive instances and mini-
mizing false positives. For clarity, in presenting the confusion matrix, Table 3 presents the
MATH (dist < 3.0 Å), which achieved the highest performance and best F1 score during
five-fold cross-validation. This top-performing model impressively balanced precision
and recall, leading to excellent performance with minimal false positives (10) and false
negatives (2). Additionally, it accurately classified 181 true positive instances and 148 true
negative instances. The remarkable F1 score underscores the model’s proficiency in making
precise predictions, rendering it well-suited to classification tasks requiring a robust balance
between precision and recall.

Specificity, crucial for true negative predictions and applicability domain, was 0.920
for MATHbool and 0.922 for MATHdist < 3.0, indicating their ability to identify negative
instances correctly. Compared to MAT, incorporating hydrogen bond information improved
MATHbool and MATHdist < 3.0 model performance across all metrics.

The ROC AUC metric assessed the models’ discriminatory power, with MATHbool
and MATHdist < 3.0 performing best (0.973 and 0.977 ROC AUC, respectively), distin-
guishing active from inactive compounds. The ROC AUC of MATH demonstrated slight
improvements, because our dataset was highly imbalanced. The imbalanced distribution
of classes compounds the problem of overlap and makes classification an even more chal-
lenging task [31]. When applied to imbalanced data, ROC can depict the overly optimistic
performance of classifiers or risk scores. The imbalanced dataset can be handled with PRC,
which provides better insight into classifier performance, by focusing on minority classes.

The consistently high performance of MATHdist models with different thresholds high-
lights the robustness of the MATH approach. MATHdist < 3.0 was the best model, with the
highest ROC AUC, F1 score, recall, and specificity among all the MATHdist variants.

The MATH model was built upon MAT, to describe structural information better
than ECFP and ST. However, MAT could be developed by augmenting information about
intramolecular hydrogen bonds. Jeffrey [32] categorizes hydrogen bonds with donor
and acceptor hydrogen distances (2.2–2.5 Å) as “strong, mostly covalent”, (2.5–3.2 Å) as
“moderate, mostly electrostatic”, and (3.2–4.0 Å) as “weak, electrostatic”. Most of the
hydrogen bonds that exist are in the medium category. Strong hydrogen bonds require
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moieties or conditions that rarely occur in proteins. The average donor–acceptor distance in
protein secondary structure elements is near 3.0 Å [32]. Our experimental results showed
that the compounds in the estrogen receptor alpha dataset showed the best results with
a donor–acceptor distance with a threshold < 3.0 Å, compared to a threshold below or
above. It should be noted that the distance between the atoms involved does not solely
determine the strength of a hydrogen bond: other factors, such as the electronegativity of
the atoms, their partial charges, and the geometry of the bond, also play a significant role
in determining the overall strength of the hydrogen bond.

In addition, as one of the molecular descriptors tested, the hydrogen bond parameter
improves the model’s performance, because this bond influences the shape of compounds
that determine the conformation in interacting with target receptors—in this case, estrogen
receptor alpha. Interacting compounds as ligands with proteins as targets/receptors is
analogous to “lock and key”. The conformation of the ligand must match the shape of the
binding site, so that the interaction can be optimized to cause an inhibitory effect/activity.
Overall, our proposed MATH models, especially MATH with distance 3.0 Å, demonstrate
superior performance, compared to the baseline methods.

5. Materials and Methods

The focus of this study was the classification model of QSAR, to determine the can-
didate of an active or inactive compound for estrogen receptor alpha inhibition in breast
cancer. The model development was based on the self-attention MAT [13], by augmenting
self-attention, to include additional information on the molecular description of hydrogen
bonds as an intramolecular force. In this case, data addition was carried out on hydrogen
bonds, to analyze whether the parameters could improve the accuracy of the molecular
description task. We predicted estrogen receptor alpha inhibitors for breast cancer, by
applying the molecular graph Transformer, as illustrated in Figure 2. The molecular graph
Transformer was utilized to analyze and model the molecular graphs, enabling us to make
accurate predictions of potential inhibitors.

Figure 2. The research framework is divided into three main parts: data collection; molecular-
attention Transformer plus hydrogen bond (MATH); and model evaluation. The first part explains
the process of data retrieval and processing, the second part discusses the features of engineering and
architecture built to make predictions, and the last part explains the evaluation of the model, along
with further experiments.

5.1. Data Collection and Preprocessing

The bioactivity data was retrieved from the ChEMBL web source [33], specifically
from Target ID ChEMBL206, which corresponds to the human estrogen receptor alpha.
The ChEMBL206 dataset initially contained 5180 compounds and 46 columns of physico-
chemical and biological properties of molecules, as of 15 June 2023. To ensure data quality
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and relevance, we performed extensive preprocessing. Firstly, we removed 2109 salts,
entries with missing standard values (IC50), and known agonist compounds, resulting in
a refined dataset containing 3071 compounds. Subsequently, we eliminated six duplicate
canonical SMILES, leaving us with 3065 unique compounds. These preprocessing steps
were crucial for ensuring the integrity and reliability of the dataset for our research.

However, as the molecular descriptor was obtained from the input data for canonical
SMILES, we decided to proceed with 3065 compounds, using only two columns—canonical
SMILES and IC50—for the subsequent steps. Figure 3 provides an overview of the data
collection stage.

In the next step, the compounds were categorized as “active”, “inactive”, or “inter-
mediate”, based on their IC50 values: ≤1000 nM for “active”, ≥10,000 nM for “inactive”,
and values in between as “intermediate” [34]. To create a binary classification prediction
model for estrogen receptor alpha inhibitors, we excluded the 553 “intermediate” class
compounds, leaving 2512 remaining compounds.

The ChEMBL206 dataset includes data on compound testing against estrogen receptor
alpha targets as agonists, antagonists, binders, or non-binders. For our study, we focused
solely on modeling the SAR of estrogen receptor alpha inhibitors or antagonists, thus
excluding data related to agonist compounds. Additionally, we omitted data on active
compounds that bind to estrogen receptor alpha without specific information on whether
they are agonists or antagonists, as their inclusion might introduce bias to the model.

Further preprocessing involved removing known binding affinity compounds, re-
sulting in a final dataset of 2136 compounds, comprising 1406 “active” and 727 “inactive”
compounds. To achieve a more uniform distribution, the IC50 values were converted to
pIC50 [35].

To prepare the dataset for input into the MATH model, we converted it into CSV
format. Additionally, we divided the dataset into training and testing sets, to build the
prediction models, with the test set comprising 20% of the compounds randomly selected
from the dataset.

Figure 3. The data collection stages carried out to prepare input for the MATH feature engineering.

5.2. MATH

Molecule-attention Transformer plus hydrogen bond (MATH) was built upon MAT,
based on Transformer architecture [15]. MATH consists of N multiple attention blocks,
each composed of a multi-head self-attention layer and a feed-forward block with residual
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connections and layer normalization. A pooling layer and a classification layer follow
these blocks. The multi-head self-attention layer consists of H head. Head contains i
(i = 1, . . . , H), which is taken as input hidden state H, and calculates:

Qi = HWQ
i

Ki = HWH
i

Vi = HWV
i .

This notation is used for the attention operation in Equation (1):

A(i) = softmax

(
QiKT

i√
dk

)
Vi, (1)

where Q, K, V denotes a matrix with dimension dk, which contains sets of queries,
keys, and values, respectively. The dimension vector dk is denoted by q and k, which
contain queries and keys, respectively. WQ, WK, WV denotes the projection matrix used to
generate the different representations of queries, keys, and values.

The MATH section interprets self-attention as an adjacency matrix, a distances matrix,
and hydrogen bond information between the input sequence elements, as illustrated in
Figure 4. By incorporating this additional structural information, MATH moves away
from using linear (textual) molecular representations as input, resulting in an improved
inductive bias for the model. This inductive bias better captures the molecules’ actual
structure, enhancing the model’s overall performance. An example of predicting molecular
properties is usually denoted by G being a molecular graph with nodes representing atoms
and with edges representing chemical bonds, with G = V, E being a vertex with node
attribute Xv, and E being an edge attribute [30].

Figure 4. MATH architecture with additional hydrogen bond parameters.
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We propose a modified layer of molecule self-attention, as explained in Equation (2).
The method proposed in this study is the molecule self-attention layer described in [13],
with the addition of the hydrogen bond parameter, to analyze whether the hydrogen bond
can reduce the error rate in predictions:

A(i) =

(
λasoftmax

(
QiKT

i√
dk

)
+ λdg(D) + λgA + Hbond

)
Vi, (2)

where A(i) denotes self-attention. Let Hbond = {(i, j, d)|i ∈ HydrogenAtoms, j ∈
AcceptorAtoms, d ≤ dthreshold} denote the intramolecular hydrogen bond obtained from
feature engineering. A ∈ {0, 1}NatomsxNatoms denotes the graph adjacency matrix. D ∈
RNatomsxNatoms denotes the inter-atomic distance. λa, λd, λg denote scalar values that give
weights to the self-attention matrices, the inter-atomic distance, and the adjacency matrices,
while g is the softmax for normalization.

Molecular graph descriptor extraction is the stage of acquiring the molecular graph
descriptor used in the architectural model. This process takes a molecule object as input,
and it generates a set of molecular graph descriptors (listed in Table 4) as the output.

Table 4. Molecular graph descriptors generated from feature engineering.

Molecular Properties Description

Node features Feature vectors for each atom in the molecule.

Adjacency matrix

Matrix representing the adjacency matrix of
the molecular graph. The element of the ma-
trix is set to 1 if there is a bond between the
corresponding atoms and to 0 otherwise.

Distance matrix

Matrix representing the distance matrix of the
molecular graph. The element of the matrix
is the pairwise distance between the atoms in
the molecule.

Hydrogen Boolean (Bool)

Matrix representing the hydrogen bond ma-
trix of the molecular graph. The element of
the matrix is set to 1 if there is a hydrogen
bond between corresponding atoms and to 0
otherwise.

Hydrogen bond (donor and acceptor)

Identifies and returns the indices of hydrogen
atoms, acceptor atoms, and corresponding dis-
tances for intramolecular hydrogen bonds in
a molecule.

This study focused on adding intramolecular information in the form of hydrogen
bonds. In the first scenario, the hydrogen bond obtained from the feature engineering
process was in the form of a matrix containing {1,0}, denoted by Hbool ∈ {0, 1}NatomsxNatoms .
The second scenario involved the addition of a hydrogen bond feature, by calculating
the intramolecular hydrogen bonds within a molecule, through identifying hydrogen
atoms bonded to specific acceptor atoms (nitrogen, oxygen, or sulfur) up to a certain dis-
tance threshold. It generated 3D coordinates for the molecule, iterated over the atoms,
checked the necessary conditions for hydrogen bonding, and returned a list containing
information about the intramolecular hydrogen bonds found in the molecule. We let
Hbond = {(i, j, d)|i ∈ HydrogenAtoms, j ∈ AcceptorAtoms, d ≤ dthreshold}, where (i, j, d)
denoted a tuple containing the indices of hydrogen atoms (i) and acceptor atoms (j),
together with the distance (d) between them, HydrogenAtoms was the set of indices corre-
sponding to the hydrogen atoms in the molecule, AcceptorAtoms were the indices corre-
sponding to a molecule’s acceptor atoms (such as nitrogen, oxygen, or sulfur), and dthreshold
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was the maximum distance threshold, indicating the maximum distance allowed for hydro-
gen bonding considerations. Figure 5 is a scheme for obtaining hydrogen bond information
from a compound, and Figure 6 is an example of a SMILES representation of a 2-[(9S)-3-
hydroxy-9H-xanthen-9-yl]-2-methyl-N-(1,3-thiazol-2-yl)propanamide compound, which
has 26 atoms represented as an adjacency matrix, denoted A ∈ {0, 1}NatomsxNatoms . Distance
matrices were calculated from 3D conformers calculated using the RDKit package [36].����������	�
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Figure 5. The schema intramolecular hydrogen bond of a 2-[(9S)-3-hydroxy-9H-xanthen-9-yl]-2-
methyl-N-(1,3-thiazol-2-yl)propanamide compound.
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Figure 6. The example graph representation of a 2-[(9S)-3-hydroxy-9H-xanthen-9-yl]-2-methyl-
N-(1,3-thiazol-2-yl)propanamide compound is used to obtain a molecular adjacency matrix for a
downstream task.

5.3. Model Evaluation

The MATH model is evaluated using ROC AUC, precision, recall, F1 Score, and speci-
ficity. The ROC curve is an evaluation metric commonly used for binary classification
problems. This study’s classification was carried out to predict two labels: namely, active
and inactive compound candidates. This curve is a probability that maps TPR (true positive
rate) to FPR (false positive rate) at various threshold values, which separates ‘signal’ from
‘noise’. While AUC measures the classifier’s ability to distinguish between classes, and is



Molecules 2023, 28, 5843 12 of 15

used as a summary of ROC, the higher the AUC, the better the model’s performance in
distinguishing between active and inactive classes. Equations (3)–(5) define the terms used
in the AUC and ROC curves [37]:

TPR =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

FPR = 1− specifity

=
FP

TN + FP

(5)

Meanwhile, we use a confusion matrix to calculate precision, recall, the F1 score,
and specificity. These metrics are essential for assessing the effectiveness of the MATH
model in predicting estrogen-receptor-alpha compounds. Precision quantifies the ratio of
true positive predictions to the total positive predictions made by the model. Recall, or
sensitivity, represents the ratio of true positive predictions to the actual positive instances
present in the dataset. The F1 score is calculated as the harmonic mean of precision and
recall, providing a balanced measure of the model’s performance, by considering both false
positives and false negatives. Specificity measures the ratio of true negative predictions to
the total negative instances. The precision, recall, and F1 score calculations are shown in
Equations (6)–(8) [38]:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 = 2×
Precision× Recall
Precision + Recall

(8)

TP, FP, TN, and FN are the counts of true positive, false positive, true negative,
and false negative, respectively. The MATH model is now compared to the three other
candidate prediction models for estrogen-receptor-alpha compounds as the baseline.

5.4. Experiment Settings

The proposed approach was implemented in Python, using the Pytorch [39] package.
The experiments were conducted on a Jupyter Notebook with DGX-A100 GPU. The dataset
used for the experiments underwent data collection and preprocessing steps, which in-
volved removing salts and missing standard values (IC50), as well as eliminating duplicate
SMILES and labels for “intermediate” compounds and known agonist activity. The training
set consisted of 80% of the preprocessed data, while the remaining 20% was the test set.

During the training phase, we used five-fold cross-validation, with each fold trained for
100 epochs, to obtain a robust evaluation of the model’s performance. For optimization, we
employed the Adam optimizer [40] with specific hyperparameters, including an embedded
atomic feature size of 1024, 8 encoder module repeats (layer number N = 8), 16 molecular
self-attention heads (h = 16), and a batch size of 64, as suggested in Vaswani et al. [15].

To assess the performance of the proposed MATH model, we compared it to three
baselines. The first baseline was MAT without intramolecular hydrogen bond augmenta-
tion [13]. The second baseline was a Transformer model by Honda et al. [18], where the
SMILES textual representation was directly decoded, referred to as ST. The third baseline
was an MLP model utilizing extended-connectivity fingerprinting (ECFP) [18].



Molecules 2023, 28, 5843 13 of 15

Additionally, we evaluated the model’s performance under various intramolecular
hydrogen bond representations. This included using a presence matrix representation for
hydrogen bonds, as shown in Table 4, and considering hydrogen bonds involving different
hydrogen atoms and acceptors within a distance range from 2.2 to 4.0.

6. Conclusions

In conclusion, our study successfully developed a deep learning model for classifying
estrogen receptor alpha inhibitors, using the MATH approach with various threshold
distances for hydrogen atoms and acceptors. We compared the performance of MATH to
three other baseline models. The evaluation results on the testing data demonstrated that
MATH with a distance of 3.0 Å surpassed the performance of the other baseline models.
This indicates that incorporating hydrogen bond information as one of the molecular
descriptors significantly improves the classification model’s accuracy.

Hydrogen bonds play a crucial role in influencing a compound’s shape, as they deter-
mine the molecule’s conformation during its interaction with the estrogen receptor alpha.
Our model provides valuable insights into compounds’ behavior and activity, by consid-
ering hydrogen bond information. Acknowledging that other molecular descriptors may
further enhance the model’s accuracy is essential. Future research can explore integrating
additional molecular features, to optimize the prediction model even further.

Overall, the results presented in this study hold great promise for pharmaceutical
and health researchers, in guiding drug discovery pathways. The MATH approach, cou-
pled with the consideration of hydrogen bond information, showcases a powerful tool
for predicting estrogen receptor alpha inhibitors, advancing the field of drug discovery
and development.

Author Contributions: Conceptualization, A.A.K., R.T.P. and F.; methodology, A.A.K., R.T.P. and F.;
software, R.T.P.; investigation, R.T.P. and F.; data curation, R.T.P.; writing—original draft preparation,
A.A.K., R.T.P. and F.; writing—review and editing, A.A.K., R.T.P. and F.; supervision, A.A.K. and F.;
funding acquisition, A.A.K.; formal analysis, R.T.P., A.A.K. and F.; resources, A.A.K. All authors have
read and agreed to the published version of the manuscript.

Funding: The APC was funded by the Faculty of Computer Science, Universitas Indonesia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study, on human estrogen receptor alpha,
are available on https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL206/ (accessed on 15
June 2023).

Acknowledgments: The authors thank the Faculty of Computer Science, Universitas Indonesia, for
the funding support and Tokopedia-UI AI Center of Excellence for the access to their NVIDIA DGX
A100 high-performance computing facility.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Not applicable.

References
1. Female Breast Cancer—Cancer Stat Facts; National Cancer Institute: Bethesda, MD, USA, 2023.
2. Breast Cancer; WHO: Geneva, Switzerland, 2021.
3. Lumachi, F.; Santeufemia, D.A.; Basso, S.M. Current medical treatment of estrogen receptor-positive breast cancer. World J. Biol.

Chem. 2015, 26, 231–240. [CrossRef] [PubMed]
4. Iqbal, M.; Victory, V.; Astuti, A.; Febrianora, M.; Karwiky, G.; Achmad, C.; Akbar, M.R. Cardiotoxicity by Anthracycline Regimen

Chemotherapy Prolonged T Peak to T End Interval. Cardiol. Res. 2020, 11, 305–310. [CrossRef] [PubMed]
5. Hansch, C.; Fujita, T. p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J. Am. Chem.

Soc. 1964, 86, 1616–1626. [CrossRef]
6. Hansch, C.; Leo, A. Substituent Constants for Correlation Analysis in Chemistry and Biology; A Wiley-Interscience Publication, Wiley:

Hoboken, NJ, USA, 1979.

https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL206/
http://doi.org/10.4331/wjbc.v6.i3.231
http://www.ncbi.nlm.nih.gov/pubmed/26322178
http://dx.doi.org/10.14740/cr1052
http://www.ncbi.nlm.nih.gov/pubmed/32849965
http://dx.doi.org/10.1021/ja01062a035


Molecules 2023, 28, 5843 14 of 15

7. Zhu, H.; Traver, D.; Davidson, A.J.; Dibiase, A.; Thisse, C.; Thisse, B.; Nimer, S.; Zon, L.I. Regulation of the lmo2 promoter during
hematopoietic and vascular development in zebrafish. Dev. Biol. 2005, 281, 256–269. [CrossRef] [PubMed]

8. Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini,
R.; et al. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 2014, 57, 4977–5010. [CrossRef]
[PubMed]

9. Neves, A.R.; Devesa, M.; Martínez, F.; Garcia-Martinez, S.; Rodriguez, I.; Polyzos, N.P.; Coroleu, B. What is the clinical impact of
the endometrial receptivity array in PGT-A and oocyte donation cycles? J. Assist. Reprod. Genet. 2019, 36, 1901–1908. [CrossRef]

10. Chakravarti, S.K.; Alla, S.R.M. Descriptor Free QSAR Modeling Using Deep Learning With Long Short-Term Memory Neural
Networks. Front. Artif. Intell. 2019, 2, 17. [CrossRef] [PubMed]

11. Matsuzaka, Y.; Uesawa, Y. Ensemble Learning, Deep Learning-Based and Molecular Descriptor-Based Quantitative Structure
Activity Relationships. Molecules 2023, 28, 2410. [CrossRef]

12. Tsou, L.K.; Yeh, S.H.; Ueng, S.H.; Chang, C.P.; Song, J.S.; Wu, M.H.; Chang, H.F.; Chen, S.R.; Shih, C.; Chen, C.T.; et al. Comparative
study between deep learning and QSAR classifications for TNBC inhibitors and novel GPCR agonist discovery. Sci. Rep. 2020,
10, 16771. [CrossRef]

13. Maziarka, Ł.; Danel, T.; Mucha, S.; Rataj, K.; Tabor, J.; Jastrzçebski, S. Molecule Attention Transformer. arXiv 2020,
arXiv:2002.08264.

14. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; Volume 1 (Long and Short Papers); Burstein,
J., Doran, C., Solorio, T., Eds.; Association for Computational Linguistics: Cedarville, OH, USA, 2019; pp. 4171–4186. [CrossRef]

15. Vaswani, A.; Shazeer, N.; Parmar.; N., Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you
need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5999–6009.

16. Kuhn, B.; Mohr, P.; Stahl, M. Intramolecular Hydrogen Bonding in Medicinal Chemistry. J. Med. Chem. 2010, 53, 2601–2611.
[CrossRef] [PubMed]

17. Abelian, A.; Dybek, M.; Wallach, J.; Gaye, B.; Adejare, A. Chapter 6—Pharmaceutical chemistry. In Remington, 23rd ed.; Adejare,
A., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 105–128. . [CrossRef]

18. Honda, S.; Shi, S.; Ueda, H.R. SMILES Transformer: Pre-trained Molecular Fingerprint for Low Data Drug Discovery. arXiv 2019,
arXiv:1911.04738.

19. Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [CrossRef] [PubMed]
20. Tong, W.; Perkins, R.; L Xing, W.J.W.; Sheehan, D.M. QSAR models for binding of estrogenic compounds to estrogen receptor

alpha and beta subtypes. Endocrinology 1997, 138, 4022–4025. [CrossRef] [PubMed]
21. Ribay, K.; Kim, M.T.; Wang, W.; Pinolini, D.; Zhu1, H. Predictive Modeling of Estrogen Receptor Binding Agents Using Advanced

Cheminformatics Tools and Massive Public Data. Front. Environ. Sci. 2016, 4, 12. [CrossRef]
22. Cotterill, J.; Palazzolo, L.; Ridgway, C.; Price, N.; Rorije, E.; Moretto, A.; Peijnenburg, A.; Eberini, I. Predicting estrogen receptor

binding of chemicals using a suite of in silico methods—Complementary approaches of (Q)SAR, molecular docking and molecular
dynamics. Toxicol. Appl. Pharmacol. 2019, 378, 114630. [CrossRef]

23. Zekri, A.; Harkati, D.; Kenouche, S.; Saleh, B.A. QSAR modeling, docking, ADME and reactivity of indazole derivatives as
antagonizes of estrogen receptor alpha ER− α) positive in breast cancer. J. Mol. Struct. 2020, 1217, 128442. . [CrossRef]

24. Haghighatlari, M.; Hachmann, J. Advances of machine learning in molecular modeling and simulation. Curr. Opin. Chem. Eng.
2019, 23, 51–57. [CrossRef]

25. Wallach, I.; Dzamba, M.; Heifets, A. AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-
based Drug Discovery. arXiv 2015, arXiv:1510.02855.

26. Feinberg, E.N.; Sur, D.; Wu, Z.; Husic, B.E.; Mai, H.; Li, Y.; Sun, S.; Yang, J.; Ramsundar, B.; Pande, V.S. Potentialnet for molecular
property prediction. ACS Cent. Sci. 2018, 4, 1520–1530. [CrossRef]

27. Gonczarek, A.; Tomczak, J.M.; Zareba, S.; Kaczmar, J.; Dabrowski, P.; Walczak, M.J. Learning Deep Architectures for Interaction
Prediction in Structure-based Virtual Screening. arXiv 2016, arXiv:1610.07187.

28. Wang, S.; Guo, Y.; Wang, Y.; Sun, H.; Huang, J. Smiles-bert: Large scale unsupervised pre-training for molecular property
prediction. In Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health
Informatics, BCB’ 19, Niagara Falls, NY, USA, 7–10 September 2019; Yoo, I., Bi, J., Hu, X., Eds.; Association for Computing
Machinery: New York, NY, USA, 2019; pp. 429–436. [CrossRef]

29. Ciallella, H.L.; Russo, D.P.; Aleksunes, L.M.; Grimm, F.A.; Zhu, H. Predictive modeling of estrogen receptor agonism, antagonism,
and binding activities using machine and deep learning approaches. Lab. Investig. 2021, 101, 490–502. [CrossRef] [PubMed]

30. Wu, Z.; Ramsundar, B.; Feinberg, E.N.; Gomes, J.; Geniesse, C.; Pappu, A.S.; Leswing, K.; Pande, V. MoleculeNet: A benchmark
for molecular machine learning. Chem. Sci. 2018, 9, 513–530. [CrossRef] [PubMed]

31. Movahedi, F.; Padman, R.; Antaki, J.F. Limitations of ROC on Imbalanced Data: Evaluation of LVAD Mortality Risk Scores. arXiv
2020, arXiv:2010.16253

32. Jeffrey, G.A. An Introduction to Hydrogen Bonding; Oxford University Press: Oxford, UK, 1997.

http://dx.doi.org/10.1016/j.ydbio.2005.01.034
http://www.ncbi.nlm.nih.gov/pubmed/15893977
http://dx.doi.org/10.1021/jm4004285
http://www.ncbi.nlm.nih.gov/pubmed/24351051
http://dx.doi.org/10.1007/s10815-019-01535-5
http://dx.doi.org/10.3389/frai.2019.00017
http://www.ncbi.nlm.nih.gov/pubmed/33733106
http://dx.doi.org/10.3390/molecules28052410
http://dx.doi.org/10.1038/s41598-020-73681-1
http://dx.doi.org/10.18653/v1/n19-1423
http://dx.doi.org/10.1021/jm100087s
http://www.ncbi.nlm.nih.gov/pubmed/20175530
http://dx.doi.org/10.1016/B978-0-12-820007-0.00006-4
http://dx.doi.org/10.1021/ci100050t
http://www.ncbi.nlm.nih.gov/pubmed/20426451
http://dx.doi.org/10.1210/endo.138.9.5487
http://www.ncbi.nlm.nih.gov/pubmed/9275094
http://dx.doi.org/10.3389/fenvs.2016.00012
http://dx.doi.org/10.1016/j.taap.2019.114630
http://dx.doi.org/10.1016/j.molstruc.2020.128442
http://dx.doi.org/10.1016/j.coche.2019.02.009
http://dx.doi.org/10.1021/acscentsci.8b00507
http://dx.doi.org/10.1145/3307339.3342186
http://dx.doi.org/10.1038/s41374-020-00477-2
http://www.ncbi.nlm.nih.gov/pubmed/32778734
http://dx.doi.org/10.1039/C7SC02664A
http://www.ncbi.nlm.nih.gov/pubmed/29629118


Molecules 2023, 28, 5843 15 of 15

33. Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo-Meullenet, P.; Atkinson, F.; Bellis, L.J.;
Cibrián-Uhalte, E.; et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017, 45, D945–D954. [CrossRef]

34. Suvannang, N.; Preeyanon, L.; Malik, A.A.; Schaduangrat, N.; Shoombuatong, W.; Worachartcheewan, A.; Tantimongcolwat,
T.; Nantasenamat, C. Probing the origin of estrogen receptor alpha inhibition via large-scale QSAR study. RSC Adv. 2018,
8, 11344–11356. [CrossRef]

35. Yu, T.; Huang, T.; Yu, L.; Nantasenamat, C.; Anuwongcharoen, N.; Piacham, T.; Ren, R.; Chiang, Y.C. Exploring the Chemical
Space of CYP17A1 Inhibitors Using Cheminformatics and Machine Learning. Molecules 2023, 28, 1679. [CrossRef]

36. Landrum, G. RDKit: Open-Source Cheminformatics Software. 2016. Available online: https://github.com/rdkit/rdkit/releases/
tag/Release_2016_09_4 (accessed on 10 May 2023).

37. Gajowniczek, K.; Zabkowski, T. ImbTreeAUC: An R package for building classification trees using the area under the ROC curve
(AUC) on imbalanced datasets. SoftwareX 2021, 15, 100755. [CrossRef]

38. Jurafsky, D.; Martin, J.H. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition, 2nd ed.; Prentice Hall series in artificial intelligence; Prentice Hall, Pearson Education International:
Hoboken, NJ, USA, 2009.

39. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, Vancouver, BC, Canada, 8–14
December 2019; Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R., Eds.; 2019; pp. 8024–8035.

40. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Conference Track Proceedings; Bengio, Y., LeCun, Y.,
Eds.; 2015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1093/nar/gkw1074
http://dx.doi.org/10.1039/C7RA10979B
http://dx.doi.org/10.3390/molecules28041679
https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
http://dx.doi.org/10.1016/j.softx.2021.100755

	Introduction
	Related Work
	Results
	Discussion
	Materials and Methods
	Data Collection and Preprocessing
	MATH
	Model Evaluation
	Experiment Settings

	Conclusions
	References

