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Abstract: Triple-negative breast cancer (TNBC) is an invasive and persistent subtype of breast
cancer that is likely to be resistant to conventional treatments. The rise in immunotherapy has
created new modalities to treat cancer, but due to high costs and unreliable efficacy, adjunctive and
complementary treatments have sparked interest in enhancing the efficacy of currently available
treatments. Natural products, which are bioactive compounds derived from natural sources, have
historically been used to treat or ameliorate inflammatory diseases and symptoms. As TNBC patients
have shown little to no response to immunotherapy, the potential of natural products as candidates
for adjuvant immunotherapy is being explored, as well as their immunomodulatory effects on
cancer. Due to the complexity of TNBC and the ever-changing tumor microenvironment, there
are challenges in determining the feasibility of using natural products to enhance the efficacy or
counteract the toxicity of conventional treatments. In view of technological advances in molecular
docking, pharmaceutical networking, and new drug delivery systems, natural products show promise
as potential candidates in adjunctive therapy. In this article, we summarize the mechanisms of action
of selected natural-product-based bioactive compounds and analyze their roles and applications in
combination treatments and immune regulation.

Keywords: adjunctive immunotherapy; tumor microenvironment; natural products; cancer

1. Introduction

Cancer is a chronic inflammatory disease that is well adapted to proliferating unchecked
and evading detection by the immune system. Breast cancer dominates in global prevalence
and incidence out of all cancers, with over 2.26 million cases reported in 2020 alone [1].
Currently, an estimated 83% of those diagnosed with breast cancer are over 50 years of age;
therefore, with an increasing proportion of aging populations in high- and middle-income
countries, the incidence of breast cancer is likely to exceed 3 million cases per year by
2040 [2]. In the United States, for example, 13% of women are at risk of developing invasive
breast cancer in their lifetime, and 2.5% will die from it [3]. Hereditary factors such as
deleterious mutations in breast cancer susceptibility proteins type 1 (BRCA1) and type 2
(BRCA2) account for up to 10% of breast cancer cases; therefore, most cases are caused by
extrinsic risk factors [4]. Modifiable risk factors include physical inactivity, obesity, and
alcohol consumption, while non-modifiable risk factors include mammographic density,
reproductive history, hormonal changes, and childhood exposure to ionizing radiation [5,6].

Breast cancer is classified into four main subtypes, which are distinguished by their
molecular phenotype: estrogen receptor (ER)-positive, progesterone receptor (PR)-positive,
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human epidermal growth factor 2 receptor (HER)-positive, or triple-negative breast cancer
(TNBC; the absence of all receptors) [7]. TNBC is one of the most invasive and aggressive
forms of breast cancer, accounting for approximately 15–20% of all breast cancers [8]. It is
also associated with a poorer prognosis and higher risk of recurrence, with a 5-year relative
survival rate of 77.6% compared with 90.5% for non-TNBC in the United States [9]. Breast
cancer subtype and malignancy are the key determinants of patient prognosis and treatment
of choice. Most breast cancer patients are treated by surgical removal of the primary tumor
before receiving adjuvant therapy, a combination of chemotherapy, radiotherapy, and/or
endocrine therapy [10]. Neoadjuvant therapy, treatment prior to surgical removal of
the tumor, may also be used in selected candidates who are eligible according to the
recommended guidelines and medical practitioner approval [11,12]. Although adjuvant
and neoadjuvant treatments are equally effective in prolonging survival rates, drug delivery
is highly non-specific, causing adverse effects in patients and compromising their well-
being. This has led to the development of endocrine therapeutic drugs such as tamoxifen,
which specifically targets ER-positive cancers [13,14]. However, the duration of treatment
can be up to 10 years to order to improve survival rates and prevent cancer recurrence [15].

In the 1800s, Busch, Fehleisen, and William Coley were among the first to observe
that tumor regression could be achieved by harnessing the immune response. Coley
was the first to demonstrate the reversal of malignancy by injecting sarcoma patients
with heat-inactivated Streptococcus pyogenes and Serratia marcescens, bacterial species that
cause erysipelas [16,17]. By 2014, the development of immunotherapy drugs had revo-
lutionized modern cancer treatment by targeting and eliminating cancer cells by directly
inducing immune-mediated cell death. Three main immunotherapeutic approaches are
now available: adoptive T-cell therapy, immune checkpoint blockade, and cancer vac-
cines [18]. Genome modification by clustered regularly interspaced short palindromic
repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) technology is now being used to
support adoptive T cell therapy to alter cancer or immune cell function. This technology can
be used for ex vivo knockout of the immune checkpoint proteins from tumor-infiltrating
T cells, knockout of endogenous T cell receptors (TCRs) followed by knock-in of cancer
antigen-specific TCRs, and knock-in of chimeric-antigen receptors into T cells [19–21]. This
is a promising approach for cancer treatment in immunogenic tumors to minimize the
systemic destruction of healthy cells caused by chemo- or radiotherapy-induced toxicity.
However, clinical trials have shown that only a small fraction of patients respond to treat-
ment, while the majority have no response. This represents the establishment of primary,
adaptive, or acquired resistance [22]. In addition, tumor heterogeneity, immunosuppression
within the tumor microenvironment, drug resistance, gut microbiota, and tumor mutational
burden (TMB) can impede drug delivery. Drug-induced T-cell activation can cause non-
specific tissue damage that manifests as immune-related adverse events and, if severe, can
lead to the development of various autoimmune diseases such as inflammatory rheumatoid
arthritis [23–25]. Patients who show no response or partial response to immunotherapy
may develop resistance, leading to an increased likelihood of cancer recurrence through
the formation of cell-in-cell structures [26]. Dormant cancer cells may undergo further
mutations before initiating cancer recurrence at distant or loco-regional sites. Emerging
evidence suggests that in breast cancer subtypes, discordance between the primary tumor
site and the metastatic site may occur during tumor recurrence, such as the alteration or loss
of hormone receptor expression. This can exacerbate cancer status and treatment strategies
must adapt to these changes to maximize patient survival [27,28].

In recent years, complementary and alternative therapies have been gaining world-
wide recognition for their application in conventional cancer treatment. Natural products
are broadly defined as bioactive extracts, metabolites, or derivatives of natural origin, such
as plants, animals, fungi, and microorganisms [29]. For example, medicinal herbs used
in traditional Chinese medicine (TCM) are known to be used in adjuvant therapy against
chronic inflammatory diseases and provide immunological support to facilitate patient
recovery [30]. Studies have reported that herbal medicine is successful in improving the
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well-being of recovering cancer patients, as evidenced by the reduction of adverse effects of
conventional treatments, stimulation of the anti-cancer immune response, and reversal of
drug resistance [31]. Although herbal medicine mainly boosts systemic immunity including
innate and adaptive immunity, its derivatives provide important aspects of drugs, pre-
cise immunological pathways, and the efficacy of chemotherapy, radiotherapy, endocrine
therapy, and immunotherapy.

This review discusses the potential adjuvant use of natural products in the treatment of
TNBC with immunotherapy, their mechanisms of action in immunomodulation, and their
influence on the tumor microenvironment (TME). The synergistic anti-tumor mechanisms
between immunotherapeutic drugs and immune-enhancing natural products, as well as
their compatibility in clinical application and combination therapy, will be examined.

2. The Immune System and TNBC
2.1. Cancer Evasion of Host Immune Surveillance

Hanahan, D. has described more than 15 hallmarks of cancer cell survival adaptations,
one of the key features being the prevention of immune-mediated destruction [32]. The
cancer-immunity cycle is representative of the sustained immunosuppression of the im-
mune response that allows tumor cells to evade immunosurveillance, thereby providing
optimal conditions for uncontrolled proliferation [33]. First, neoantigens released from
dead tumor cells are captured by nearby dendritic cells (DCs), which then migrate to
the lymph nodes to prime naïve T cells. After priming and activation, CD8+ cytotoxic
T (Tc) cells travel through the bloodstream to the tumor site. At the tumor site, tumor
cells inactivate the CD8+ Tc cell activities by the binding of immune checkpoint ligands,
allowing for the further proliferation and invasion of cancer cells [33,34].

There have been conflicting theories regarding the regulation between cancer develop-
ment and immune surveillance. Paul Ehrlich first proposed the concept of the spontaneous
elimination of transformed cells by immune cells, which formed the basis of the immuno-
surveillance hypothesis [35,36]. Thomas Lewis developed the early immunosurveillance
theory, which was later refined by Frank McFarlane Burnet. It was hypothesized that the
immune system would readily eradicate neoplastic cells, similar to homograft rejection,
provided that neoantigens were present and recognized by the immune system [37,38].

This was refuted in later years by contradictory observations that tumors continue
to form despite a fully competent immune system. The recognition of neoantigens and
discrimination between self and non-self-antigens is largely regulated by the NKG2D recep-
tors present on natural killer (NK) cells. NKG2D ligands are upregulated in transformed or
virus-infected cells in response to the DNA damage response, a process common in breast
cancer [39]. NKG2D ligands on cancer cells activate NK cells and other T cells to mediate
the cell death mechanism. However, cancer cells can shed NKG2D ligands into a soluble
form to escape detection before undergoing immunoediting and immunosubversion [40,41].
Immunoediting is defined as the process by which tumors evolve mechanisms to evade
immune-mediated destruction. The principle is described in three stages: elimination,
equilibrium, and escape [42]. The elimination phase refers to the complete clearance of
tumor cells by immune cells upon the detection of neoantigens expressed on the cell surface.
In the equilibrium phase, a few tumor cells that have survived or circumvented immuno-
surveillance may mutate to further enhance immune resistance. As a result, the overall
cytotoxic immune response stalls, leading to tumor dormancy. The escape phase refers
to the continued growth of immune-resistant tumor cells with little or no inhibition by a
competent immune system, requiring the evasion of both adaptive and innate immune
responses [43,44]. One study highlighted the paradoxical role of the intrinsic expression of
interferon (IFN)-γ and functional lymphocytes. Both work in tandem to protect against
tumorigenesis while promoting the immunoselection of tumor cells. This is also a key
factor in dictating the extent and outcome of immunoediting [45].

Immunoediting involves a combination of intrinsic and extrinsic mechanisms to escape
immune detection. Genomic profiling and signal transduction analyses have reported that
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mutations or loss of the RB1, TP53, and PTEN genes and activation of the PI3K and
MEK pathways are found in many TNBC cases. Somatic alterations in these genes are
prevalent features of metastasis in most solid tumors [46–48]. TNBC can also lead to
mutations of caspase 8, allowing for the survival of tumor cells and preventing destruction
by CD8+ cytotoxic T (Tc) cells [49]. Another genomic profiling study has shown that the
immune evasion mechanisms of TNBC are adapted according to the tumor landscape as
the phenotypes vary from one individual to another. The main mechanisms include the
recruitment and trafficking of immune cells, activation or inactivation of immune cells, and
expression of immune checkpoint proteins [50].

2.2. The Tumor Microenvironment and Immunogenicity

Tumor immunogenicity is defined as the tendency of the tumor to elicit an adaptive
immune response from the host and it is primarily determined by antigenicity and ad-
juvanticity. Antigenicity represents the activation of the immune response via antigen
binding, whereas adjuvanticity is the ability to potentiate the immune response against
cancer cells [51,52]. Tumor immunogenicity can be measured by the TMB, the number of
somatic mutations present in tumor cells. Tumor genetic profiling studies have shown that
TMB in TNBC correlates with tumor-infiltrating lymphocytes (TILs), and both parameters
are indicators of positive responses to immune checkpoint inhibitor (ICI) treatment and
patient prognosis [53–55]. Cancers with a high TMB would exhibit a higher number of
neoantigens and thus be detected more effectively by the immune system. Several factors
influence TMB, including the genetic composition of cancer cells, the TME, and the immune
status of the patient [56].

The TME is an integrated network consisting of the tumor stroma, vasculature, TILs,
and other structural cells [57]. Tumor-infiltrating lymphocytes generally represent the
CD8+ Tc cell population, an important measure of tumor immunogenicity. The TME can be
categorized according to the distribution and degree of TIL infiltration: high TIL infiltration
is described as immune-inflamed or immunogenically “hot”, TILs present at the tumor
periphery without infiltration are described as immune-excluded or immunologically
“cold”, and low or no TIL infiltration is described as immune-desert or immunologically
“cold” [58,59]. Immunogenically “hot” tumors are more responsive to immunotherapy.
TNBC patients with a high ratio of CD8+ and CD4+ T cells infiltrated in their tumors
suggest a better prognosis and higher sensitivity to immunotherapy [60,61].

All leukocytes, except natural killer (NK) cells, can switch their phenotypic expression
and functional properties to pro-tumorigenic, anti-tumorigenic, or non-reactive tendencies
within the TME [62]. The major immunosuppressive cells in the TME of TNBC include
myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) with
an M2 phenotype, tumor-associated neutrophils (TANs) with an N2 phenotype, regulatory
T (Treg) cells, and CD4+ helper T (Th) cells. Immunostimulatory cells include TAMs and
TANs with an M1 or N1 phenotype, CD8+ cytotoxic T cells, and NK cells [63,64]. During
TNBC progression, the recruitment of immunosuppressive cells deactivates T cells through
the release of the immunosuppressive cytokines transforming growth factor beta (TGF-β)
and interleukin (IL)-10. Tumor-derived exosomes also contribute to T-cell exhaustion,
which promotes metastasis and invasion [65,66].

2.3. Systemic Inflammation

Inflammation exists as acute or chronic inflammation, with different outcomes de-
pending on stimuli and immunological status. In the context of non-pathogenic cancer,
low-grade chronic inflammation persists at all stages of cancer development, from initiation
to development and metastasis [67]. However, the causal link between carcinogenesis
and inflammation is not fully understood and is often contradictory. For example, some
chronic low-grade inflammatory diseases such as obesity and inflammatory bowel disease
(IBD) predispose patients to developing breast and gastrointestinal cancers, respectively,
while other diseases, such as rheumatoid arthritis, do not [62,68]. Only a small percentage
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of cancer patients have an intrinsically higher risk of developing cancer due to germline
mutations, while most cancer patients are already in a pro-inflammatory state before they
develop the disease due to somatic mutations [62].

Harold Dvorak, a renowned pathologist, described tumors as wounds that never heal.
This comparison highlights the similarity between tumors and unresolved inflammation
in wounds [69]. Acute inflammation occurs during tissue injury and infection, where
cell damage and death trigger the production of damage-associated molecular patterns
(DAMPs). Upon recognition by neighboring cells, pro-inflammatory chemicals signal the re-
cruitment of immune cells to neutralize inflammation. Specialized pro-resolving mediators
(SPMs) program the clearance of inflammatory mediators and inhibit the tissue-damaging
response of neutrophils, followed by the proliferative cue to restore tissue homeostasis and
epithelial structure [70–72]. However, incomplete elimination of pathogens or prolonged
and unresolved acute inflammation leads to chronic inflammation development and the
migration of immunosuppressive cells to the site of infection [73].

Cancer-associated inflammation (CAI) is characteristic of all stages of tumor devel-
opment, from pre-tumor stages to cancer-therapy-induced inflammation [70]. It has been
shown that CAI is regulated by intrinsic and extrinsic pathways, the intrinsic being onco-
gene activation or the silencing of tumor suppressor genes and the extrinsic being factors
beyond the tumor cell that promote cancer, such as cytokine and chemokine production [73].
For example, the loss of the p53 gene in cancer cells drives the production of WNT ligands to
release IL-1β, promoting metastasis and inflammation [71,74,75]. The net effects of pro- and
anti-inflammatory processes in the TME determine tumor outcomes [76]. The proliferative
activities of cancer cells are activated by the NF-κB signaling pathway and its downstream
components, STAT 3 and IL-6. These transcription factors are pro-inflammatory in nature
and are derived from innate immunity, shaping the phenotypes and functions of cells
within the TME.

The adaptive immune response in cancer is an important regulator of pro- and anti-
tumorigenic inflammation, in which T lymphocytes are actively involved [77]. CD8+ Tc
cells participate in acute inflammation, whereas CD4+ helper T (Th) cells participate in
acute or chronic inflammation, depending on their Th1 and Th2 lineages. Th1 cells release
the proinflammatory cytokines IL-2 and IFN-γ, contributing to the phenotypic drift of
M1 macrophages, and activate Tc cells to initiate tumor cell killing. Th2 cells release the
immunosuppressive cytokines IL-4 and IL-10 to promote M2 macrophages [78]. CD4+

CD25+ FoxP3+ Treg cells are immunosuppressive cells that promote tumor cell expansion
and inactivate DC cells and CD8+ Tc cell activity [79].

Cancer therapies that induce endoplasmic reticulum (ER) stress in cancer cells, such as
chemotherapy and photodynamic therapy, ultimately lead to the immunogenic cell death
(ICD) of tumor cells [80,81]. ICD is a process in which an adaptive immune response is
induced during cell death, thereby establishing a long-term immunological memory. ICD
is induced by genotoxic stressors such as chemotherapy, whereby cancer cells undergoing
apoptosis release DAMPs to activate ICD in surrounding cells [80]. The type of DAMP
released depends on the cell stress response and type of cancer cells, and the elicitation of
an anti-tumor response can include the activation of immune cells with anti-tumor activity,
inflammasome activation, the initiation of normal antigen presentation and processing, and
increased immune-mediated tumor cell killing [82]. While inflammation itself is paramount
to cancer regulation, the goal of treatment is to promote tumor-suppressive signals and
inhibit or dampen tumor-promoting signals while minimizing chronic inflammation.

2.4. The Role of Immune Checkpoint Inhibitors

Immune checkpoints are ligands present on immune cell surfaces that act as negative
regulators of immune cell activity to protect the host from autoimmunity. While the
signaling mechanisms are not well understood, the ligand expression is regulated by
endosomal trafficking [83]. The immune checkpoint blockade mechanism uses monoclonal
antibodies, immune checkpoint inhibitors (ICIs), to block the ligand binding between
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T cells and cancer cells. This interaction reverses immunosuppression, activating and
instructing the T cells to destroy cancer cells [84]. Programmed cell death protein 1 (PD-1)
on T cells binds to the programmed death ligand 1 (PD-L1) on cancer cells at the tumor
site, leading to T cell anergy. In the lymph nodes, cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) on T cells binds to co-receptors B7-1 or B7-2 on antigen-presenting
cells (APCs), causing T cell deactivation despite T-cell receptor activation [85–87]. The
response to immunotherapeutic drugs in cancer is largely attributed to the immunogenicity
of the tumor but may also be due to the dose or chemical, biological, or physical barriers
that prevent the ICI from engaging in direct interaction [88]. With the discovery of other
immune checkpoint ligands and targets, such as the V-domain immunoglobulin suppressor
of T-cell activation (VISTA), T cell immunoglobulin and ITIM domain (TIGIT), and T-cell
immunoglobulin and mucin domain 3 (Tim-3), new antibodies are being developed and
will eventually become available in the pharmaceutical market [89].

The TME landscape is shaped by the activation status and infiltration of CD8+ T
cells and NK cells, which, when conditions favor them, can cooperate with their effector
functions to combat mutated or malignant cells [90,91]. With the advancement of ICI
drugs over the past two decades, recent clinical trials have reported promising results in
overall patient responses and survival rates when treated with ICI monotherapy or combi-
nation therapy. Anti-PD-L1 and anti-PD-1 antibodies are now applied in the treatment of
metastatic melanoma, non-small-cell lung cancer (NSCLC), and renal cell carcinoma (RCC),
with average objective response rates of 35–40%, 20%, and 25%, respectively [92].

In breast cancer, TILs are more abundant in the TNBC tumor immune landscape than
in non-TNBC tumors, thereby making immunotherapy for TNBC a promising treatment
option [93]. Meta-analysis studies reported higher overall response rates when immune
checkpoint inhibitors were combined with other conventional drugs. Studies by Zhang
and Thomas have illustrated the increased overall survival rates in metastatic TNBC
patients receiving adjuvant treatments with pembrolizumab, atezolizumab, or avelumab,
with overall response rates ranging from 5.2% to 24% [94,95]. Although ICIs are well
tolerated by most patients, the efficacy and treatment outcomes are unpredictable due to
the complexity of tumor heterogeneity.

3. The Anti-Cancer and Adjunctive Roles of Natural Products in TNBC

The use of natural products in therapeutics was documented in ancient Egypt and
China, based on folk medicine. Medicinal plants and herbs were processed into potions,
decoctions, oils, or natural remedies to alleviate complications or treat disease [96]. Isolated
morphine and penicillin were among the earliest naturally derived drugs to be commer-
cialized [97]. In later years, the National Cancer Institute organized a large-scale screening
program that led to the development of the earliest natural-product-based anti-cancer drugs,
taxol, and camptothesin [98]. Despite its success, interest in natural-product-based drug
discovery soon waned due to the lengthy and complicated processes involved in acquiring
resources, screening, and synthesis [98]. It is estimated that over 60% of all anti-cancer drugs
are partially or wholly derived from nature [99]. Currently, natural-product-based drug
discovery is focused on a combinational approach, employing the latest technologies and
strategies to research molecular interactions, physiology, and therapeutic activities [29]. In
this review, the bioactive compounds and their functional mechanisms on TNBC are herein
described and summarized in Table 1, and the illustrative representation is summarized in
Figure 1.
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Table 1. Summary of natural product derivatives and their pharmaceutical activities on TNBC.

Class Compound Biological Functions in TNBC Ref.

Polyphenol

hesperidin

Downregulation of PD-L1 expression in TNBC
MDA-MB-231 cells [100]

Downregulation of IL-6, TNF-α, and IL-1β in Ehrlich
ascites tumor-bearing mice [101]

Suppression of EMT in 4T1-tumor-bearing mice [102]

paeonol

Inhibition of proliferation and increased apoptosis in
MDA-MB-231 cells [103]

Suppression of Epirubin-induced cardiotoxicity in 4T1
cell tumor-bearing mice [104]

naringenin

Enhancement of cryptotanshinone- or
cyclophosphamide-induced cytotoxicity and

suppression of metastasis in spontaneous mammary
tumor-bearing mice

[105,106]

Suppression of proliferation and enhancement
of immunogenicity [107,108]

Alkaloid

tetrandrine

Enhanced autophagic cell death and S-phase cell cycle
arrest in MDA-MB-231 cell line and mouse

xenograft models
[109]

Cytotoxic cell death and inhibition of metastasis in
MDA-MB-231 cell line [110]

Inhibition of EMT and cancer stemness in
MDA-MB-231 cell line [111]

matrine

Inhibition of metastasis and angiogenesis in 4T1
cell-tumor-bearing mice [112]

Promotion of autophagy and apoptosis in
MDA-MB-231, Hela, and A549 cells [113,114]

Suppression of chemotherapy-induced hepatotoxicity
in breast cancer patients [115]

Terpenoid

triptolide

Downregulation of PD-L1 expression in
MDA-MB-231 cells [116]

Enhancement of immunogenicity in
4T1-tumor-bearing mice [117]

andrographolide

Promotion of apoptosis and inhibition of metastasis
and angiogenesis of MCF-7 and MDA-MB-231 cells [118–120]

Sensitization to doxorubicin-induced cytotoxicity in
MDA-MB-231 cells [121]

Bioactive
Polysaccharide fucoidan

Promotion of apoptosis and inhibition of metastasis
and angiogenesis in MDA-MB-231 cells and inhibition

of EMT
[122,123]

Enhanced immunogenicity [124]
Downregulation of PD-L1 expression and reversal of

Olaparib-induced immunosuppression in 4T1
cell-tumor-bearing mice

[125]

lambda (λ)-_carrageenan
Inhibition of metastasis and tumor invasion and

induction of apoptosis in MDA-MB-231 cells [126–128]

Enhancement of immunogenicity and anti-cancer
immune responses in 4T1-tumor-bearing mice [129]

Saponin ginsenoside R3

Promotion of apoptosis and cell cycle arrest in
MDA-MB-231 and 4T1 cells [130,131]

Enhancement of paclitaxel-induced cytotoxicity and
reversal of paclitaxel resistance in human TNBC

cell lines
[132–134]

Enhancement of immunogenicity and
doxorubicin-induced immunogenic cell death in

4T1-tumor-bearing mice
[135]

actein
Inhibition of metastasis and angiogenesis [136,137]

Inhibition of proliferation by inducing cell cycle arrest
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3.1. Polyphenols

The classification of natural products is diverse, but most are derived from plants and
fungi as they contain high concentrations of bioactive phytonutrients. Polyphenols can
be divided into flavonoids and non-flavonoids, which differ in solubility and chemical
composition [138]. Flavonoids are found in the leaves and roots of plants and manifest
as a natural protection against plant diseases and parasites, acting as antioxidants and
anti-inflammatory agents [139].

Hesperidin, a flavanone glycoside, is abundant in the peel and flesh of citrus fruits, and
there is growing evidence that it is beneficial in cardiovascular, neurological, and psychiatric
diseases and cancer [140]. Studies suggest that its potent antioxidant effects could not only
neutralize free radicals but also provide protection against treatment-induced cardiotoxicity
and oxidative stress in tumor-bearing mice, mainly through the production of reactive
oxygen species (ROS) [141,142]. Kongtawelert et al. have also shown that hesperidin can
downregulate PD-L1 expression in the TNBC MDA-MB-231 cell line [100]. A biocompatible
drug delivery model has been developed by Sulaiman and colleagues, whereby gold
nanoparticles were bound with hesperidin to treat Ehrlich ascites tumor cell-bearing mice.
The results reported a reduction in tumor-induced proinflammatory cytokines IL-6, TNF-α,
and IL-1β, and no adverse effects or toxicity in mice has been found [101]. In addition,
hesperidin has been reported to reduce the metastatic potential of 4T1 cells aggravated by
the chemotherapeutic drug doxorubicin. The reduction of lamellipodia production and
downregulation of MMP-9 and Rac-1 protein expression in hesperidin-doxorubicin-treated
4T1 cells suggest possible inhibition or reversal of the epithelial-mesenchymal transition
(EMT) in TNBC [102].

Paeonol is a compound found in plants of the Paeoniaceae family, and the most relevant
species in therapeutic application is Paenonia suffruiticosa, commonly known as tree peony.
Paeonol possesses anti-anaphylactic, anti-inflammatory, neuroprotective, cardioprotective,
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and anti-tumor effects [143]. Human MDA-MB-231 cells treated with paeonol have shown
reduced proliferation and increased apoptotic activity compared to controls, which may be
caused by the interference with the cancer biomarker signaling of C-X-C motif chemokine
ligand (CXCL)- 4 and the C-X-C motif chemokine receptor (CXCR)3-B [103,144]. Epirubicin,
a potent chemotherapeutic drug used in the treatment of breast cancer, was found to reduce
cardiotoxicity and synergistically enhance anti-tumor responses in 4T1 cell tumor-bearing
mice when treated with Paeonol [104]. In the context of adjuvant immunotherapy, there are
no studies on the use of Paeonol in TNBC and other breast cancer subtypes; however, its
adjunctive effects in melanomas have been implicated by targeting the immune checkpoint
ligand PD-1 and regulating the microRNA miR-139-5p in thymocytes [145]. The compound
is limited by its poor solubility in water and has low bioavailability and high volatility in
normal conditions, rendering difficulty in drug delivery without modifications [146].

Naringenin, a flavanone commonly found in citrus fruits and tomatoes, has been
implicated in a wide range of biological functions. It has low toxicity and is known to
have antioxidant, antidiabetic, hypoallergenic, immunomodulatory, hypolipidemic, and
memory-enhancing mechanisms as well as anti-cancer activities [147]. It is known to
directly modulate the immune and transcriptional factors involved in acute and chronic
inflammatory conditions, including fibrosis, sepsis, diabetes, and cancer [148]. Molecular
docking and experiments have confirmed that naringenin could block the phosphory-
lation of STAT3 and subsequently inhibit the JAK2/STAT3 signaling pathway. In addi-
tion, the combination of naringenin and another natural compound, cryptotanshinone,
has been shown to enhance the Th1 immune response in mice with spontaneous breast
tumors [105,106]. Abaza et al. have shown that naringenin induces cell cycle arrest and
apoptosis in breast and colorectal cancer by decreasing cyclin-dependent kinase gene ex-
pression and increasing pro-apoptotic genes such as caspases 3, 7, 8, and 9 and Bax [107].
Several studies have demonstrated that naringenin is effective in inhibiting breast-cancer-
induced pulmonary metastasis in vivo by reducing the production of TGF-β1 via the PKC
signaling pathway [107,108,149]. The immunosuppressive effects of breast cancer were
also abrogated by the reduction of infiltrating MDSCs and Treg cells and the upregulation
of INF-γ and IL-2-releasing T cells in spleen and lung tissues [108,149].

3.2. Alkaloids

Alkaloids are a diverse group of secondary metabolites synthesized from amines in
higher plants. They are known to be toxic by nature as a means of protection against herbiv-
orous animals and pests [150,151]. They possess a wide range of therapeutic effects, leading
to their application in medicine. Examples include anesthetics and anti-inflammatory and
anti-cancer agents such as morphine and quinine [152].

The Chinese medicinal vine plant Stephania tetranda S. Moore contains a bisbenzyliso-
quinoline alkaloid named tetrandrine. Recent clinical studies have reported improved
outcomes in patients with COVID-19 and those with silicosis when treated with tetran-
drine [153,154]. Aside from its calcium-channel-blocking properties, accumulating evidence
suggests that it targets cancer-associated inflammation, induces apoptosis, and reverses
multidrug-resistant cancer cell lines [155]. In TNBC, tetrandrine has demonstrated syner-
getic anti-tumor activities with chemotherapeutic agent trivalent arsenite derivatives in
both in vitro and in vivo models of the MDA-MB-231 cell line. The key mediating pathways
involved in cancer suppression include the induction of autophagic cell death, S-phase cell
cycle arrest, cytotoxic cell death, and the inhibition of metastasis via the PI3K/Akt/mTOR
signaling pathway and upregulation of tumor suppressor PTEN [109,110]. Furthermore,
tetrandrine contributes to the suppression of EMT and cancer stemness in MDA-MB-231
cells by disrupting superoxide dismutase 1 (SOD1) signaling and increasing reactive oxy-
gen species (ROS) production [111]. ROS serves a dual function in cancer as moderate
levels may promote cancer progression and metastasis, but elevated levels could lead to
apoptosis. Despite tetrandrine demonstrating many anti-tumor activities via the direct or
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indirect induction of cancer cell death, its immunological implications in TNBC and other
cancers remain to be investigated.

Sophora flavescenes, or kushen in Chinese, is a Chinese medicinal herbal root rich in
alkaloids and flavonoids. The herb has been used to treat non-communicable and com-
municable inflammatory diseases, including neurological diseases such as Alzheimer’s
disease, cardiovascular diseases, gastrointestinal diseases, and cancer [156–158]. One of its
bioactive components, matrine, is an alkaloid used in the treatment of various cancers. In
addition to targeting apoptosis in cancer cells, other pathways include autophagy-mediated
cell death and NK-cell-mediated killing [159]. In vivo application of matrine in a TNBC
4T1-tumor-bearing mouse model has shown significant tumor regression as well as the
inhibition of metastasis and angiogenesis [112]. Several studies have demonstrated the
autophagic and apoptotic activities induced by matrine in the following human cancer
cell lines: Luminal A breast cancer (MCF-7), TNBC and ER-α-negative (MDA-MB-231),
ovarian cancer (Hela), and lung cancer (A549) cell lines [113,114]. The PI3K/Akt/mTOR,
ERK1/2, and p38 pathways were also activated, indicating that autophagy induction may
lead to apoptosis. Although autophagy can promote or suppress tumor growth and its
mechanisms are not well defined in cancer, these results were consistent with other cancer
studies using matrine, suggesting that autophagy and apoptosis are beneficial against
tumor progression and migration [160,161]. The adjuvant use of matrine in clinical trials
has been limited as matrine injections have only been tested in small clinical trials in China.
The drug has been shown to protect patients with breast cancer from the hepatotoxic effects
of chemotherapy [115]. A TCM-based injection, the compound kushen injection (CKI),
has been approved for use in China. It consists of aqueous extracts of Sophora flavescens
and Smila Glabra, containing over 200 bioactive compounds, of which the four main com-
pounds are known for their anti-cancer properties: matrine, sophocarpine, oxymatrine, and
oxysophocarpine [162,163]. CKI has been used in clinical trials as an adjunctive treatment
for cancer patients receiving chemotherapy. In non-small-cell lung cancer (NSCLC), CKI
combined with platinum-based chemotherapy improved quality of life, disease control
rates, and overall response rates compared with chemotherapy alone [164]. However,
results in breast cancer patients were mixed, with some trials reporting no change in
clinical responses, while others showed significantly higher clinical responses between
the combined treatment group and the group receiving chemotherapy alone [165,166].
Nevertheless, combination treatment resulted in improved quality of life and reduced
chemotherapy-related toxicity in these patients, which was consistent across trials.

3.3. Terpenoids

Terpenoids are the largest group of secondary metabolites synthesized by plants to
deter herbivorous animals and pests but could also serve as attractants to certain insects
for pollination. These interactions are mainly mediated by the production of volatile
organic compounds from volatile terpenes, which are used in the food and cosmetic indus-
tries [167]. Terpenoids are present in marine organisms and plants, providing many benefits
to human health through nutritional to therapeutic applications [168,169]. Some known
examples of terpenoid-based pharmaceutical drugs include artemisinin and paclitaxel,
which respectively treat malaria and cancer [170].

Diterpenes are a subgroup of terpenoids that are most abundant in plants and fungi.
Triptolide is derived from the vine Tripterygium wilfordii, Hook f., a medicinal plant used
mainly in traditional Chinese medicine (TCM). As an immunosuppressant, the drug has
been suggested to be beneficial in autoimmune diseases such as rheumatoid arthritis [171].
It has potent anti-inflammatory, cytotoxic, and anti-proliferative properties in several
cancers, including TNBC, but the most notable property is its ability to downregulate the
immune checkpoint ligand PD-L1 [116]. Triptolide has been shown to potently suppress the
expression of PD-L1 in IFN-γ-induced glioma cell lines and oral cancer patient xenograft
models [172,173]. This suggests its potential role as an adjuvant to enhance anti-cancer
immunotherapy. Despite its potency and efficacy in vitro, it is toxic and poorly absorbed
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in mammalian models [174]. To address toxicity and drug delivery issues, Luo et al.
developed a triptolide-containing thermo-responsive hydrogel for intra-tumoral delivery
to 4T1-tumor-bearing mice. The results showed reduced toxicity and increased infiltration
of memory T cells [117].

Andrographolide is a diterpenoid lactone isolated from the stem and leaves of the
Chinese medicinal herb Andrographis paniculata (Burm. f) Wall. ex Nees. This compound
has a broad range of pharmacological activities against inflammatory diseases, especially
neurological disorders such as Parkinson’s disease, Alzheimer’s disease, multiple sclerosis,
and cardiovascular diseases [175,176]. Its anti-cancer properties have been implicated
in several cancers, including breast, ovarian, and esophageal cancers [177,178]. In the
human breast cancer cell lines MCF-7 and MDA-MB-231, treatment with andrographolide
has been shown to reduce proliferation by deactivating the ER-α receptor in MCF-7 cells
and activating the apoptosis pathway in MDA-MB-231. This suppresses the downstream
PI3K/Akt/mTOR and NF-κB pathways, as well as matrix metalloproteinase (MMP)-9
secretion, resulting in apoptosis and the inhibition of metastasis and angiogenesis [118–120].
Also, andrographolide has been shown to sensitize TNBC cells to doxorubicin via the
downregulation of IL-6-mediated STAT3 phosphorylation, resulting in enhanced cancer
cell cytotoxicity [121].

3.4. Bioactive Polysaccharides

Polysaccharides are macromolecules composed of glycoside-linked monosaccharide
subunits found in most plants, fungi, bacteria, and marine algae. Bioactive polysaccha-
rides are synthesized and utilized by living organisms for biological functions and have
therapeutic or pathogenic applications [179]. These bioactive compounds are generally
non-toxic and offer many benefits to human health, in particular, the regulation of the
gastrointestinal tract, which facilitates the production of fermentation by-products and the
dilution of toxins. This is important in the prevention of chronic inflammatory diseases
and immune dysfunction [180,181].

Cladosiphon okamuranus is a type of brown algae seaweed found in East Asia and is part
of the Asian diet as a rich source of fiber. It contains fucoidan, a sulfated polysaccharide
known for its anti-cancer and antioxidant activities against various solid cancers [182].
Some of its effector functions in cancer include the induction of apoptosis and suppres-
sion of angiogenesis and metastasis. This was demonstrated by the inhibition of the
Akt/MAPK/PI3K signaling pathway and its downstream transcription factors, NF-κB and
AP-1, in the human TNBC MDA-MB-231 cell line [122]. Another study has reported the
arrest or reversal of the EMT in the MDA-MB-231 and 4T1 cell lines, degradation of the
transforming growth factor receptor II (TGFRII) in MDA-MB-231 cells, and suppression of
lung metastasis in 4T1 cell line tumor-bearing mice [123]. Fucoidan nanoparticles and oral
supplements have been developed to enhance drug delivery for both in vitro and in vivo
models in its adjuvant application. Fucoidan containing a cationic polyethyleneimine
structure carrying doxorubicin has been demonstrated to enhance the cytotoxic effects of
doxorubicin in 4T1 cell tumor-bearing mice, which is regulated by the manipulation of
the tumor immune landscape, shifting from M2 to M1 TAM phenotype polarization and
increased Th1 immune response [124]. Another study used oligo-fucoidan aqueous extract
supplements, a low-molecular-weight Fucoidan, and illustrated the enhanced effect of
the chemotherapeutic drug olaparib on a 4T1 tumor cell line tumor-bearing mouse model
by suppressing the production of inflammatory IL-6, phosphorylated epidermal growth
factor receptor (p-EFGR), and PD-L1. Fucoidan also attenuated the immunosuppressive
effects of olaparib by reducing the Treg cell population and M2 macrophages in tumors,
leading to increased tumor immunogenicity and preventing cancer recurrence in mice after
surgery [125].

Carrageenan oligomers are oligosaccharides derived from rodophyceae or red algae
seaweed. There are three main types of carrageenan oligomers: kappa(κ), iota(ι), and lambda
(λ), with λ-carrageenan oligosaccharides having the highest degree of sulfation [183,184].
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These oligosaccharides are commonly used as texture enhancers in the food industry
because of their gel formation abilities but are also relevant in neutraceutical research as
they possess antiglycemic, immunomodulatory, and prebiotic properties [185]. Studies
in cancer have shown that λ-carrageenan suppresses metastasis and heparinase activities
and induces apoptosis in the human MDA-MB-231 cell line, actively inhibiting tumor
invasion [126–128]. λ-Carrageenan when administered by intratumoral injection has been
demonstrated to significantly reduce tumor growth and promote the infiltration of CD11c+

dendritic cells and F4/80low M1 macrophages into the tumor. It also enhanced anti-cancer
immune responses when treated as an adjuvant to an OVA-based prophylactic cancer
vaccine in both B16-F10 melanoma mouse models and 4T1 mouse TNBC models [129].

3.5. Saponins

Saponins occur naturally in the form of triterpenoid glycosides or steroids and play a
role in plant defense systems against fungal and bacterial infections and mollusk infesta-
tions [186]. There are many structural variations of saponins, but one common feature is
their amphipathic nature that allows for foam formation [187]. It is, therefore, widely used
in the chemical, cosmetic, agricultural, and pharmaceutical industries. Their biological
functions include complex formation with cholesterol, permeabilization of cell membranes,
the induction of cell death, and the regulation of signaling processes [188].

The renowned medicinal root used in East Asian traditional herbal medicine, Panax
ginseng C.A. Meyer, more commonly referred to as Korean ginseng, has been used to treat
common ailments such as fatigue and physical weakness [189]. Panax ginseng contains the
bioactive component ginsenosides, a group of saponins with immunostimulatory, neuropro-
tective, and anti-inflammatory activities. Ginsenoside Rg3, which is abundant in the roots
of Korean red ginseng, has been well-studied in the literature for both chemopreventive and
anti-cancer activities [190,191]. It has been shown to inhibit the NF-κB signaling pathway
and induce mitochondrial-mediated apoptosis and cell cycle arrest in breast cancer cell lines
MDA-MB-231 and 4T1 [130,131]. Rg3 can perform dual functions when human TNBC cells
were treated in combination with the chemotherapeutic drug paclitaxel. Rg3 demonstrated
the enhancement of paclitaxel-induced apoptosis in MDA-MB-231, MDA-MB-453, and
BT-549 cell lines. Also, Rg3 reversed chemoresistance in the modified MDA-MB-231 cell line
(MB231-PR cells) with paclitaxel resistance [132–134]. Regarding the chemical properties
of ginsenosides, they are insoluble in water and poorly soluble in the gut. Nevertheless,
modern techniques in drug delivery systems have been developed to increase permeability
and targeting, thus potentiating its application as an adjunctive treatment for cancer [192].
For example, liposome or nanoparticle packaging for ginsenosides is currently being devel-
oped to ensure that bioavailability, efficiency, and toxicity are not compromised [193,194].
Studies on the application of ginsenosides in chemoimmunotherapy and nanotechnology
are increasing, whereby ginsenoside-chitosan hydrogel-encapsulated doxorubicin could
enhance ICD effects on 4T1-tumor-bearing mice and increased memory T cell infiltration
into the TME [135].

The genus Cimicifuga, which includes Cimicifuga foetida, Cimicifuga dahurica, and Cimi-
cifuga racemosa (L) Nutt. are medicinal plants used in East Asia and North America to
relieve inflammatory conditions such as sore throats, viral infections, and complications of
gynecological disorders [195,196]. The bioactive triterpenoid glycoside, actein, found in
the rhizomes of Cimicifuga plants, has been shown to exert anti-cancer and anti-HIV activi-
ties [197]. In TNBC, Wu et al. and Yue et al. have demonstrated that actein can potently
inhibit metastasis in an MDA-MB-231 human breast cancer zebrafish xenograft model and
4T1 tumor mouse model. Other effector functions of actein include the deactivation of the
Akt, NFkB, and JNK/ERK signaling pathways and the downregulation of EGFR expression
in the MDA-MB-231 cell line [136,137]. In a recent study, new variants and derivatives
of actein have been successfully synthesized by its incorporation into pharmacophores,
resulting in increased potency and the better delivery of anti-proliferative activities in
human TNBC cell lines compared to actein itself [198]. These findings suggest that the
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novel compound and its derivatives may be promising candidates for adjuvant cancer
therapy, although research on its synergistic effects and immunomodulatory mechanisms
is lacking.

4. Discussion

The potential benefits of natural products are not limited to adjunctive therapeutics
but also have nutraceutical and pharmacological applications, depending on their efficacy
and toxicity profiles. Although there is a lack of clinical trials on the use of natural products
as adjuvants to immunotherapy, also known as phyto-immunotherapy, it is a promising
area of research for the discovery of alternative methods to improve cancer therapy [199].
Studies and clinical trials of natural-product-based chemotherapy are gaining traction,
potentially offering a safer and more effective approach to treatments.

The main pathways in which natural products are involved against inflammatory
diseases include the induction of programmed cell death, suppression of chronic inflam-
mation, and modulation of gut immunity [200]. The gut microbiota is an essential part of
immune regulation, with natural-product-derived drugs and supplements playing signif-
icant roles in shaping the microbiome. This also ensures that cancer-treatment-induced
dysbiosis can be restored by enriching beneficial bacteria and depleting harmful ones [201].
Chemotherapy drugs can interfere with normal gastrointestinal functions and reduce
healthy gut microbiota, which may compromise the overall treatment efficacy or promote
drug resistance [202]. From the perspective of Western medicine, manipulation of the gut
microbiota is achieved through direct interventions, including probiotics, neutraceuticals,
antibiotics, and fecal transplants [203]. In contrast, TCM herbal formulas are based on
holistic treatments that use crude herbal extracts to influence systemic immunity. In ad-
junctive cancer treatment, TCM could alleviate conventional-treatment-induced toxicity
and improve the well-being of patients. However, while they are crude extracts rich in
phytonutrients, their mechanisms of action are imprecise and difficult to elucidate, and
the methods are limited to a holistic level [204]. As a result, drug discovery, whether from
natural or synthetic sources, is heavily reliant on mechanistic studies to research targeted
treatments. The study of adjunctive phytoimmunotherapy to investigate synergistic anti-
cancer and immunomodulatory activities may forge a connection between these distinctive
treatment approaches.

A major obstacle to the application of bioactive compounds is ensuring specificity in
targeting tumor-mediated inflammation. Since cancer is a disease of chronic inflammation,
and inflammation is highly context-dependent in terms of net pro- or anti-tumorigenic
effects, natural products, despite their anti-inflammatory potential, may not be sufficient to
offset the pro-tumorigenic setting in the TME. Bioactive compounds from natural sources
are promising adjunctive candidates to provide immunological support to TNBC patients
undergoing immunotherapy. It is noteworthy that despite the observation of positive
results from natural products, most compounds would not be translatable into clinical
trials. The pharmacokinetics, stereochemistry, and bioavailability of the compounds are
of fundamental importance for successful drug delivery as the chemical composition and
shape of the bioactive molecule can influence downstream signaling mechanisms [205].
Also, the same natural products purified and obtained from different plant species or plant
structures are likely to differ significantly in bioactivity and potency.

If the natural bioactive compounds are approved and commercialized, there will
be major drawbacks in large-scale cultivation and production to fulfill demands, one of
which is the potential environmental implications of disrupting the biological diversity of
the sources as the acquisition, isolation, and synthesis of some compounds require large
quantities of resources [206]. Therefore, it is essential to ensure a stable resource supply
with minimal environmental impact, should the product be popularized. The notion that
TNBC tumors may exhibit intertumoral and intratumoral heterogeneity, particularly of
different subtypes, raises questions about the efficacy of natural products, despite their
ability to target multiple pathways simultaneously. For example, they may be effective in
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some subtypes but resistant in other subtypes within the same tumor. Another concern over
adjunctive immunotherapy is treatment durability. Since chronic and acute inflammation
often occurs simultaneously during immunogenic cell stress, the downstream signaling
effects can lead to three outcomes: tolerogenic cell death, immunomodulation, or ICD [207].
The induction of ICD is a reliable indicator of treatment success and tumor elimination as it
provides a long-term immunological memory to prevent future cancer relapse. All three
processes are required for the successful execution of ICD: the activation of premortem stress
and programmed cell death, expression of ICD-related immunomodulatory biomarkers,
and immunomodulatory biomarker-mediated activation of acquired immunity [208]. It
is uncertain whether immunological stimulation by natural compounds is sufficient to
activate ICD and provide consistent and favorable outcomes.

Future technology may incorporate natural products into better drug delivery systems,
such as the use of nanoparticles and controlled dosing modalities. Molecular docking and
pharmacological networking could be used to facilitate the screening and biocompatibility
testing of potential compound candidates. A growing number of studies have successfully
applied and tested natural products with engineered biomaterials, which have made
outstanding contributions to pharmaceutical research. As modern integrative medicine
evolves and influences treatment efficacy, modulating gut microbiota, systemic immunity,
and TME is a key target for successful cancer treatment.

5. Conclusions and Future Directions

In conclusion, there are many advantages of using natural products to sensitize im-
munotherapeutic drugs in combating TNBC and improving the overall quality of life.
Cancer is a complex disease with an unpredictable and ever-changing microenvironment,
with the capability to adapt to substances. However, in the era of technological advance-
ments, new research platforms can be developed to investigate pharmaceutical profiles.
In our current understanding of tumor immunology, molecular signatures differ between
tumors and individuals, and the latest treatment options are not tailored to each patient.
It is, therefore, imperative to develop safe, effective, and versatile therapies that provide
long-term benefits to systemic immune regulation to minimize the risk of cancer recurrence
and improve health outcomes. Novel interventions and modalities are constantly being
developed. It is proposed that future cancer therapies will include testing immunotherapy
drugs in combination with a cocktail of various natural products. This not only provides
insights into drug interactions and mechanisms but also offers the possibility of discover-
ing novel bioactive compounds from unconventional sources, such as marine organisms,
insects, and bacteria. Currently, immunotherapy alone is insufficient to reduce the tumor
burden or provide long-term immunological benefits in most TNBC patients.
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