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Abstract: This review presents a strategy for obtaining various functional derivatives of tetrapyrrole
compounds based on transformations of unsaturated carbon-oxygen and carbon-carbon bonds of
the substituents at the meso position (meso-formyl, vinyl, and ethynyl porphyrins). First, synthetic
approaches to the preparation of these precursors are described. Then diverse pathways for the
transformations of the multipotent synthons are discussed, revealing a variety of products of such
reactions. The structures, electronic, and optical properties of the compounds obtained by the
methods under consideration are analyzed. In addition, there is an overview of the applications
of the products obtained. Biomedical use of the compounds is among the most important. Finally,
the advantages of using the reviewed synthetic strategy to obtain dyes with targeted properties
are highlighted.

Keywords: meso-functionalized porphyrin; meso-formylporphyrin; meso- vinylporphyrin; meso-
ethynylporphyrin; porphyrin synthon; Vilsmeier–Haack formylation; wittig reaction; schiff base;
Heck reaction; Sonogashira reaction; Glaiser coupling

1. Introduction

The production of porphyrin materials with target-specific structures is based on
various methodologies, differing in that natural or synthetic porphyrins are used. Naturally
derived porphyrins are substituted at β-pyrrolic position and usually with free-from sub-
stitution meso-carbons. The synthetic porphyrin core can be easily obtained by tetrapyrrole
condensation, and the most popular way is condensation of easily available unsubstituted
pyrrole with aldehydes to give meso-substituted porphyrins [1]. Thus, two main alterna-
tive porphyrin types are used as starting materials in synthesis: (1) β-substituted-meso-
unsubstituted; and (2) β-unsubsituted-meso-substituted (Figure 1). Most of the synthetically
obtained porphyrins are meso-arylporphyrins, like meso-tetraphenylporphyrin (TPP) and
meso-diphenylporphyrin (DPP). The most popular synthetic porphyrin resembling natural
porphyrins is β-octaethylporphyrin (OEP). The starting basic tetrapyrroles then need to
be functionalized to impart the required properties to the porphyrin molecule [2–4]. The
tetrapyrrolic macrocycle can be functionalized by a variety of methods, among which
formylation is especially prolific due to the well-developed, very efficient, and easy-to-use
formylation methods [5]. The advantage of this functionalization methodology is based on
the fact that the aldehyde group is rich in the possibilities of further transformations leading
to the addition of functional fragments. The vinyl group is also useful for further function-
alizations, and it can be obtained by the Wittig reaction of the formyl-substituted substrate.
The acetylenyl group is among the most commonly used for making multichromophore
molecules due to its rich coupling possibilities. Thus, formyl, vinyl, and ethynyl groups are
magic functions that lead to a variety of products from further transformations, including
conversions between them (formyl <=> ethenyl <=> ethynyl). The products obtained
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through the transformations of these three main synthons are used in a wide variety of
applications, including optical sensors [6] and photosensitizers [7–9]. The role of β-formyl
and β-vinyl-porphyrins in the synthesis of various porphyrin derivatives was summarized
in the review [10]. The β-position is more easily accessible to reagents compared to the
meso position, and there were a wide variety of products synthesized from β-formyl and
β-vinyl-porphyrins. The meso position is sterically hindered by the neighboring β-carbon
atoms and their substituents, so the reactions of meso groups proceed harder. This obstacle
is responsible for fewer reported works dealing with meso versus β functionalizations
and transformations. However, the meso-substitution affects the electronic system and
spectral properties of the tetrapyrrole macrocycle more strongly. Particularly, the meso
push-pull substituted porphyrins are the most efficient organic photosensitizers for dye-
sensitized solar cells (DSSC) [11]. Thus, it is important to develop meso functionalization
and transformation methodologies, and the formyl, vinyl, and ethynyl groups present
excellent opportunities for primary functionalization and further transformations at the
meso position.
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2. Meso-Formylporphyrins

Insertion of the formyl group into porphyrins is a primary functionalization of the
tetrapyrrole ring, opening opportunities for further transformations including, but not
limited to, Wittig [12–14], Grignard [14–16], McMurry [17], cycloaddition [18], Knoeve-
nagel [19] reactions, and Schiff bases preparation [20]. Ponomarev made a considerable
contribution to the chemistry of formylporphyrins and published a corresponding review
about 30 years ago, summarizing works reported up to that date [5].

2.1. Preparation of Meso-Formylporphyrins

One of the strategies for the preparation of functionalized porphyrins is the utilization
of the correspondingly functionalized precursors in the synthesis of the porphyrin core.
The formyl group is actively involved in the condensation reaction during tetrapyrrole ring
construction, and it needs to be protected. Formylporphyrins were obtained by the usual
macrocyclization route to the porphyrins from the masked formyl-containing precursors:
2-formyl-1,3-dithiolane was converted to 5-(1,3-dithian-2-yl)dipyrromethane and mixed
MacDonald [2 + 2] condensation with 5-mesytyldipyrromethane and p-tolualdehyde led to
5-(1,3-dithian-2-yl)-15-mesytyl-10,20-di(4-tolyl)porphyrin 1 which gave the corresponding
5-formyl-15-mesytyl-10,20-di(4-tolyl)porphyrin 2 after deprotection with DDQ/BF3(OEt2)
(Scheme 1) [21].

Similar methods of preparation of formylporphyrins from 1,3-dithiane were proposed
by Lindsey [22] and Senge [23]. These methods open opportunities for obtaining 5-, 5,10-,
5,15-, 5,10,15,20-thianyl substituted porphyrins (Scheme 2), which can easily be deprotected
to the corresponding formylporphyrins with quantitative yield.
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The insertion of the formyl group into the already assembled tetrapyrrole macrocycle
can be realized both by electrophilic and nucleophilic substitution reactions.
1,3-dithiolane as an umpolung formyl synthon, developed by Seebach and Corey [24],
was used to insert formyl via nucleophilic addition of the corresponding lithium salt to the
porphyrin. Senge investigated the reaction of the addition of 1,3-dithiane, deprotonated
with n-butyllithium, in the presence of N,N,N,N-tetramethylethylenediamine (TMEDA),
to porphyrins [23]. The products of the nucleophilic addition of the 1,3-dithianyl anion to
the 5,15-diphenylporphyrin (DPP) 3, 5,15,20-triphenylporphyrin (TrPP) 4, and their nickel
complexes (3Ni and 4Ni) were protonated, and the corresponding porphyrinogens were
oxidized with DDQ. Subsequent deprotection of the formyl group was carried out with
DDQ but in the presence of BF3 etherate to give the corresponding meso-formyl DPP and
TrPP derivatives 5 and 6 (Scheme 3). However, low yields and functional group intolerance
of the method limit its use.



Molecules 2023, 28, 5782 4 of 39Molecules 2023, 28, x FOR PEER REVIEW 4 of 41 
 

 

 
Scheme 3. Synthesis of meso-formylporphyrins via nucleophilic addition. 

Takanami developed a more efficient and functional group-tolerant method of nu-
cleophilic formyl group insertion using 2-(trimethylsilyl)pyridine. The reaction proceeded 
via nucleophilic addition of (2-pyridylmethylsilyl)lithium to DPP 3, followed by protona-
tion of the intermediate anion and oxidation of the porphyrinogen back to the aromatic 
porphyrin ring to give DPP-CHO 5 (Scheme 4) [25,26]. It should be noted that mild oxida-
tion of the meso-silyl porphyrinogen by air led to the meso-(hydroxymethyl)porphyrins 7 
[27]. 

NNH

N HN
Ph Ph

NNH

N HN
Ph Ph

OH

NNH
C

N HN
Ph Ph

NNH

N HN
Ph Ph

N Si
Li

2. HCl
3. DDQ

H

H

Protonation

H H

H

Oxidation

1.

2. Oxidation

NNH

N HN
Ph Ph

FG

OH

FG-X = RC(O)-Cl, ROC(O)-Cl

1. FG-X

AdN

DPP
DPP-CHO

3 5 (91%)

8

ORN=C=O,

NNH

N HN
Ph Ph

OH
DPP-CH2OH

7

HCl

N
Si

Li
DDQ O2(air)

oxidation

SiMe2Py SiMe2Py

 
Scheme 4. Formylation with (2-pyridylmethylsilyl)lithium. 
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Takanami developed a more efficient and functional group-tolerant method of nucle-
ophilic formyl group insertion using 2-(trimethylsilyl)pyridine. The reaction proceeded via
nucleophilic addition of (2-pyridylmethylsilyl)lithium to DPP 3, followed by protonation of
the intermediate anion and oxidation of the porphyrinogen back to the aromatic porphyrin
ring to give DPP-CHO 5 (Scheme 4) [25,26]. It should be noted that mild oxidation of the
meso-silyl porphyrinogen by air led to the meso-(hydroxymethyl)porphyrins 7 [27].

Molecules 2023, 28, x FOR PEER REVIEW 4 of 41 
 

 

 
Scheme 3. Synthesis of meso-formylporphyrins via nucleophilic addition. 

Takanami developed a more efficient and functional group-tolerant method of nu-
cleophilic formyl group insertion using 2-(trimethylsilyl)pyridine. The reaction proceeded 
via nucleophilic addition of (2-pyridylmethylsilyl)lithium to DPP 3, followed by protona-
tion of the intermediate anion and oxidation of the porphyrinogen back to the aromatic 
porphyrin ring to give DPP-CHO 5 (Scheme 4) [25,26]. It should be noted that mild oxida-
tion of the meso-silyl porphyrinogen by air led to the meso-(hydroxymethyl)porphyrins 7 
[27]. 

NNH

N HN
Ph Ph

NNH

N HN
Ph Ph

OH

NNH
C

N HN
Ph Ph

NNH

N HN
Ph Ph

N Si
Li

2. HCl
3. DDQ

H

H

Protonation

H H

H

Oxidation

1.

2. Oxidation

NNH

N HN
Ph Ph

FG

OH

FG-X = RC(O)-Cl, ROC(O)-Cl

1. FG-X

AdN

DPP
DPP-CHO

3 5 (91%)

8

ORN=C=O,

NNH

N HN
Ph Ph

OH
DPP-CH2OH

7

HCl

N
Si

Li
DDQ O2(air)

oxidation

SiMe2Py SiMe2Py

 
Scheme 4. Formylation with (2-pyridylmethylsilyl)lithium. 

The reaction proceeds under mild conditions, and it is applicable to aryl- and alkyl-
substituted porphyrins as well as their metal complexes. In addition to monoformyl de-
rivatives, this method makes it possible to obtain diformyl derivatives, as well as more 
complex aldehydes with high yields. To confirm the mechanism, reactions were carried 
out with the addition of various electrophiles, such as acyl chloride, methyl chloroformate, 
isocyanates, and enones, resulting in the corresponding formyl derivatives 8, variously 
substituted at the opposite formyl meso position [28].  

Osuka obtained porphyrin Grignard reagents for the first time using metal-iodine 
exchange between meso-iodoporphyrins and iPrMgCl. The utilization of the meso-magne-
siumporphyrins in reaction with DMF led to the formation of the meso-formyl derivatives 
(Scheme 5) [29]. 

Scheme 4. Formylation with (2-pyridylmethylsilyl)lithium.

The reaction proceeds under mild conditions, and it is applicable to aryl- and alkyl-
substituted porphyrins as well as their metal complexes. In addition to monoformyl
derivatives, this method makes it possible to obtain diformyl derivatives, as well as more
complex aldehydes with high yields. To confirm the mechanism, reactions were carried
out with the addition of various electrophiles, such as acyl chloride, methyl chloroformate,
isocyanates, and enones, resulting in the corresponding formyl derivatives 8, variously
substituted at the opposite formyl meso position [28].

Osuka obtained porphyrin Grignard reagents for the first time using metal-iodine ex-
change between meso-iodoporphyrins and iPrMgCl. The utilization of the meso-magnesium-
porphyrins in reaction with DMF led to the formation of the meso-formyl derivatives
(Scheme 5) [29].

Reactions of electrophilic substitution have found the greatest application in the
chemistry of porphyrins as electron-rich aromatics. More reactive meso positions are usually
attacked by electrophiles. The electrophilic formylation can easily be performed using
the Vilsmeier–Haack reaction. The synthesis of meso-formyl-β-octaalkylporphyrins using
Vilsmeier–Haack formylation was first reported more than half a century ago [30,31]. To
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date, this reaction has become one of the most popular and efficient for obtaining meso-
formylporphyrins.
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Porphyrin metal complexes resistant to HCl, released during the reaction, are sub-
strates for formylate. It is known that the rate of formylation decreases with increasing
electron acceptor ability of the metal cation in the series M(II) > M(III) > M(IV) and among
M(II) in the series Ni(II) > Cu(II) > Pd(II) > Pt(II). Of the numerous variants of the reaction,
the Vilsmeier reagent made from DMF/POCl3 is usually used in porphyrin chemistry.
The mechanism of the reaction is as follows: at the first stage, the electrophilic Vilsmeier
reagent attacks the nucleophilic meso position of porphyrin, resulting in the formation of
the iminium salt, which is the so-called “phosphorus complex”. Subsequent treatment of
the phosphorus complex with water leads to the hydrolysis of the iminium salt, resulting
in the formation of formylporphyrin (Scheme 6).
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2.2. Reactions of Meso-Formylporphyrins with Nitrogen Nucleophiles

Ponomarev investigated the Vilsmeier–Haack formylation of a number of Cu(II), Ni(II),
and Pd(II) complexes of β-octaalkylporphyrins and chlorins and the subsequent trans-
formations of the meso-formyl derivatives [5,32]. As an electrophile, the formyl group
can react with a variety of nucleophiles, including organometallic reagents, CH-acids,
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heteroatom nucleophiles (amines, thiols), electron-rich aromatic cycles, and heterocycles.
The reaction of formylporphyrins with amines leads to azomethines or Schiff bases, and
the corresponding studies up to the mid-1990s were summarized in the review of Pono-
marev [20]. Meso-formyl porphyrins react with amines to give the corresponding imines;
hydroxylamines give oximes; and hydrazines produce hydrazones. The Vilsmeier–Haack
formylation of β-octaalkylporphyrin 13 produces the stable phosphorus complex 14 due to
the sterical hindrances retarding hydrolysis of the complex. Ponomarev isolated phospho-
rus complexes of various porphyrins and used them instead of formylporphyrins for the
preparation of Schiff bases [20]. The iminium group of the phosphorus complex is more
active to nucleophilic attack compared to the formyl group. Azomethine derivatives of
nickel and palladium complexes of various porphyrinoids, including OEP, tetraalkyl esters
of coproporphyrins I and II, mesoporphyrin IX, and mesochlorin e6, were obtained by
direct interaction of “phosphorus complexes” with amines (Scheme 7) [33–35].
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Scheme 7. Preparation of azomethine derivatives of metal complexes of OEP (MOEP) from the
intermediate phosphorus complex obtained from formylation of MOEP.

Azomethine substitution at the meso position noticeably shifts the UV-Vis absorption
spectra of porphyrins to long wavelengths, thus making their metal complexes potential
photosensitizers [34]. Schiff bases also impart basic properties to the porphyrins, and the
corresponding Pt(II) and Pd(II) complexes of azomethine derivatives of OEP and tetram-
ethyl coproporphyrin I were investigated as sensor dyes for measuring proton and oxygen
concentrations using an optical noninvasive method [36,37]. The corresponding phos-
phorescent probe, based on the Pt(II) complex of meso-(N-methylimino)-OEP for cellular
diagnostics using dual oxygen and pH measurements in living cells, has been reported [38].

The imino group, which can be obtained by interacting the formyl group with
an amine, was used as a linker to bond two tetrapyrrole chromophores into a dyad.
The interaction of Zn(II) complexes of meso-formyltriphenylporphyrin 6Zn and meso-
aminotriphenylporphyrin 17, catalyzed by Lewis acid ZnBr2, led to the corresponding
dimer of TrPP 18 (Scheme 8) [39]. The TrPP macrocycles are not coplanar in dimer 18 and
consequently not conjugated. Nevertheless, there is some interchromophore communica-
tion, and dimer 18 features increased two-photon absorption, which can be used in PDT,
providing deeper and more targeted treatment [40].
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Schiff bases are useful synthons, as they can be subjected to further transformations.
Elimination of meso-oximes led to meso-cyanoporphyrins [41]. Intramolecular cyclization
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was observed when meso-oxime 19Zn was vigorously stirred for a few hours in methy-
lene chloride with a small amount of water. The probable intermediate chlorin with the
fused 1,2-oxazin ring underwent hydroxylation via a peroxide mechanism to form stable
hydroxychlorin 20Zn. The use of an oxidant, lead tetraacetate, gave the product the same
fused 1,2-oxazin but with a vinyl group instead of ethyl and hydroxyl (Scheme 9) [42,43].
Apparently, the difference between products 20 and 21 is in the water molecule, which
was probably eliminated in the case of 21. The UV-Vis spectra of the 1,2-oxazin annulated
porphyrinoids 20 and 21 possess strong absorption bands in the red region.
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Treatment of the Ni(II) complex of meso-(N-methylimino)-OEP 15Ni with t-BuOK led
to the formation of the corresponding meso-nitrile 22, meso-amide 23, and meso-hydroxy 24
derivatives (Scheme 10). The latter was demetalated with sulfuric acid, resulting in phlorin
25 with strong light absorption in the region of 700 nm [35].
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Scheme 10. Treatment of the N-methylimine derivative of NiOEP with tBuOK.

Thermolysis of meso-alkylimines of β-substituted metal porphyrins led to the for-
mation of cyclopentane-fused derivatives (Scheme 11) [44–46]. The meso-imines of the
tetraalkyl ester of coproporphyrin I (26 and 27) were transformed into a mixture of cy-
clopentane and cyclopentane-lactam bicycle fused derivatives (28–30) [35].
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Scheme 11. Preparation of cyclopentane-annelated derivatives of coproporphyrins.

Meso-hydrazones of nickel and palladium complexes of OEP and coproporphyrin
I ethyl esters were obtained as a mixture of E- and Z-isomers by the reaction of the cor-
responding meso-formyl derivatives with hydrazines catalyzed by trifluoroacetic acid
(Scheme 12) [47].
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Scheme 12. Synthesis of hydrazones of metal complexes of OEP and coproporphyrin I.

N-tosylhydrazones 31 and 33 reacted with bases, generating an in situ porphyrin
derivative of diazomethane, which released nitrogen molecules to give meso-carbene deriva-
tives of porphyrins. Subsequent intramolecular insertion of the carbene into the CH bond
of the neighboring β-substituent led to the corresponding fused cyclopentane (32 and
34) [48]. The cyclopentane fused products obtained were the same as in the thermolysis
of azomethine 26; however, the second product in the carbene-based reaction of 33 was
cyclohexane fused product 35 instead of bicyclic lactam 29 obtained in the thermolysis
of azomethine 26 [35], and yields of the products in the carbene-based cyclization were
appreciably higher compared to the thermolysis (Scheme 13).

Unsubstituted meso-hydrazones of OEP 36 and also β-octaethylchlorin (OEC) were
used in the preparation of dyads 37 and 38 bridged with the azine group [49]. Derivatives of
the natural chlorins, methyl pyropheophorbide-a (PPPa) and methyl pyropheophorbide-d
(PPPd), reacted with the meso-hydrazones of OEP and OEC, leading to the formation of
the corresponding porphyrin-chlorin and chlorin-chlorin dyads (Scheme 14) [49]. Upon
irradiation of the dyads, the energy of the excited state was efficiently transferred from
the OEP (OEC) components to the pyropheophorbide chromophore. However, the chro-
mophores weakly interacted in the ground state; therefore, the azine group was regarded
as a conjugation switch, usually in the off state but capable of being turned on with a
sufficiently strong driving force.
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Scheme 14. Synthesis of dyads linked by the azine bridge.

One-pot meso-formylation, hydrazone, and azine formation were performed for meso-
(trifluoroacetamido)-OEP 39 [50]. Under the conditions of formylation, the amide group was
unexpectedly partially oxidized to form hydroxamic acid 42 (Scheme 15). The combined
influence of trifluoroacetamide and arylazine groups in the products 41–43 led to strongly
increased absorption near 500 nm and considerably red-shifted Q-bands up to 650 nm.
Azine-bridged porphyrin-chlorin dyad 44 was obtained from meso-(trifluoroacetamido)-
OEP 40a and PPPd (Scheme 15). The dyad features substantial growth in the Q-band
intensity as well as a red-shifting Soret band compared to the similar dyad without the
trifluoroacetamido substituent.

The meso-formyl group of porphyrins can be transformed to azomethine ylide by
interaction with N-methylglycine. 1,3-dipolar cycloaddition of the intermediate azome-
thine ylide to the double bond leads to porphyrins with meso-fused heterocycles. The
porphyrin—fullerene conjugate 46 was obtained this way from meso-formyltriarylporphyrin
45, N-methylglycine, and C60 fullerene (Scheme 16) [18]. The irradiation of the dyad led to
the formation of the exciplex due to the strong interaction between the porphyrin and C60
chromophores at short distances.
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Scheme 16. Synthesis of meso-linked porphyrin—fullerene conjugate.

Porphyrins functionalized with meso-fused 2-imidazolyl heterocycles were synthesized
from the 5-formyl-10,20-diarylporphyrins and phenanthrene- or phenanthroline-5,6-dione
in the presence of ammonium acetate (Scheme 17) [51]. The ruthenium phenanthroline
complex of the free base porphyrin-imidazo[4,5-f]phenanthroline conjugate showed good
binding ability to DNA and was capable of DNA photocleavage, which allows us to regard
the complex as a potential photosensitizer for PDT [52].
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2.3. Reactions of Meso-Formylporphyrins with Miscellaneous Nucleophiles

A family of push-pull quinoidal porphyrins was obtained from a meso-formyl porphyrin
48 through the attachment of 1,3-dithiolane (benzo-1,3-dithiolane) and malononitrile frag-
ments at the opposite meso positions of the 5,15-diarylporphyrin (Scheme 18) [53].
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Directly linked porphyrin-corrole dyads 52a–c were formed during condensation
of the meso-formyltriarylporphyrin 51 with dipyrromethane (Scheme 19) [54]. A similar
corrole-porphyrin-corrole triad was obtained when the 5,15-bisformylporphyrin was placed
into the reaction. The strong exciton coupling between closely placed chromophores and
reversible energy transfer were shown to exist in the dyad [55]. Directly meso-meso-linked
porphyrin dimers and oligomers were obtained using condensation of meso-formylated
porphyrins with pyrrole [21]. Such porphyrin dimers and oligomers were shown to act as
prospective photosensitizers [56].
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2.4. Reactions of Meso-Formylporphyrins with Organometallic Reagents

Among organometallic reagents, Grignard reagents were usually employed in the
reactions for meso-formylporphyrins. Alkyllithium reagents gave the expected products of
addition to the carbonyl group only with less hindered β-formyl derivatives [15]. Grignard
reagents interact with meso-formylporphyrins, leading to the formation of the correspond-
ing secondary alcohols, but due to steric factors and perhaps other causes, this reaction
proceeds somewhat slowly. Especially retarding is the presence of β-alkyl substituents. For
example, Ponomarev reported the formation of the Mg complex of the formylporphyrin
without significant formation of the target meso-(1-hydroxyethyl)-OEP upon treatment
of meso-formyl-OEP (OEP-CHO) with MeMgI under heating [57]. Smith carried out a
similar reaction with a free base of OEP-CHO and a Zn(II) complex of OEP-CHO (ZnOEP-
CHO), which resulted in 15-alkylated products, and the formyl group remained intact
(Scheme 20) [58]. However, when Johnson and Arnold used the Ni(II) complex of OEP-
CHO in the same reaction, Ni(II) 5-(1-hydroxyethyl)-OEP was obtained, as expected [16].
Water was easily eliminated, yielding Ni(II) 5-vinyl-OEP 54 (Scheme 21). The Wittig reac-
tion is cleaner and more efficient, as well as tolerating various functional groups such as
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esters. Various Wittig regents interacted with the meso-formyl group of β-substituted por-
phyrins to form meso-vinyl 54 (Scheme 21), 2-(ethoxycarbonyl)ethenyl 59, 2-cyanoethenyl 56
(Scheme 22), and other alkenyl groups [5,14]. meso-formylporphyrins with meso-aryl groups
without β-substituents were transformed to the corresponding meso-vinylporphyrins [59].
The products of the Wittig alkenylation can further be cyclized; for example, the methyl
ester of coproporphyrin I was converted to the corresponding derivative of copropur-
purin I 60 (Scheme 22). Purpurins and benzochlorins have an additional annealed cycle
through meso positions and β-positions, which affect the π-electron system, leading to a
bathochromic shift of the absorption bands. These annelated porphyrins and chlorins are
more stable compared to other chlorins and have comparable electron-optical properties
suitable for PDT. They have a higher efficiency than meso tetraphenylporphyrin and higher
absorption in the longer wavelength region. The benzochlorins were shown to be of low
dark toxicity towards Chinese Hamster ovary cells, whereas in the presence of light, total
cell killing was observed at concentrations of the photosensitizer below 1 µg/mL [60].
These promising properties of the annelated porphyrin derivatives attract the attention of
medical researchers [61]. One of the representatives of this type of compound, tin etiop-
urpurin complex 64, was used as a photosensitizer for PDT in human clinical trials. The
drug was obtained from nickel etioporphyrin, which was formylated and reacted with
a Wittig reagent, yielding meso-acrylate derivative 62, which was cyclized in acid to give
etiopurpurin 63. The latter was metalated with tin(IV) chloride to give the drug for PDT
(Scheme 23) [62]. The selectivity for the cyclization proceeding exclusively towards the
carbon carrying the ethyl group vs. the carbon carrying the methyl group.

There are several published papers devoted to the synthesis of benzochlorin deriva-
tives based on octaethylporphyrin and hematoporphyrin IX, as well as the study of their
properties as photosensitizers [63–66]. In particular, the preparation of variously substituted
benzochlorins containing fluorinated or alkyl groups has been reported [64].
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The formyl group can be transformed to the 2-haloethenyl group in one step using two
different reactions. The Wittig reaction of NiOEP-CHO 53 with bromomethyltriphenylphor-
phonium bromide led to meso-(2-bromoethynyl)NiOEP 65 as a major (E)-isomer with a 55%
yield [67]. However, the side metal-halogen exchange reaction led to the formation of lithi-
ated methylene ylide and subsequently the formation of meso-vinyl byproduct 54, which
was hard to separate. The use of potassium t-butoxide in THF avoided contamination and
produced a 53% yield (Scheme 24) [68]. Alternatively, the Takai reaction with iodoform cat-
alyzed by CrCl2 led to the formation of meso-(2-iodoethynyl)porphyrin 66 (Scheme 25). The
obtained 2-haloethenyl derivatives were used as substrates of the cross-coupling reactions
and precursors for the preparation of meso-ethynylporphyrins.
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Transformation of the formylporphyrins into dimers bonded with an ethene bridge
can be performed using low-valent titanium, which is called the McMurry reaction [17].
Cu(II) and Ni(II) complexes of OEP-CHO were dimerized under the action of TiCl3 and
Zn/Cu to form the corresponding complexes of dimers linked with the ethylene bridge in
the form of a mixture of cis and trans isomers (Scheme 26) [69].
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The similar dimerization of the Ni(II) meso-formyltriarylporphyrin 45 Ni was observed
as a side reaction of coupling with tetraphenylzirconacyclopentadiene in the presence
of AlCl3, along with products of cross-coupling: porphyrin—cyclopentene 69, 70, and
cyclopentadiene 68 hybrids (Scheme 27) [70].
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2.5. The Reaction of Meso-Formylporphyrins with CH Acids

The Knoevenagel reaction allows for the transformation of formylporphyrins into
the corresponding acrylic acid derivatives. The CH acid nucleophiles were introduced
into the reaction with meso-formylporphyrins, leading to the formation of substituted
meso-ethenyl porphyrin derivatives. Meso-formyl-diarylporphyrin 71 reacted with ni-
tromethane, dimethylmalonate, and malononitrile in a mixture of piperidine, acetic acid,
and toluene, leading to the corresponding substituted meso-(2-nitroethylene) 72 and meso-
methylenemalonate 73 derivatives (Scheme 28) [71]. The meso-cyanoacrylate derivative 74
of Zn(II) meso-formyl-triarylporphyrin was obtained by heating in a mixture of piperidine
and methanol for 16 h [72]. The product 75 of the reaction of meso-formyldiarylporphyrin
with malononitrile containing a meso-dicyanovinyl group was shown to act as a fluores-
cence “turn-on” cyanide probe [73]. The meso-nitroethylene derivative 72 was utilized as
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fluorescence turn-on probes for biothiols as it exhibited fast fluorescence enhancement and
high selectivity towards thiols based on the Michael addition mechanism [71]. It was also
successfully applied to fluorescent cell imaging in the NIR wavelength range.
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NiOEP-CHO 53 was much less reactive in the Knoevenagel reaction compared to
β-unsubstituted porphyrins due to the sterical hindrances and was gradually degraded
under basic reaction conditions. In order to activate the formyl group against the attack of
CH acid nucleophiles, Lewis acid TiCl4 was used in pyridine. The Lewis acid promoted
the Knoevenagel reaction of the NiOEP-CHO 53 with malonic ester and heterocyclic CH
acids [19]. The heterocyclic derivatives of porphyrins 77–79 linked with an exocyclic
C=C double bond were obtained both by cyclization of the Knoevenagel product 76 from
the reaction with malonic ester (Scheme 29) and by the Knoevenagel condensation of
formylporphyrin with thiohydantoin and thiobarbituric acid (Scheme 30) [74].
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The UV-Vis spectra of the heterocyclic conjugates contain new bands that arose from
the interaction of the conjugated chromophores as well as bathochromically shifted original
absorption bands. Particularly dramatic changes were observed in the UV-Vis spectrum of
the porphyrin conjugate with thiobarbituric acid, which exhibited substantial absorption
enhancement in the visible spectral range due to the considerable π-electron conjugation
between tetrapyrrole and heterocyclic chromophores.

To sum up, meso-functionalization of porphyrins with the formyl group provides a
powerful tool for the development of diverse porphyrin derivatives possessing valuable
properties. In particular, promising photosensitizers with strong, red-shifted absorption
bands, including NIR bands, were obtained from the meso-formyl porphyrins via the for-
mation of annulated cycles such as benzochlorins and dibenzobacteriochlorins. Meso-imino
derivatives were applied as sensor dyes in the multi-modal, multi-analyte optochemical
sensing platform for cell diagnostics. Easily formed with the help of the formyl group,
porphyrin conjugates with heterocycles can be used as biologically active compounds and
in sensing applications. Imino- and azino-bridges represent two alternatives for bonding
porphyrins into dyads, utilizing various pathways for energy transfer between the chro-
mophores. Currently, the post-derivatization of the meso-formylporphyrins is under intense
development.

3. Meso-Vinylporphyrins

Vinyl-substituted porphyrins are direct derivatives of formyl porphyrins, usually being
obtained from the latter via the Wittig reaction. The vinyl group is a versatile nucleophilic
synthon complementing electrophilic formyl. The electrophilic addition/substitution
reactions and the modern catalytic cross-coupling and direct CH-functionalization methods
are inherent to the vinyl group. The vinyl substituent can further be converted to the
ethynyl group.

3.1. Preparation of Meso-Vinylporphyrins

Meso-vinyl substituted porphyrins can be obtained from the meso-formylporphyrins
using the Grignard and Wittig reactions as described in a previous section [14,16]. However,
the efficient Vilsmeier–Haack porphyrin formylation reaction is limited to certain metal
complexes and cannot be used for free bases or more labile zinc complexes. The alternative
formyl preparation methods are based on palladium-catalyzed cross-coupling reactions,
which are tolerant to other functional groups but require primary halogenation of the por-
phyrin core. Heck and Stille reactions with meso-bromoporphyrins led to the corresponding
meso-alkenylporphyrins [59]. Starting meso-bromo derivatives can easily be obtained by
bromination of meso-di(tri)arylporphyrins with NBS [75,76]. Meso-vinylporphyrins were
synthesized from meso-bromoporphyrins by the Pd-catalyzed Stille reaction with vinyl-
tributyltin (Scheme 31) [59,75,77].
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3.2. Transformations of Meso-Vinylporphyrins

The carbon-carbon double bond of the vinyl group is susceptible to electrophilic
addition. However, bromination of the meso-vinyl-NiOEP 54 with pyridinium tribromide
led to the product of electrophilic substitution: the 2-bromoethenyl derivative 65 as a
mixture of (E) and (Z) isomers (Scheme 32) [16]. Bromination of meso-vinyl-TrPP proceeded
similarly [78]. Possibly, the sterical hindrances at the meso position hamper the second
bromine atom addition. The bromination product meso-(2-bromoethenyl)porphyrin 65 can
serve as a substrate in palladium-catalyzed cross-coupling reactions and as a precursor of
meso-ethynylporphyrin. Cross-coupling of iodo derivatives proceeds easily, and this was the
reason for the exchange of bromine for iodine via palladation/iodination (Scheme 33). The
subsequent Suzuki coupling of the meso-(2-iodoethenyl)-TrPP 82 with meso-pinacolboronyl-
TrPP 83 led to the TrPP dimer 84 being bridged by an ethene linker (Scheme 34) [78]. The
dimer 84 exists in solution in a number of conformations differing in dihedral angles
between the porphyrin and alkene planes. More coplanar conformers have appreciable
π-electron conjugation and interchromophore interaction across the bridge.
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The meso-vinyl group participated in electrophilic substitution reactions not only
during bromination but also during formylation in Vilsmeier–Haack conditions. Meso-
vinyl-NiOEP 54 was transformed to the corresponding meso-acroleinic derivative 85 by
treatment with the Vilsmeier reagent DMF/POCl3 in 1,2-dichloroethane (Scheme 35) [79].
This compound can also be obtained using a short method by vinylogous formylation of
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NiOEP 13Ni with N,N-dimethylaminoacroleine/POCl3 [69]. The treatment of the meso-
acroleine derivative 85 with concentrated sulfuric acid led to cyclization involving ethyl
migration to give benzochlorin 86 (Scheme 36) [69,79].
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Scheme 36. Synthesis of benzochlorin.

The octaethylbenzochlorin possesses significant red-light absorption, which makes
it a potential photosensitizer for PDT [8,9,80,81]. Some benzochlorin derivatives can
cause significant tumor regression at doses as low as 0.5 mg/kg body weight [82]. The
product of the double cyclization of meso-bis-acroleinyl-OEP 87 is dibenzobacteriochlorin
89 [69], which possesses a strong absorption band in the region of 752 nm, thus fully
corresponding to the tissue transparency window (Scheme 37) [8,82]. The conjugates of
similar benzochlorin with carbohydrates were screened using the galectin-binding-ability
assay and exhibited an enhancement of about 300–400-fold compared to lactose. All
conjugates were also shown to possess good photosensitizing efficacy with fibrosarcoma
tumor cells [65].
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Arnold studied the functionalization of porphyrins using the Heck reaction [59].
The Heck coupling of 5-vinyl-10,15,20-triphenylporphyrinatonickel(II) 80Ni with 50 eq.
iodobenzene was performed using a 20 mol% Pd(OAc)2 catalyst with triphenylphosphine
ligand K2CO3 as a base in a mixture of DMF and toluene heated to 105 ◦C for 48 h.
As a result of the reaction, two major regioisomers were formed: trans-1,2-disubstituted
ethene 90 with a 54% yield and 1,1-substituted product 91 with a 20% yield. It should
be noted that 1,1-substitution with a very bulky porphyrin substituent is not usual in the
Heck reaction. However, an even more curious result was obtained in the reaction with
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5-vinyl-10,20-diphenylporphyrinatonickel(II) 92Ni, where additionally the β-substituted
E-(2-phenylethenyl)porphyrin 94b was formed (Scheme 38).
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2-subsituted ethenyl porphyrins were alternatively obtained using the Heck coupling
of the meso-bromoporphyrins 95 and 97 with substituted ethene (usually with an electron
acceptor group) [59]. The Heck coupling of 5-bromo-TrPP 95 and 5,15-dibromo-10,20-
diarylporphyrin 97, as well as their Ni(II) and Zn(II) complexes with large excesses of
methyl acrylate, styrene, and acrylonitrile, led to the corresponding mono- and dialkenyl
functionalized porphyrins (Scheme 39). E-isomers were obtained predominantly, but some
amount of Z-isomer was also formed in the case of less sterically demanded acrylonitrile.
Partial debromination was observed during the reaction. The free-base porphyrins were
partially metalated with palladium. Zinc complexes were less stable compared to nickel
complexes and were slightly demetalated and transmetalated.

The Heck reaction was used to produce a porphyrin dimer bound by ethene. How-
ever, a large excess of one substrate over the other cannot be used in coupling two
porphyrin substrates, as was used in reactions with small molecules, because both cou-
pling compounds are very precious. Consequently, the reaction was too slow, side re-
actions rose, and debromination of the bromoporphyrins occurred predominantly. The
coupling of meso-bromo-TrPP 95 with meso-vinyldiarylporphyrinatonickel 92Ni did not
give the target meso-ethenyl-linked dimer but rather meso, β-ethenyl-linked dyad 102
(Scheme 40). Free-base bromoporphyrin, Ni(II), and Zn(II) complexes gave the corre-
sponding dyad yields of 23, 33, and 15%, respectively. The electronic absorption spec-
tra of the dyads revealed a modest degree of interchromophore interaction via a par-
tially conjugated bridge. This was explained by two factors: twisting of the ethene
bridge at meso position with respect to the tetrapyrrole plane reduces π–π conjugation,
and linkage through the β-carbon has smaller orbital coefficients and consequently less
influence on the π–electron system. The meso-meso-linked meso-arylporphyrin dimers
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were obtained by several other transition metal-mediated methods: the Suzuki reac-
tion of the meso-(2-iodoethenyl)porphyrin with meso-pinacolboronylporphyrin, described
above [78]; the Stille coupling of 1,2-di(tributyltin)ethene with meso-bromoporphyrin [83];
meso-iodoporphyrin [39]; and the McMurry coupling of meso-formylporphyrin, described
above in the formyl section [84].
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Scheme 41. The borylation of the vinyl-porphyrin with the subsequent coupling reactions. 

The meso-vinyl group in porphyrins differs in properties from β-vinyl and other vi-
nyl-substituted aromatics. The sterical hindrances at the meso position decrease the reac-
tivity of the vinyl group and change the results of reactions. For example, interaction with 
electrophiles led to electrophilic substitution instead of addition, like in aromatics. The 
Heck reactions proceeded harder. Probably, this was one of the reasons for quite a small 
amount of work devoted to the transformations of meso-vinyl groups, especially com-
pared to the β-analogs. The rich potential of the meso-vinyl function is to be revealed. 
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Due to the absence of the sterically interacting extra substituents at the linking car-

bon, the meso-acetylenyl group is coplanar with the macrocycle ring and fully π-electron-
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The meso-vinyl group can also be functionalized via catalytic direct CH-functionalization
reactions. The direct C-H borylation of the meso-vinyl group in NiOEP 54 was performed
with Cu(II) complex as a catalyst, yielding the meso-(2-pinacolboronylethenyl)porphyrin
103Ni, which was shown to act as a nucleophilic partner in the Suzuki cross-coupling
leading to porphyrin derivatives 104 and 105 with an extended π-conjugation through
the carbon double bond [85]. The oxidative homocoupling of the borylporphyrin 103Pd
produced the dimer 106 (Scheme 41) [86]. Thus, this strategy of meso-vinyl transformations
allows for the attachment of various chromophores through the unsaturated bridges.
The products of couplings possess some degree of conjugation across the bridge and
interchromophore interaction, which induces a bathochromic shift of absorption bands.
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Scheme 41. The borylation of the vinyl-porphyrin with the subsequent coupling reactions.

The meso-vinyl group in porphyrins differs in properties from β-vinyl and other vinyl-
substituted aromatics. The sterical hindrances at the meso position decrease the reactivity
of the vinyl group and change the results of reactions. For example, interaction with
electrophiles led to electrophilic substitution instead of addition, like in aromatics. The
Heck reactions proceeded harder. Probably, this was one of the reasons for quite a small
amount of work devoted to the transformations of meso-vinyl groups, especially compared
to the β-analogs. The rich potential of the meso-vinyl function is to be revealed.

4. Meso-Ethynylporphyrins

Due to the absence of the sterically interacting extra substituents at the linking carbon,
the meso-acetylenyl group is coplanar with the macrocycle ring and fully π-electronically
conjugated to the tetrapyrrole aromatic system in contrast to other meso-attached unsatu-
rated groups like vinyl, phenyl, etc. [87–91]. The acetylene linker has been shown to allow ef-
ficient π-conjugation and strong electronic communication between chromophores [92–94].
This advantage of the triple bond linker is used when one needs to create extended conju-
gated systems.

Synthesis of Meso-Ethynylporphyrins

There are several ways to obtain meso-acetylenylporphyrins, including classical func-
tional group transformations and modern catalytic cross-coupling reactions. The oldest
route utilized alkynyl-substituted precursors in the assembly of the porphyrin core. Mac-
Donald [2 + 2] condensation of dipyrromethane with trimethylsilylpropynal led to the
5,15-bis(trimethylsilylethynyl)porphyrin 107 in 11% yield, which was deprotected and
converted to the Ni(II) 5,15-bisacetylenylporphine 108 (Scheme 42A) [95]. In some cases,
the product of the reduction of one triple bond can occur. 5-alkenyl-15-alkynyl-porphyrin
108 and 5,15-dialkynyl-porphyrin 109 were formed selectively depending on the choice
of solvent (Scheme 42B) [96]. The alkenyl group arises from a protonation followed by
intramolecular 1,2-hydride transfer from the methine position of porphyrinogen [96].

The classical way to obtain alkyne is through the elimination of hydrogen halide
from halo-vinyl. The first meso-(2-bromoethenyl)-NiOEP 65 was obtained using the Wittig
reaction of NiOEP-CHO 53 with bromomethyltriphenylphosphonium bromide. Then the
Wittig product 65 was treated with dimsyl sodium, yielding meso-acetylenyl-NiOEP 110Ni
with an 86% yield (Scheme 43) [95,97].

The most common way to insert an acetylenyl group into porphyrins is based on the
Sonogashira reaction [97]. However, the Sonogashira reaction can be accompanied by some
side reactions. The most common complication is the oxidative dimerization of the terminal
alkynes [98]. Trialkylsilyl-protected acetylenes are often used, like trimethylsilyl- and triiso-
propylsilylacetylene, instead of gaseous acetylene, so the products are not able to dimerize.
Meso-acetylenylporphyrin 112 was prepared in 82% yield by the Sonogashira coupling of
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meso-bromo-porphyrin 111 with a 2.5 eq. excess of triisopropylsilylacetylene catalyzed by
20 mol% Pd(PPh3)2Cl2 and 3 eq. CuI in THF with triethylamine (Scheme 44) [99].
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Scheme 44. Synthesis of meso-acetylenylporphyrin via the Sonogashira reaction.

When the less bulky trimethylsilyl protection group instead of triisopropylsilyl was
used in the Sonogashira reaction of 5-iodo-10,15,20-tris(3,5-di(tert-butyl))porphyrin 113
with an excess of trimethylsilylacetylene, the byproduct of the addition of the second
acetylene molecule 114b to the triple bond was obtained (Scheme 45) [100].
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The most popular transformation of the meso-acetylenylporphyrins is also the Sono-
gashira coupling, leading to the triple bond linked dyad of the porphyrin with another
fragment. Linking electron donors or acceptors to the porphyrin ring through the C≡C
triple bond significantly affects the tetrapyrrole aromatic system. For example, to attach
the salicylic acid anchor to the DPP 3, the latter was first brominated at the meso position
followed by zinc metalation and catalytic coupling with triisopropylsilylacetylene. Meta-
lated porphyrins are usually applied as substrates in transition metal-catalyzed reactions
instead of free bases to prevent scavenging of the catalytic metal by coordination with the
macrocycle. Silyl protection is removed with TBAF, and the meso-acetylenyl porphyrin
was next coupled with an iodo derivative of the salicylic acid, yielding the product 115,
with the anchoring group being conjugated to the porphyrin through the triple bond
(Scheme 46) [99].
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Scheme 46. Synthesis of meso-ethynylporphyrin and its transformation using consecutive Sono-
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Strong electronic communication was observed between the triarylamine donors
and porphyrin ring in the compound obtained by the Sonogashira reaction of meso-
diacetylenylporphyrin with iodophenyldiarylamines (Scheme 47) [101]. The UV-Vis ab-
sorption spectra are considerably bathochromically shifted relative to the starting meso-
arylporphyrin and exhibit a broad Soret band and an intense Q band.
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With the help of Sonogashira coupling, a new photochromic porphyrin-perinaph-
thothioindigo dyad 117 was prepared (Scheme 48). One of the iodine atoms of the diiodo-
perinaphthothioindigo reagent was reduced during the reaction, which led to the predomi-
nantly mono-substituted product. A small amount of the bisporphyrin-substituted triad
was also obtained. Due to the extended conjugated system, the dyad 117 exhibited efficient
two-photon absorption properties and clear photochromic switching between cis and trans
isomers [102]. The two photon absorption cross-section maxima for both isomers appeared
around 850 nm, with values of 2000 GM for trans and 700 GM for cis isomers.

The dyad 119 of PtOEP with di(p-acetylenylphenyl)anthracene was obtained using
Sonogashira and Suzuki coupling of the components. The efficient triplet energy transfer
with nearly quantitative quantum efficiency was shown to proceed upon excitation from
the porphyrin unit to the anthracene unit (Scheme 49) [103].
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Scheme 49. Synthesis of the porphyrin-perinaphthothioindigo dyad.

Especially dramatic influence is exerted by so-called push-pull, both donor and ac-
ceptor substituted porphyrins. Electron donor N,N-dimethylaniline and electron acceptor
nitrobisthiophene-substituted acetylenes were attached to the opposite positions of the
porphyrin via Sonogashira coupling (Scheme 50). Such dipolar functionalized porphyrins
possess considerable molecular hyperpolarizability and can be used for electro-optic appli-
cations [104,105].

Push-pull porphyrins have become the most efficient tetrapyrrole photosensitizers for
dye-sensitized solar cells (DSSC). The dye with the donor diarylamino group and acceptor
carboxyphenyl group, linked at the opposite meso positions with an ethyne bridge, outper-
formed all other porphyrins [106,107]. The synthetic strategy is similar to the examples
given above. The Sonogashira coupling of meso-bromoporphyrin with trimethylsyly-
lacetylene was carried out first, then the free meso position was brominated, followed by
Buchwald amination with diarylamine, and after removing the trimethylsilyl protecting
group, the second Sonogashira coupling with iodobenzoic acid was performed (Scheme 51).
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Scheme 51. Synthesis of the most efficient type of porphyrin sensitizer for DSSC.

A large range of 5,15-bisalkynyl substituted porphyrin derivatives were obtained by
Sonogashira coupling meso-dibromo-di(carboxyphenyl)porphyrins, which were shown to
be suitable for the synthesis of surface-anchored MOF thin films [108].

The conjugated dimer and trimer with di- and triethynylbenzene bridges were ob-
tained by the Sonogashira coupling of meso-ethynylporphyrin with di- and triiodobenzene.
Whereas nonconjugated oligomers were obtained with tetrakis(4-iodophenyl)methane
and tetrakis(4-iodophenyl)porphyrin (Scheme 52) [109]. Different types of oligomers
with diphenylacetylene bridges were obtained as a result of the Sonogashira coupling of
meso-(4-ethynylphenyl)porphyrin with meso-(4-iodophenyl)porphyrin [110] and
meso-bis(4-iodophenyl)porphyrin [111]. It is worth noting that the directly attached aryl
group at meso position is not conjugated with the macrocycle because it turned almost
perpendicular owing to the sterical interactions, and the dimers linked through the meso-
phenyl [112], including the meso-diphenylacetylene bridge [111], are not conjugated [113].
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The DPP dimers and trimers bridged by ethyne linkers were obtained by the So-
nogashira coupling of meso-ethynylporphyrin 132 and 134 with meso-bromo-porphyrin 
111 (Scheme 54) [92]. The dimers with diethynylarene bridges 137–140 were obtained by 
the Sonogashira coupling of partially protected meso-diethynylporphyrin 136 with diio-
doarenes (Scheme 55) [114]. The thiophene linker provided more conjugation than phe-
nylene but less than anthracene, which allowed even more electronic communication than 
the simple butadiyne. All meso-arylporphyrin dimers with triple bond linkers possess 
high cross-sections of two-photon absorption, which makes them the most promising can-
didates for photosensitizers in two-photon-induced PDT. Efficient singlet oxygen gener-
ation was demonstrated both in one- and two-photon excitation of these dimers [115]. 

Scheme 52. Synthesis of conjugated porphyrin dimer and trimer with ethynylbenzene bridges using
Sonogashira coupling.

The fully conjugated porphyrin dimer 131, directly linked by acetylene at meso position
was obtained using Stille-type coupling of bis-1,2-stannylacetylene with 5-halo-TrPP with
a 43% yield (Scheme 53) [39]. The electron absorption spectrum of the dimer 131 showed
considerable changes compared to the monomer, which can be attributed to the extensive
conjugation and strong interchromophore communication.
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Scheme 53. Synthesis of porphyrin dimer with ethynyl bridge using Stille coupling.

The DPP dimers and trimers bridged by ethyne linkers were obtained by the Sono-
gashira coupling of meso-ethynylporphyrin 132 and 134 with meso-bromo-porphyrin 111
(Scheme 54) [92]. The dimers with diethynylarene bridges 137–140 were obtained by the
Sonogashira coupling of partially protected meso-diethynylporphyrin 136 with diiodoarenes
(Scheme 55) [114]. The thiophene linker provided more conjugation than phenylene but
less than anthracene, which allowed even more electronic communication than the simple
butadiyne. All meso-arylporphyrin dimers with triple bond linkers possess high cross-
sections of two-photon absorption, which makes them the most promising candidates
for photosensitizers in two-photon-induced PDT. Efficient singlet oxygen generation was
demonstrated both in one- and two-photon excitation of these dimers [115].
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Further transformations of the acetylenylporphyrins include oxidative coupling,
1,3-dipolar cycloaddition, and nucleophilic addition. Glaser oxidative coupling of meso-
acetylenylporphyrins was used to obtain porphyrin dimers as well as conjugates with
other acetylenyl substituted compounds, but the yields of the oxidative cross-coupling are
generally low due to the homocouplings. For example, 5,15-bisacetylenylporphine 141 was
coupled with an excess of meso-acetylenyl-OEP, leading to the porphyrin triad 142 linked
by butadiyne bridges with a 25% yield, along with a larger amount of the OEP dimer 143
formed by homocoupling (Scheme 56) [95]. The conjugation in the triad led to the splitting
of the Soret band of OEP into two main bands with clear maxima at 429 and 481 nm and a
bathochromic shift of the Q band to 670 nm. Furthermore, a dramatic bathochromic shift of
the Q-band by 70 nm was observed in pyridine compared to that in chloroform, probably
due to the coordination of the pyridine molecule as an axial ligand onto the Ni cation,
though Ni porphyrinates do not usually coordinate extra ligands.

Molecules 2023, 28, x FOR PEER REVIEW 29 of 41 
 

 

 
Scheme 56. Synthesis of porphyrin dimer and trimer with butadiyne bridge using Glaser oxidative 
coupling. 

The butadiyne-linked meso-diarylporphyrin dimer 148 functionalized with hydro-
philic groups was obtained using a sequence of Sonogashira and Glaser-type oxidative 
coupling reactions. First, meso-di(trihexylsilylacetylenyl)-diarylporphyrin was obtained 
from easily accessible meso-dibromodiarylporphyrin 144 and trihexylsilylacetylene using 
the classical Sonogashira reaction. The partial deprotection of the triple bond with TBAF 
proceeded with a low 29% yield. The half-protected bisacetylenylporphyrin 145 was di-
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substituted hydrophilic fragments (Scheme 57) [116]. The obtained dyes possess red-
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Scheme 56. Synthesis of porphyrin dimer and trimer with butadiyne bridge using Glaser
oxidative coupling.

The butadiyne-linked meso-diarylporphyrin dimer 148 functionalized with hydrophilic
groups was obtained using a sequence of Sonogashira and Glaser-type oxidative cou-
pling reactions. First, meso-di(trihexylsilylacetylenyl)-diarylporphyrin was obtained from
easily accessible meso-dibromodiarylporphyrin 144 and trihexylsilylacetylene using the
classical Sonogashira reaction. The partial deprotection of the triple bond with TBAF
proceeded with a low 29% yield. The half-protected bisacetylenylporphyrin 145 was dimer-
ized using oxidative coupling in modified conditions catalyzed by Pd(PPh3)4, CuI, and
1,4-benzoquinone as an oxidant. These conditions provided a high 94% yield of dimer
146 bridged by butadiyne linkers. The presence of two meso-trihexylsilylacetylenyl groups
in the dimer allowed for further functionalization using Sonogashira coupling with iodo-
substituted hydrophilic fragments (Scheme 57) [116]. The obtained dyes possess red-shifted
absorption bands in a region of 700–800 nm and a high two-photon absorption cross-section.
These properties are important for application in PDT, and the porphyrin dimer dyes were
studied as photosensitizers and were found to be more effective than the commercial drug
Visudyne® in two-photon PDT [40].
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A series of bisporphyrins linked by bithiophene and butadiyne groups were obtained
using oxidative cross-coupling of meso-acetylenyl-OEP with bisacetylenylbithiophene and
oligomeric bithiophenes [97]. The coupling was carried out in the presence of copper(II)
acetate in a mixture of pyridine and methanol. Yields of cross-coupled products were
15–20%, together with 20–30% yields of the diacetylene-bridged OEP dimer (Scheme 58).
The position of the hexyl substituents in bisthiophene determines the relative orientation of
thiophene rings, which plays an important role in electronic communications between the
two terminal OEP rings.
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Scheme 59. Synthesis of the square porphyrin tetramer. 

A square cyclic porphyrin dodecamer 158 with ethynyl linkers was obtained via the 
tetramerization of a T-shaped trimer 157 using Glaser oxidation coupling [119]. The syn-
thesis of the trimer was based on the Sonogashira reaction of 5,10-diethynyl-15,20-por-
phyrin 156 with 5-iodo-15-bromo-10,20-diarylporphyrin 157 (Scheme 60). The molecule 
was easily visualized using STM. The round-shaped octamer with butadiyne linkers 161 
was synthesized via oxidative coupling of the 5,15-diethynyl-10,20-diarylporphyrin 159 

Scheme 58. Synthesis of bisporphyrins linked by bithiophene and butadiyne linkers using
oxidative coupling.

A series of meso-diarylporphyrin dimers linked by oligoacetylenes were obtained
using Glaser coupling of meso-(oligoethynyl)porphyrins [94]. The similar coupling of
the 5,10-diethynyl-15,20-diarylporphyrin 153 led to the formation of the square-shaped
porphyrin tetramer 154 (Scheme 59) [117]. The positions of both the Soret (503) and Q
(659 nm) bands were bathochromically shifted by about 2900 cm−1 relative to the monomer
but remained similar to those of the corresponding linear tetramer [118].
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A square cyclic porphyrin dodecamer 158 with ethynyl linkers was obtained via the
tetramerization of a T-shaped trimer 157 using Glaser oxidation coupling [119]. The synthe-
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sis of the trimer was based on the Sonogashira reaction of 5,10-diethynyl-15,20-porphyrin
156 with 5-iodo-15-bromo-10,20-diarylporphyrin 157 (Scheme 60). The molecule was easily
visualized using STM. The round-shaped octamer with butadiyne linkers 161 was syn-
thesized via oxidative coupling of the 5,15-diethynyl-10,20-diarylporphyrin 159 using a
template with palladium/copper catalysts and iodine as an oxidant to give the cyclooc-
tamer 161 with a 14% yield (Scheme 61) [120]. A similar cyclohexamer was obtained with a
smaller template by oxidizing trimerization of the corresponding dimer [121]. Absorption
and emission spectra showed that π-conjugation and interchromophore communication in
the nanoring are stronger than in its linear analog and angled square-shaped macrocycles.
The giant porphyrin cyclooligomers can be applied as artificial light-harvesting antennas.
The similarity between these nanorings and the natural chlorophyll-based LH2 light-
harvesting system [122] allows us to model the photosynthetic center with these artificial
molecules [123]. Middle-sized, angled cycles like square porphyrin tetramer and dodecamer
are host compounds that can coordinate suitable guest molecules, including fullerenes.
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A copper-catalyzed 1,3-dipolar cycloaddition of azides to alkynes, called the “click”
reaction, was used to create meso-1,2,3-triazole substituted porphyrin (Scheme 62A). The
porphyrin self-assembles to form a slipped cofacial dimer 164 by the coordination of the
triazole nitrogen atom to the zinc center of a second porphyrin moiety (Scheme 62B) [126].

The triazole group was also applied as a linker between porphyrin rings. Odobel
obtained directly meso-meso triazole bridged dyads by the click reaction of Ni(II) and Zn(II)
complexes of meso-ethynyltriarylporphyrin 166 with Ni(II) meso-azidotriarylporphyrin
165 (Scheme 63) [127]. Both Ni-Ni and Ni-Zn dyads were obtained, but the yield of the
heterometallic dyad 167Zn was notably lower (18%) compared to the yield of the Ni-Ni
dyad 167Ni (41%). The reaction proceeded for quite a long time (50 h) in DMF with copper
sulfate as a catalyst and ascorbic acid. Asymmetrical β-meso-triazole-linked dyad 169
was synthesized from nickel complexes of 5-ethynyl-10,20-diphenylporphyrin 132Ni and
β-azido-meso-tetraphenylporphyrin 168 [128]. The reaction was carried out in the same
conditions but proceeded much faster, being completed for 1.5 h with a high 98% yield
(Scheme 63). It should be noted that in the case of the opposite reagent couple, namely
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5-azido-10,20-diphenylporphyrin and β-ethynyl-meso-tetraphenylporphyrin, no reaction
occurred under similar conditions.
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Scheme 63. Synthesis of 1,2,3-triazole-bridged porphyrin dyads.

The nucleophilic addition of alkynyl porphyrins to carbonyl compounds was used
to prepare a series of porphyrin-dimer tertiary alcohols. Treatment of these alcohols with
acid gave conjugated carbocations with three to nine carbon atoms bridging between the
porphyrins (Scheme 64). All these carbocations show strong absorption in the near-IR
region between 1000 and 1800 nm [129].
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5. Conclusions

Formyl, vinyl, and ethynyl are simple substituents that can easily be inserted into a
tetrapyrrole macrocycle, providing suitable building blocks for the construction of por-
phyrin materials. The substitution at the meso position significantly affects the electron and
optical properties of the porphyrins, and for this reason, it was the meso-derivatives that
were considered. The reviewed works showed the rich potential of these synthons, opening
the way to a variety of novel dyes with considerably modified properties that can be tuned
by a choice of specific transformations of the starting building blocks. The products of such
transformations are dyes for solar cells, light-harvesting antennas, photosensitizers for PDT,
optical sensors, components for supramolecular ensembles, porous materials for storage
and catalysis, etc. Particularly valuable are the biomedical applications of the tetrapyrrolic
derivatives.
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Abbreviations

CuOEP Cu(II) β-octaethylporphyrin
DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DNA deoxyribonucleic acid
DPP 5,15-diphenylporphyrin
DPP-CHO 5-formyl-10,20-diphenylporphyrin
DSSC dye sensitized solar cells
MOF metal-organic frameworks
NBS N-bromosuccinimide
NiOEP Ni(II) β-octaethylporphyrin
NLO nonlinear optical
OEC β-octaethylchlorin
OEP β-octaethylporphyrin
OEP-CHO 5-formyl-β-octaethylporphyrin
PPPa methyl pyropheophorbide-a
PPPd methyl pyropheophorbide-d
PtOEP Pt(II) β-octaethylporphyrin
STM scanning tunneling microscope
TMEDA N,N,N,N-tetramethylethylenediamine
TPP 5,10,15,20-tetraphenylporphyrin
TrPP 5,10,15-triphenylporphyrin
ZnOEP Zn(II) β-octaethylporphyrin
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