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Abstract: Ferrocenyl-based compounds have many applications in diverse scientific disciplines,
including in polymer chemistry as redox dynamic polymers and dendrimers, in materials science as
bioreceptors, and in pharmacology, biochemistry, electrochemistry, and nonlinear optics. Considering
the horizon of ferrocene chemistry, we attempted to condense the neoteric advancements in the syn-
thesis and applications of ferrocene derivatives reported in the literature from 2016 to date. This paper
presents data on the progression of the synthesis of diverse classes of organic compounds having
ferrocene scaffolds and recent developments in applications of ferrocene-based organometallic com-
pounds, with a special focus on their biological, medicinal, bio-sensing, chemosensing, asymmetric
catalysis, material, and industrial applications.
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1. Introduction

Ferrocene is an organometallic compound consisting of two cyclopentadienyl rings
bound to a central iron atom. On account of its unique electronic and structural properties,
ferrocene has found a wide range of applications in various fields, such as fuel additives
to improve their performance and reduce emissions; electrochemical sensors to detect the
presence of various molecules and ions in solutions, including glucose, dopamine, and
heavy metals; catalysts in various organic reactions, including oxidation, hydrogenation,
and cross-coupling reactions; and medicinal chemistry in the development of anticancer,
antiviral, and antimicrobial drugs. Ferrocene derivatives have been used to synthesize
a wide range of materials, including polymers, liquid crystals, and nanoparticles, with
diverse electronic and magnetic properties. Ferrocene is used as a potential electrode
material in redox flow batteries due to its reversible redox behavior and high stability, and
as a lubricant to improve the performance and longevity of engines and industrial machin-
ery. The discovery of ferrocene and its structural characterization initiated an explosive
rebirth of organometallic chemistry [1]. Nowadays, ferrocene derivatives have received
much consideration owing to their outstanding properties like thermal and photochemical
inertness and their exceptional and stable electrochemical properties due to an electron
donor–acceptor conjugated structure and an efficient redox couple of Fe2+/Fe3+ [2–4]. The
development of ferrocene unveiled new horizons of chemistry that are deeply rooted in the
interpretation of its structure, way of bonding, and chemical inertness, and paved the way
for the escalating field of organometallic chemistry itself [5]. Ferrocene and its derivatives
are laurel molecules, and the synthesis of this sandwich system—specifically its flavors,
utilization in homogeneous catalysis as a novel resource, including its usage in polymer
chemistry, and also as a fuel additive—has triggered the hasty advancement of this family
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of compounds over the past sixty years [6–8]. Polymers with pendant ferrocene units are a
marvelous family of organometallic polymers elevating substantial attention, chiefly owing
to their idiosyncratic properties and the high chemical inertness of ferrocene [9]. These
polymeric materials, either as ferrocenyl or ferrocendiyl groups, deliver various effects in-
cluding conducting, redox, optoelectronic, catalytic, and biological effects with potential for
applications such as radiation absorbers, combustion regulators, highly effective non-toxic
medicinal substances, components of various redox systems, etc. [10]. Ferrocene-grafted
polymers can easily migrate from the propellant system through diffusion as well as by
surface migration. This migration leads to further abolishing the propellant homogene-
ity and allows higher combustion rates only on the surface of the propellant rather than
the whole propellant [11]. Recent trends led to the development of established drugs
by metallocene-appended organometallic moieties through drug reprofiling strategy as
a proxy of the chemotherapy of tachyphylaxis in cancer and many tropical diseases [12].
The substitution of the phenyl or hetero-aryl group with a ferrocene scaffold in organic
molecules afforded a momentous alteration not only in the physicochemical properties
of drugs, but also ameliorated the potential of biologically active ligands. Moreover, the
success of ferrocene owes to its intrinsic solidity in air, heat, and light, as well as low
toxicity, low cost, and reversible redox properties. In the presence of oxidizing agents, the
oxidation of ferrocene to ferrocenium cation occurs, which is characterized by the naked
eye, i.e., red coloration. The well-known application of this oxidized ferrocene comprises
sensing, corrosion inhibition, and drug delivery in cancer therapy [13–15]. Indeed, based
on an extensive database of knowledge regarding ferrocene, numerous articles have been
published in several fields concerning applications like water treatment, lithography, infor-
mation storage, molecular logics, pharmacology, agriculture, biosensors, chemosensors,
analytical applications, etc., during 2010–2020. Also, ferrocene derivatives are leading
targets primarily for power conversion, and their thermo- and electrochemical applications
have been extensively studied due to astonishing features like high thermal stability, higher
photoconductivity, and the better chemical stability of ferrocene derivatives [16].

In the past ten years, due to the iron chemistry of ferrocene derivatives, there has
been a spate of review articles on the synthesis and applications of ferrocenyl conjugates,
which include the research areas of materials science, asymmetric catalysis [17], electro-
chemistry, and bio-organometallics [18,19]. Saeed et al. reviewed the synthesis, biological
activities, and some important applications of ferrocene derivatives [20]. X. Zhai et al.
published a review on recent research progress in the synthesis, properties, and appli-
cations of ferrocene-based derivatives and polymers with azobenzene [21]. In 2017, a
review article with the title “Ferrocene-based redox-responsive polymer gels: Synthesis,
structures and applications” was published by Jialiang and co-workers [22]. Similarly,
A. Khan and colleagues presented another review on the synthesis and applications of
ferrocene-based electro- and photo-responsive materials in 2018 [23]. During 2015–2019,
more focused reviews seemed to cover medicinal outlooks including anti-malarial and
anticancer activities of ferrocene derivatives [24], antimicrobial activities of ferrocene conju-
gates [25], tetrazole-based ferrocenyl compounds as anti-tuberculosis agents [26], and the
anti-infective potential of ferrocene derivatives [27].

The aim of our work is to provide a comprehensive review of recent trends in syn-
thetic strategies of ferrocene derivatives and their versatile pharmacological, agricultural,
biosensing, chemosensing, biological, electrochemical, industrial, and materials science
applications, covering the period from 2016 to the start of 2023.

2. Synthesis of Different Ferrocene-Based Compounds
2.1. Synthesis of Ferrocenyl Ethers

Ferrocene-containing aliphatic and aromatic ethers are of special interest due to their
beauty and electrochemical properties, but their synthesis has always been difficult. To
respond to this challenge, Oparina and co-workers introduced a novel nucleophilic addition
reaction of ferrocene 1,1-bis(hydroxymethyl) to different alkyne derivatives (Scheme 1).
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This base-catalyzed addition could be performed on acetylene, propyne, phenylethyne,
alkyl propionates, and acylacetylenes to obtain various divinyl ferrocenyl ethers with a
remarkable yield value in the range of 73–98% [28].
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Scheme 1. Synthesis of ferrocene-based diethenyl ethers.

In a relevant work, multi-ferrocenyl aryl ethers of general type C6H0-3F1-5(OFc)1-5
were synthesized through base-catalyzed nucleophilic aromatic substitution reaction on
aryl fluorides. Preparation of mono-, di-, and trisubstituted fluorobenzene was simply
carried out through the replacement of one, two, and three fluorine atoms byFcO, respec-
tively (Scheme 2). Further tetra and penta (FcO)-substituted arenes were also prepared
by the same procedure and identified by spectroscopic analysis, and XRD confirmed their
substitution patterns [29].
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It has been reported that different primary alcohols and ferrocene chlorovinyl deriva-
tives can form C-O bonds easily, leading to the production of ferrocenyl vinyl ethers
(Scheme 3). The approach that is being offered has a high yield and provides the products
quickly. For a variety of primary alcohols, functionalized ferrocenyl chlorovinyl derivatives
(-CHO, -CN, and C(CN)2) were shown to be well tolerated. All the ferrocenated vinyl
ethers are novel and have not been previously reported. When the optical metal-detecting
capabilities of the 1,2- and 1,3-diol-derived vinyl ether derivatives were examined, se-
lectivity for Cu2+ ions was found. Among all the other metal ions put to the test, the
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ferrocenated malenonitrile-containing vinyl ether showed high sensitivity and selectivity
toward Cu2+ [30].
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By polymerizing 2-[(4-ferrocenylbutoxy) methyl] oxirane (FcEpo) using toluene so-
lution of methylaluminoxane (MAO) as the catalyst, poly(ferrocenyl glycidyl ether) was
synthesized. In order to create another ferrocenyl-based poly, 2-[(4-ferrocenylbutoxy)
methyl] oxirane and epichlorohydrin were copolymerized (epichlorohydrin). GAP, a
ferrocenyl-based poly (glycidyl azide), was created by treating sodium azide with this
copolymer in a room-temperature DMF solvent (Scheme 4). By using FT-IR, 1H NMR,
UV-VIS, TGA, DSC, and GPC analysis, the synthesized ferrocenyl-based polymers were
evaluated for their characteristics [31].
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2.2. Synthesis of Alkynylated Ferrocenes

In a promising work, ferrocene was grafted to microporous polymers of 1,3,5-triethynyl
benzene and 1,3,6,8-tetraethynyl analogs using Pd-catalyzed Sonogashira Hegihara cross-
coupling chemistry (Scheme 5). The molecular structures of these compounds were con-
firmed by FTIR and 13C NMR spectroscopy, and the presence of iron was confirmed through
X-ray photoelectron spectroscopy. These synthesized compounds exhibited higher thermal
stability, porosity, and variable ferromagnetic properties [32].
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2.3. Synthesis of Vinyl and Aryl-Substituted Ferrocene

Ertas and co-workers used the Pd-assisted Suzuki–Miyaura coupling method to syn-
thesize ferrocenyl–naphthoquinone derivatives, and their structure was characterized by
1H NMR and 13C NMR spectroscopy (Scheme 6). This coupling reaction was also per-
formed through microwave irradiation, but the yield was not as effective as compared with
the reported protocol. Furthermore, the reported compound 16 was thought to be the first
innovative ferrocene-based H2O2 chemosensor [33].
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Mato described a procedure for the preparation of mono and planer asymmetric
disubstituted ferrocenyl conjugates by using tri-ferrocenylindium intermediate followed
by a Pd-assisted cross-coupling reaction [34]. Under mild conditions, a series of organic
electrophiles were treated with Fc3In (17) for the synthesis of monosubstituted ferrocenyl
compounds 18a–d. Plane chiral disubstituted ferrocenyl conjugates were also prepared by
the same coupling mechanism (Scheme 7).
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In an advanced work, Schmiel and co-authors reported a novel procedure for the ortho-
substitution of ferrocenyl units by C–H activation using sp2–sp2 coupling reactions [35].
The excellent yield of methylation and ethylation was observed, while stereoselective
phenylation of 20a and 20b with asymmetric ligand resulted in a remarkable yield of a
product with 46% of ee (Scheme 8).
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Scheme 8. Synthesis of ortho-substituted ferrocenyl conjugates.

Lopez’s group focused their research on the development of a novel gold-catalyzed C–
H activation reaction of ferrocene-appended prop-2-ynoic acid [36]. The reaction proceeded
through the substitution of ferrocene by capturing vinyl gold carbenoid, generated from
propargylic ester. Isotopic labeling experiments described the mechanism as an electrophilic
substitution reaction in which 1–2 rearrangements produced metal vinyl carbene that acts
as an electrophile that was attacked by ferrocene derivatives via C–H activation (Scheme 9).
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Ferrocene and its derivatives represent a crucial class of organometallic compounds
with significant biological activity. By condensing acetyl ferrocene with variously sub-
stituted thiosemicarbazides, six new ferrocene-based thiosemicarbazones have been cre-
ated (Scheme 10). Furthermore, the theoretical features for putative antiviral properties
of produced compounds were investigated using cutting-edge computational docking
methodology. The Mpro protein of SARS-CoV-2, an essential protein for viral replication,
was docked with all six chemicals [37].

Molecules 2023, 28, 5765 7 of 78 
 

 

 
Scheme 9. Synthesis of ferrocene-based prop-2-ynoic acid derivatives. 

Ferrocene and its derivatives represent a crucial class of organometallic compounds 
with significant biological activity. By condensing acetyl ferrocene with variously substi-
tuted thiosemicarbazides, six new ferrocene-based thiosemicarbazones have been created 
(Scheme 10). Furthermore, the theoretical features for putative antiviral properties of pro-
duced compounds were investigated using cutting-edge computational docking method-
ology. The Mpro protein of SARS-CoV-2, an essential protein for viral replication, was 
docked with all six chemicals [37]. 

 
Scheme 10. Synthesis of ferrocene-based thiosemicarbazones. 

Organocatalysis was used to create several spirooxindole–ferrocene hybrids with 
four or five contiguous chiral centers. Additionally, mechanistic studies revealed that 

Scheme 10. Synthesis of ferrocene-based thiosemicarbazones.



Molecules 2023, 28, 5765 8 of 75

Organocatalysis was used to create several spirooxindole–ferrocene hybrids with
four or five contiguous chiral centers. Additionally, mechanistic studies revealed that com-
pound 23d enhanced oxidative damage, caused apoptosis, and reduced MDM2-mediated
p53 degradation (Scheme 11). According to molecular docking research, 23d attaches to
MDM2 by imitating the Trp23 and Leu26 residues of p53. This research may serve as a foun-
dation for the creation of innovative, multipurpose MDM2 inhibitors. The research of other
derivatives from this library and the application of organocatalysis in the creation of novel
molecules may result in the discovery of new potential lead compounds for cancer-targeted
therapy [37].
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Ferrocene is a typical organometallic compound, which has a sandwich structure with
strong hydrophobicity and stability. In this study, the nitro- and cyanophenylferrocene
series’ physicochemical characteristics were identified, and their biological activity as
androgen receptor (AR) antagonists was assessed (Scheme 12). Inferring that the hydropho-
bicity of ferrocene is ideal for its use as a hydrophobic core structure of nuclear receptor
ligands, ferrocene derivatives showed hydrophobicity parameter values in the range of
2.54 to 3.23, depending on the substituents. The synthetic ferrocene derivatives demon-
strated AR-antagonistic action, and 3-nitrophenylferrocene 24a was the most effective of
these, with an IC50 value of 0.28 M. As AR antagonists, the discovered compounds might
be suitable for further structural development. These results confirm the usefulness of
organometallic substances as structural options for drug discovery [38].
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Effective composite solid propellants have low-pressure exponents and a consistent
burning rate (BR). The addition of burning rate catalysts (BRCs) to the propellant system is
one of the finest options for achieving the optimal performance of propellants (Scheme 13).
BRCs are incredibly significant in composite propellants because of their unique ability to
increase the operating effectiveness of solid propellants. Numerous beneficial varieties of
BRCs were synthesized for this purpose. Ferrocene-based compounds are a well-known
type of BRC due to their superior ignition. However, the practical application of this new
family of beneficial compounds as an ideal BRC is constrained by their significant migration
and diffusion propensity during storage operations of composite solid propellants [39].
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2.4. Synthesis of Alkyl and N-Heteroatom-Substituted Ferrocene Derivatives

Satter and Kumar reported a new pathway for C-C bond formation between ferrocene
and other alkyl or aryl substituents catalyzed by hybrid transition metal catalysts [40].
The reported work indicated an innovative sp2–sp3 coupling reaction for the first time
where the C–H bond was coupled for new C-C bond formation, chiefly directed by ligands
(Scheme 14). The reaction could be a useful approach for the synthesis of ferrocene-
functionalized biologically active drugs.
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The synthesis of thiol, silyl, and halogen derivatives of alkyl-ferrocene was made sim-
ple and affordable. In this procedure, ferrocene is functionalized with terminal carboxylic
acid using cyclic anhydrides as a precursor to be purified using an acid–base workup.
With good to exceptional yields, the synthetic technique uses moderate reaction conditions
(Scheme 15). To create polymeric binders with a faster burn rate for usage in composite solid
propellant for aerospace applications, the ferrocene-alkyl silane and ferrocene-alkyl-thiol
are covalently grafted to the pendent vinylic groups of HTPB [41].

By utilizing the redox reactions of water-soluble organic molecules, an aqueous organic
flow battery (AOFB) holds immense potential as an energy storage solution for fluctuating
renewable electricity (Scheme 16). The absence of suitable organic molecules for catholytes
is impeding current progress; however, it is yet unknown how catholyte structure affects
battery longevity. In water, six ferrocene derivatives with specifically tuned chemical
structures go through reversible redox processes, and the redox potentials of these energized
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forms are inversely related to their LUMO energies. In symmetric and complete flow cells,
the stability of the ferrocene derivatives was assessed. Calculations using density function
theory (DFT) and actual findings show that the localized LUMO density on Fe causes a
rapid capacity fading, with BQHFc having the lowest LUMO density [42].
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2.5. Synthesis of Ferrocenyl Derivative Directly Bonded with Heteroatom

Recent research reported the synthesis of cyclopentyl cobalt (III)-assisted carbon–
heteroatom coupling reaction on a gram scale, using pyridylferrocene and dioxazolones
under soft conditions with an impressive yield of 96% (Scheme 17). These ferrocene-based
compounds could be used as effective catalysts due to the presence of N, N-bidentate
ligands. Further, the replacement of the directing group could increase the efficiency of the
reaction column, and the absolute configuration of selected enantiomers was determined
by X-ray crystallographic analysis [43].
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The ortho-directed lithiation of chiral ferrocene sulfonamides, followed by a reaction
with electrophilic reactants, was used to synthesize a number of 1,2-disubstituted planar
chiral ferrocenes (Scheme 18). The various diastereoisomers could be separated in pure
form, and the planar 1,2-functionalized ferrocene sulfonamides were produced in good
yields. The planar chirality-relevant relative configurations of the chemical groups in
positions 1 and 2 were recovered from NMR measurements, and the absolute configuration
was established by X-ray crystallography. Modern quantum chemical algorithms were
used to record, assign, and interpret experimental ECD and VCD spectra, allowing for
an impartial examination of the several structural elements that influence the overall
spectroscopic properties [44].
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The synthesis and application of redox-active organic species in aqueous redox
flow batteries offer numerous opportunities for extensive and sustainable energy storage,
which is necessary for sustainable development. Here, a stable and simple-to-synthesize
sulfonated ferrocene derivative known as ferrocene ammonium sulfonate is disclosed.
In zinc hybrid flow batteries, it served as a catholyte. With the electrolyte adjusted,
the battery demonstrated good efficiency and capacity retention. After 100 continuous
charge/discharge cycles with a current density of 20 mA/cm2 and a supporting electrolyte
of 0.5 M NaCl + 0.5 M NH4Cl, the capacity retention achieved 92.55% (Scheme 19). This bat-
tery design proposes a concept for developing low-cost materials and improving capacity
retention [45].
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Gao and colleagues reported a rapid and efficient method for the synthesis of an ad-
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cene and chiral amines that produced orange-colored chiral ferrocenyl hydrazones that 
further reacted with Pd(OAc)2 and generated red-colored cyclopalladated product 30 
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2.6. Synthesis of Ferrocene-Conjugated Metal Complexes

Three ferrocenyl-functionalized metal complexes (27–29) were synthesized using a
newly reported synthetic procedure in which the ferrocene nucleus was converted to car-
bamate precursors that further developed into thiazolidine-containing metal complexes
(Scheme 20). The geometry of these organometallic complexes was confirmed by spectro-
scopic studies and the XRD approach. All three complexes found their applications in the
biological system, especially in a bacterial metabolic pathway study [46].
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Gao and colleagues reported a rapid and efficient method for the synthesis of an ad-
vanced ferrocene-functionalized cyclopalladated complex by the reaction of acetyl ferrocene
and chiral amines that produced orange-colored chiral ferrocenyl hydrazones that further
reacted with Pd(OAc)2 and generated red-colored cyclopalladated product 30 (Scheme 21).
Biological screening revealed that the potency of the cyclic organometallic complex was
93-fold greater than the usual anticancer drug cisplatin [47].
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As the primary components of proteins, amino acids are essential to all major biological
processes. Schiff bases are biologically active molecules with a variety of pharmacological
functions. Their La (III), Er (III), and Yb (III) metal complexes were accomplished as shown
in Scheme 22. Different spectroscopic techniques, such as elemental analysis, FT-IR, mass,
UV–Vis spectra, thermal analysis (TG), and scanning electron microscopy (SEM), were used
to describe these metal complexes. The complexes were discovered to have octahedral
geometry using the elemental analysis data, with the formula [M(L)(H2O)2Cl]Cl.nH2O (M
= La(III), n = 2; Er (III), n = 4; and Yb (III), n = 1). According to what has been determined,
carboxylic oxygen, imidazole nitrogen, and azomethine nitrogen play a role in the ligand’s
mono-negative tridentate form of binding to the metal ions [48].

Molecules 2023, 28, 5765 13 of 78 
 

 

(Scheme 21). Biological screening revealed that the potency of the cyclic organometallic 
complex was 93-fold greater than the usual anticancer drug cisplatin [47]. 

 
Scheme 21. Synthesis of ferrocene-based cyclopalladated complex. 

As the primary components of proteins, amino acids are essential to all major biolog-
ical processes. Schiff bases are biologically active molecules with a variety of pharmaco-
logical functions. Their La (III), Er (III), and Yb (III) metal complexes were accomplished 
as shown in Scheme 22. Different spectroscopic techniques, such as elemental analysis, 
FT-IR, mass, UV–Vis spectra, thermal analysis (TG), and scanning electron microscopy 
(SEM), were used to describe these metal complexes. The complexes were discovered to 
have octahedral geometry using the elemental analysis data, with the formula 
[M(L)(H2O)2Cl]Cl.nH2O (M = La(III), n = 2; Er (III), n = 4; and Yb (III), n = 1). According to 
what has been determined, carboxylic oxygen, imidazole nitrogen, and azomethine nitro-
gen play a role in the ligand’s mono-negative tridentate form of binding to the metal ions 
[48]. 

 
Scheme 22. Synthesis of lanthanides metal complexes. Scheme 22. Synthesis of lanthanides metal complexes.

A two-step process was used to produce an organic bimetallic complex with a cross
configuration. The combination of ferrocene carboxaldehyde and DL-alaninol produced
the ferrocene–palladium (II) complex, which in turn formed the ferrocene–Schiff base
(Scheme 23). The crystal structure revealed that two motifs exist as a racemate and have
a trans structure opposite to cisplatin. Compound 31 was found to be less hazardous to
normal cells and to effectively decrease the viability of many tumor cell lines, with efficacy
up to 20-fold better than cisplatin. The induction of caspase-3-dependent apoptosis in vitro
served as the mechanism of antiproliferation actions. Molecular docking was used to
predict that the biological target of the synthesized compound was XIAP, which showed it
was bound to the BIR3 protein [49].
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2.7. Synthesis of Ferrocene-Based Cyclic Urea

In a recent study, a highly efficient, cost-effective, and environmentally benign protocol
named “Biginelli Reaction” was utilized for the preparation of various para-substituted
phenyl-6-ferrocenyl 3,4-dihydropyrimidine derivatives (32a–d) [50]. In a one-pot reaction,
various substituted benzaldehyde units, acylated ferrocene, and urea components were
mixed, and different products with different ranges of yield were isolated and characterized
by spectroscopic analysis (Scheme 24). Biological assays proved these compounds as
promising candidates for drug testing.
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A process for synthesizing tetrahydropyrimidin-2(1H)-ones that contain ferrocene by
starting with the appropriate 3-arylamino-1-ferrocenylpropan-1-ols and sodium cyanate
(NaOCN) in the presence of glacial acetic acid was exercised. An intramolecular cyclization
of 1,3-hydroxyurea produced in situ afforded eleven 1,3-amino alcohols containing fer-
rocene moiety, and the desired 1-aryl-4-ferrocenyltetrahydropyrimidin-2(1H)-ones (33a–e)
were produced in good to high yields (up to 93%) (Scheme 25). Every product has been puri-
fied to a high level (>95%). A thorough structural characterization of the novel compounds,
carried out using IR and NMR spectroscopy, is also described [51].
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and thorough characterization of novel atropoisomeric ferrocene-containing six-mem-
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Atropoisomerism is a term used to describe a stereochemical phenomenon caused by
impeded rotation around bonds in nonplanar molecules. An easy-to-perform synthesis and
thorough characterization of novel atropoisomeric ferrocene-containing six-membered
cyclic ureas (34a–g) is reported. This work was motivated by the intriguing biologi-
cal/medical characteristics of six-membered cyclic ureas and “atropoisomers-things that
rotate.” Two atropoisomers of the same compound’s crystal structure are also described.
These two architectures’ molecular structural characteristics and intermolecular interactions
have been compared and thoroughly examined. It is interesting to note that while having
conformation and geometrical properties that are relatively comparable, these two isomers
create significantly distinct crystal packing (Scheme 26) [52].
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2.8. Synthesis of Ferrocene-Based Heterocyclic Derivatives

The group of Li and Chi have developed an elegant method for the construction of
two ferrocene-branched poly-triazoles (37a–b) by treating ferrocene-based diazides (35)
and tris (4-ethynylphenyl) amine (36) in the presence of a copper catalyst (Scheme 27).
Owing to the ferrocene scaffold present inside poly-triazole-based polymers, two nanocom-
posites were prepared using carbonization or destructive distillation. Both polymeric
materials also exhibited the saturation magnetization potential that proved the remarkable
standard of these polymers for ultra-advanced technological applications [53].
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Maracic et al. conducted the synthesis of a series of novel bis-triazole containing 1,1′-
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and quinoline by the liquid-assisted grinding (LAG) mechanochemical method in copper-
catalyzed azide–alkyne cycloaddition (CuAAC) in higher yields and with a shorter reac-
tion time compared to a conventional method, thus proving the superiority of mechano-
chemistry versus conventional synthesis (Scheme 28). The antiproliferative effects of bis-
quinoline and bis-quinolone ferrocene derivatives on five tumor cell lines and two non-
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Maracic et al. conducted the synthesis of a series of novel bis-triazole contain-
ing 1,1′-disubstituted ferrocene conjugates (37c–h) attached with N-1 and O-4 alkylated
quinolone and quinoline by the liquid-assisted grinding (LAG) mechanochemical method
in copper-catalyzed azide–alkyne cycloaddition (CuAAC) in higher yields and with a
shorter reaction time compared to a conventional method, thus proving the superiority
of mechanochemistry versus conventional synthesis (Scheme 28). The antiproliferative
effects of bis-quinoline and bis-quinolone ferrocene derivatives on five tumor cell lines and
two non-tumor cell lines were investigated [54].
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In addition, the synthesis of ferrocene-functionalized triphyrin analogs has been
attempted using the Pd-promoted coupling reaction between substituted triphyrin and
ethynyl ferrocene subunits under lenient conditions [55]. Further mechanistic study re-
vealed that there was a strong affinity between triphyrins and ferrocenyl units in the diad
(38) when compared with the triad (39). Both conjugates were thought to be promising
candidates for evolutionary development in molecular device applications (Scheme 29).

Another interesting example regarding ferrocenyl heterocycles was the synthesis of
ferrocene-grafted nitroimidazoles 42 in which a regiospecific reaction occurred between α-
hydroxy ferrocene 40 and nitroimidazole precursor 41 in the presence of HBF4 (Scheme 30).
The resulting racemic mixture was resolved by HPLC containing amylose or cellulose-based
chiral stationary phase. Cytotoxicity assay of these derivatives revealed the anticancer
activity of only compound 42b against murine solid tumor system Ca755 cancer cells [56].
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Zhang and co-workers introduced an innovative 1,3 dipolar cycloaddition protocol 
to synthesize a ferrocene-based substituted pyrrolidine system. In this novel approach, 
azomethine yields were generated through the in situ reaction of α-amino acid ester and 
ferrocene-functionalized carbaldehyde that further reacted with N-substituted maleimide 
to give a pyrrolidine product (Scheme 31). Moreover, the structures of these compounds 
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Scheme 30. Regiospecific synthesis of ferrocene-functionalized nitroimidazoles.

Zhang and co-workers introduced an innovative 1,3 dipolar cycloaddition protocol
to synthesize a ferrocene-based substituted pyrrolidine system. In this novel approach,
azomethine yields were generated through the in situ reaction of α-amino acid ester and
ferrocene-functionalized carbaldehyde that further reacted with N-substituted maleimide
to give a pyrrolidine product (Scheme 31). Moreover, the structures of these compounds
were elucidated by 1H NMR and high-resolution mass spectral data [57].
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The synthesis of ferrocenyl imidazole derivatives occurs through the Debus–Radziszewski
condensation reaction in which 1,6-bis-ferrocene-hexa-1,5-diene-3,5-dione is condensed
with p-substituted benzaldehyde, demonstrated by Selvam and co-workers (Scheme 32).
These imidazole derivatives displayed second-order NLO properties confirmed by SHG
analysis [58].
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Khan et al. reported microwave-assisted synthesis of macromolecules containing fer-
rocenyl bis-pyrazoline (57, 58) and bis-pyrimidine (59, 60) derivatives by treating ferro-
cenyl bis-chalcone 56 with thiosemicarbazide, phenylhydrazine, guanidine hydrochlo-
ride, and thiourea (Scheme 34). Targeted compounds were further characterized by IR, 1H 
NMR, 13C NMR, mass spectrometry, and combustion analysis [60]. 
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A microwave-assisted procedure for the synthesis of various ferrocene-functionalized
triazole derivatives has been reported by Liu and co-authors [59]. The reaction between
2-amino-5-substituted-1,3,4-thiadiazole and α-bromoacetylferrocene as substrates in the
presence of p-toluenesulfonic acid under microwave irradiation offered high yields of
ferrocenylimidazolo [2,1-b]-1,3,4-thiadiazoles (Scheme 33). The reported synthetic method
seems to be useful in terms of reduced time for synthesis, higher rate of reaction, and
greater % yields.
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Scheme 33. Microwave-assisted synthesis of ferrocenyltriazoles.

Khan et al. reported microwave-assisted synthesis of macromolecules containing ferro-
cenyl bis-pyrazoline (57, 58) and bis-pyrimidine (59, 60) derivatives by treating ferrocenyl
bis-chalcone 56 with thiosemicarbazide, phenylhydrazine, guanidine hydrochloride, and
thiourea (Scheme 34). Targeted compounds were further characterized by IR, 1H NMR, 13C
NMR, mass spectrometry, and combustion analysis [60].

Different reaction conditions afforded the formation of two different products with dif-
ferent yields, characterized by X-ray crystallography and spectroscopic analysis (Scheme 35).
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2.9. Synthesis of Ferrocene-Fused Cyclic Derivatives

Shibata and co-workers explored platinum chloride as a useful catalyst for enantios-
elective synthesis of a ferrocene-fused aromatic system through cycloisomerization of
2-ethynyl-1 ferrocenyl benzene precursor (Scheme 36). The mechanistic study revealed
that C–H activation did not occur in the rate-determining step and the reaction proceeded
through the activation of the alkyne nucleus via protonation of π cloud of chiral Pt complex
followed by a 6-endo-dig cyclization reaction [61].

Molecules 2023, 28, 5765 22 of 78 
 

 

2.9. Synthesis of Ferrocene-Fused Cyclic Derivatives 
Shibata and co-workers explored platinum chloride as a useful catalyst for enantiose-

lective synthesis of a ferrocene-fused aromatic system through cycloisomerization of 2-
ethynyl-1 ferrocenyl benzene precursor (Scheme 36). The mechanistic study revealed that 
C–H activation did not occur in the rate-determining step and the reaction proceeded 
through the activation of the alkyne nucleus via protonation of π cloud of chiral Pt com-
plex followed by a 6-endo-dig cyclization reaction [61]. 

 
Scheme 36. Asymmetric synthesis of ferrocene-fused aromatic compounds. 

Recently, a new protocol has been safely scaled up based on Pd-catalyzed intramo-
lecular tandem cyclization of ferrocene analogs with substituted alkyne, to form novel 
asymmetric planer ferrocene [1,2-d] pyrrolidines [62]. This Pd (0)-catalyzed tandem inter-
molecular syn-carbopalladation of N-ferrocenyl propionamide with aryl iodides had been 
appreciated, fabricating planar asymmetric ferrocene [1,2-d] pyrrolinones in virtuous 
yields. Moreover, using BINOL-based phosphoramidite ligands, up to 95% ee was at-
tained (Scheme 37). 

Scheme 36. Asymmetric synthesis of ferrocene-fused aromatic compounds.

Recently, a new protocol has been safely scaled up based on Pd-catalyzed intramolecu-
lar tandem cyclization of ferrocene analogs with substituted alkyne, to form novel asymmet-
ric planer ferrocene [1,2-d] pyrrolidines [62]. This Pd (0)-catalyzed tandem intermolecular
syn-carbopalladation of N-ferrocenyl propionamide with aryl iodides had been appreciated,
fabricating planar asymmetric ferrocene [1,2-d] pyrrolinones in virtuous yields. Moreover,
using BINOL-based phosphoramidite ligands, up to 95% ee was attained (Scheme 37).

The Ritter reaction was used for the preparation of 3,4-dihydroferrocenyl[c]pyridine
racemates by Rozhkova et al. [63]. In this newly planned strategy, 2-methyl-1-ferrocenyl
propane-1-ol was treated with substituted nitriles in the existence of a methyl sulfonic acid
catalyst (Scheme 38). The targeted racemates were successfully resolved by preparatory
HPLC on a chiral cell OD-H column and the absolute configuration of each enantiomer
was determined by X-ray crystallographic studies.
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3. Applications of Ferrocene Derivatives

The application of metallocene-functionalized compounds has become a research topic
of growing interest in recent years. Ferrocenes have been used as chemical intermediates,
antiknock additives to gasoline, lubricants, and for other uses, but a primary application is
related to catalysis [64]. Ferrocene is also currently being investigated as an active pharma-
cological agent against many notorious diseases like cancer, malaria, and other bacterial
infections. Here, we tried to review applications of ferrocene derivatives embracing several
fields like materials science, industry, agriculture, biology, medicine, electrochemistry, etc.

3.1. Materials Science Applications

Ferrocene retains an iron synthetic chemistry which includes a 3D structure that
permits the synthesis of many derivatives, outstanding thermal stabilities [65,66], and rapid
dissolution in common organic solvents [67]. Thanks to these imperative features, ferrocene
derivatives have been used in a wide number of materials science applications; so diverse
are they that it is problematic to classify these into a coherent manuscript. Thus, this is
a general outline of some specific applications of ferrocene-functionalized compounds,
including NLO devices, functional materials in electrochemical sensors, electron beam
lithography, and electrochromic applications.
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3.1.1. Biosensing Potential of Saccharides

By considering the binding affinities, biocompatibility, and host–guest molecule recog-
nition capacity of amides, Saleem et al. synthesized ferrocene-appended phenylboronic
amino acid and diaminophenyl boronic acid (APBA) derivatives and evaluated their
saccharide sensing activity using spectroscopic analysis (Scheme 39). The neighboring
environment of the boronic acid binding site and the linking ferrocene unit enhanced
the binding abilities of tetrahedral boron. Further, ferrocene’s electrochemical response
signified a substantial step towards effective and robust artificial bioelectronic affinity
receptors [68].
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surface (Figure 1a). The freshly synthesized ω–azidodiethylene-glycol–α–ferrocenyl es-
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In a different work, Rabti and co-authors designed an innovative ferrocene-grafted
(rGO) electrode, prepared by drop-casting ferrocene-based graphene against a polyester
surface (Figure 1a). The freshly synthesized ω–azidodiethylene-glycol–α–ferrocenyl esters
(agFc) and rGO nanosheets generated extremely aqueous soluble agFc–rGO nanosheets
through cycloaddition (Figure 1b). Further, biological interactions with glucose oxidase
for glucose recognition were accomplished using bioelectrode, offering evidence for latent
biosensing use [69].
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Figure 1. (a) Ferrocene-grafted (rGO) electrode preparation by drop-casting ferrocene-based graphene
(b) Synthesis ofω–azidodiethylene-glycol–α–ferrocenyl esters (agFc) and rGO nanosheets from agFc–
rGO nanosheets through cycloaddition reaction.

3.1.2. Anion Biosensors

Various analytical methods were reported in the literature for the detection of superox-
ide anion, but all fail to provide in vivo and in vitro monitoring. These issues were resolved
by fabricating highly selective hydrogel structures in which ferrocene units were associated
with superoxide dismutase into a poly diacrylate hydrogen matrix for the synthesis of
SOD-Fc-PEG-based electrodes [68]. The polymeric solution was emulated by optical lithog-
raphy in Au microelectrodes assembled onto the surface of glass slides (Figure 2). Such
reproducible biosensing materials were used for the diagnosis of carcinoma anion cells that
release superoxide anions, with LOD of 0.001 µm and sensitivity of 1.41 Na 4 M/mm2.
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3.1.3. Hydrogen Peroxide Biosensor

In a providential work, Dong’s group developed an electrochemical biosensor based
on chitosan-immobilized enzymes and a β-cyclodextrin-containing ferrocene complex
for the biological detection of H2O2 [70]. A CTS-CAT/β-CD-FE-grafted electrode was
constructed by conglomerating CTS-CAT with β-CD-Fe complex onto the surface of a
glassy carbon electrode and used for the electrochemical evaluation of hydrogen perox-
ide (Figure 3). Further, the inclusion of ferrocene units offered great durability to the
β-cyclodextrin complex.
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Figure 3. Schematic illustration of the CTS-CAT/β-CD-FE amalgamated electrode.

3.1.4. Peptide Biosensors

Xia Lu and co-workers invented a new fluorescent nano-bioaptamer sensor assimilat-
ing a β-cyclodextrin-modified quantum dot luminescent probe and applied it to find the
(PDGF)-BB factor that showed significant fluorescence quenching (Figure 4). The reason
for this quenching phenomenon was initiated by the Fc unit that recognized the host–guest
interaction, followed by the blockage of photoexcited electron transport between Fc and
CDs supported by DNA that reduced fluorescence. This ferrocene-marked adapter served
as a sensitive and selective biological receptor for detecting platelet-derived growth factor
BB [71].
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3.1.5. Chemosensing Applications

The astonishing stability, easy functionalization, and distinctive redox behavior of
the ferrocenyl nucleus have led to expeditious research in molecular recognition studies.
Recently, Preet and Arora with their colleagues combined the electrochemical activity
of ferrocene with the chemical ligation potential of organosilanes via the preparation of
ferrocene-tailed, chalcone-based organosilanes from ethynylferrocene precursor (71) using
click chemistry [72]. The resultant ligands were examined for their ion sensing potential
and exhibited their sensing ability for Cu+2 ion on the addition of EDTA with the reversal
of the sensing phenomenon. Moreover, the presence of the ferrocene nucleus offered a
diverse signaling sensor that was helpful in the naked-eye revelation of Cu+1 ion within a
limit of detection of 10 µm (Figure 5).
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Another research group constructed two highly selective ferrocene-based chemosens-
ing materials without the inclusion of nitrogen atoms for the chemoselective detection of
Cu2+ and Hg2+ ions [73]. Compound 72 showed remarkable detection aptitude for Hg+ via
optical and electrochemical signals with a lower value of detection limit that further con-
firmed its sensor potential. Further, ferrocene-functionalized sulfone 73 also demonstrated
highly selective detection toward Cu2+ with the detection limit approaching 5.22 × 10−7 M
(Figure 6).
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In a more recent work, a ferrocene-grafted chemosensor was proposed and assessed for
its selectivity in the detection of Al3+ cations [74]. Mechanistic study revealed that the probe
compound captured the Al+3 and enhanced the fluorescence intensity 200 times. Various
characterization techniques confirmed the formation of a complex between compound 74
and Al3+, and were successfully used to find out the Al3+ content in environmental samples
(Figure 7).
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Finally, the method employed by Atasen explained the sensing potential of Be2+ by
ion pair formation with ferrocenyl naphthoquinones radicals and dianions [75]. Cyclo-
voltammetric analysis revealed that the sensitivity effect was more pronounced in the case
of Be2+ among all alkaline earth metals that formed an ion pair with Fc–cnq–Ia and could
selectively sense the ultra-trace amount of Be2+ (LOD 3.6 ppb). The proposed mechanism
of the ion pair formation reaction between Be2+ ion and Fc–cnq–1a is depicted in Figure 8.
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Anion recognition and anion sensing are of special interest not only because of their
significant roles in biological systems but also because they can work in both organic and
aqueous media. The group of Hosseinzadeh and Maliji recently reported the synthesis of
an innovative tetra ferrocene-triazole-amide-based Calix [4] arene and described it as an
efficient optical and electrochemical anion sensor [76]. CV and proton nuclear magnetic
resonance titration tests disclosed the selective and ultrasensitive behavior of compound
79 for F− with a detection limit of 2.98 µM. The above-reported outcomes could be open-
and-shut proof of the efficiency of a newly synthesized compound as a sensitive moiety for
F− anion (Figure 9).
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Wu and co-workers designed four phenanthroimidazole derivatives with ferrocene
scaffolds and examined their anion recognition properties towards twelve common anions
such as F−, Cl−, Br−, SO4

2−, OAc−, etc. [77]. Investigation of these common anions via
spectroscope studies indicated that compounds 78b and 78d sensed B4O7

−2 specifically and
the sensing potential was realized through the naked eye, 1H NMR, and various titration
experiments, concluding that the binding force between B4O7

−2 and 78b was hydrogen
bonding (Figure 10).
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Another interesting example was reported in Feng’s publication where the author
designed a degradable electrochemical sensing system for the determination of nitrite
moiety in pickle juice [78]. Nitrite is a commonly used food preservative, but a side effect
was also reported as it reacted with amino acids and produced a carcinogenic effect [79].
A carbon electrode was developed by installing ferrocenyl derivatives on the surface of
screen-printed electrodes; characterization techniques realized that the sensitivity and
stability of the reported sensor were brilliant, with R.S.D lower than 2.1% (Figure 11).
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poly (FEMA)-CO-TPMA 82 resulted from ferrocene’s inclusion, which elevated the sensi-
tivity and resolution scale of the polymer in comparison to 83 (Figure 13). 

Figure 11. Assembly of Fc-ECG electrochemical sensor for nitrite recognition by DPV.

In an advanced work, Zaleskaya and co-authors fabricated ion pair sensing materials,
having benzo crown ether and ferrocene-functionalized squaramide as the cation accepting
center and anion welcoming center [80]. Receptors 79 and 80 were observed to be stronger
candidates that could sense negative ions more efficiently in the company of positively
charged species. This research offered a huge platform for the measurement of salt content
in a real-life situation in which an appropriate amount of salt is required (Figure 12).
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3.1.6. Electron Beam Lithographic Application

Ferrocene-grafted organic–inorganic hybrids are an innovation category of homo
polymeric resists, and the recently synthesized poly-(TPMA) and poly-(FEMA-CO-TPMA)
were studied for their large-scale micro/nanolithographic functions [81]. These copolymers
also behaved like light resists when exposed to an electron beam lithography device
for arranging nano-marked characters. The ultra-sensitivity and contrast of 2% poly
(FEMA)-CO-TPMA 82 resulted from ferrocene’s inclusion, which elevated the sensitivity
and resolution scale of the polymer in comparison to 83 (Figure 13).
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3.1.7. Nonlinear Optics Applications of Ferrocene-Based Conjugates

Relying on the merits of triphenylamine and ferrocenes as building blocks, novel
compounds based on N, N-diphenyl-4-E-[(1-ferrocenyl)ethenyl] aniline (84) and N, N-
diethoxyphenyl-4-E-[(1-ferrocenyl)ethenyl] aniline (85) were designed and synthesized, and
a detailed study of these organometallic analogs revealed their NLO potential (Scheme 40).
The cyclic voltammogram and ON/OFF aperture Z-scan measurements confirmed the
third-order nonlinear optical (NLO) properties of these reported compounds, considered
to be the result of their extended conjugation system [82]. Further, optically switching
properties of these derivatives were also examined, which further confirmed their novelty.
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In the same vein, Pielak’s group reported the first- and second-order nonlinear op-
tical properties of ferrocene-linked indolino-oxazolidine derivatives through scattering
techniques, which showed that the β factor for NLO properties and β-POF/β-CF value
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was large enough for devices used daily [83]. Quantum study also revealed that the β
value of the protonated “ON” form emerged from two lower-energy excited states, which
partially diminished their effect due to the counter-direction of light-stimulated charge
transfer (Figure 14).
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3.1.8. Solar Cell Applications

Ferrocene-linked tetracyano butadiene derivatives of diketopyrrolopyrroles SM1 and
SM2 were extensively studied for their photovoltaic features and reported with maximum
power conversion efficiency for solar cell devices (Figure 15). This energy conversion
potential of SM2 was remarkable when compared with SM1 because of the higher value
of short-circuit current (Jsc) and fill factor (FF). Therefore, the ferrocenethiophene donor
unit offered a remarkable non-fullerene acceptor and presented chief proficiency in the
advancement of non-fullerene organic solar cells [83].

Molecules 2023, 28, 5765 33 of 78 
 

 

techniques, which showed that the β factor for NLO properties and β-POF/β-CF value was 
large enough for devices used daily [83]. Quantum study also revealed that the β value of 
the protonated “ON” form emerged from two lower-energy excited states, which partially 
diminished their effect due to the counter-direction of light-stimulated charge transfer 
(Figure 14). 

 
Figure 14. Structure of the closed and protonated open forms of the IND-Fc derivative. 

3.1.8. Solar Cell Applications 
Ferrocene-linked tetracyano butadiene derivatives of diketopyrrolopyrroles SM1 and 

SM2 were extensively studied for their photovoltaic features and reported with maximum 
power conversion efficiency for solar cell devices (Figure 15). This energy conversion po-
tential of SM2 was remarkable when compared with SM1 because of the higher value of 
short-circuit current (Jsc) and fill factor (FF). Therefore, the ferrocenethiophene donor unit 
offered a remarkable non-fullerene acceptor and presented chief proficiency in the ad-
vancement of non-fullerene organic solar cells [83]. 

 
Figure 15. Chemical structures of SM1 and SM2. 

The newly synthesized heterometallic compounds, designed for solar cell applica-
tions, were two ferrocene-containing Ni-bithiolate complexes, D-1 and D-2, functionalized 
with 2,2-diacetyl and 2-NO2 linker, respectively, reported in a more advanced work of 
Amit and co-workers (Scheme 41). These synthesized ligands exhibited excellent donor 
sensitization potential, examined by light-driven spectral analysis. The photovoltaic index 
of the synthesized materials was not so absurd but the inclusion of TiO2 nanoparticles 
enhanced the level of charge-reversing ability that increased the sensitization to the com-
promising stage [84]. 

Fe

NC CN

NC
CN

S
N

N
S

O

O

C10H21

C10H21

Fe

NC CN

NC
CN

S
N

N
S

O

O

C10H21

C10H21

Fe

CNNC

CN
NC

SMI SM2

Figure 15. Chemical structures of SM1 and SM2.

The newly synthesized heterometallic compounds, designed for solar cell applications,
were two ferrocene-containing Ni-bithiolate complexes, D-1 and D-2, functionalized with
2,2-diacetyl and 2-NO2 linker, respectively, reported in a more advanced work of Amit and
co-workers (Scheme 41). These synthesized ligands exhibited excellent donor sensitiza-
tion potential, examined by light-driven spectral analysis. The photovoltaic index of the
synthesized materials was not so absurd but the inclusion of TiO2 nanoparticles enhanced
the level of charge-reversing ability that increased the sensitization to the compromising
stage [84].
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Scheme 41. Synthetic route for the preparation of sensitizers.

Incorporating ferrocenyl groups into meso-substituted porphyrins with various donor
substituents affords three metallo ligands: ZnP1, ZnP2, and ZnP3 [85]. Self-aggregated
zinc porphyrins and a linker, ZnPA, were utilized as sensitizers in dye-sensitized solar
cells. It was observed that the photocurrent transformation potential of self-aggregated
units was high; particularly, an amide bridge and ferrocene-based zinc porphyrin (ZnP1)
solar cell exhibited maximum photocurrent turning capacity compared with its derivatives
(Figure 16).
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3.1.9. Supercapacitor Applications

An advanced cobalt-graded poly-catenated metal–organic framework was constructed
by Rajak’s group and its electrochemical properties were extensively studied [86]. The
synthesized framework (88) was applied with a binder to modify a glassy carbon electrode
and evaluated its supercapacitor performance with or without a binder group. Detailed
analysis was performed with a binder containing a modified glassy carbon electrode, which
exhibited the superb value of capacitance and stability of that metal–organic framework
onto the surface of the electrodes (Figure 17).
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Teimuri et al. developed a typical supercapacitor hinged on a glassy carbon electrode,
mutated with graphene-oxide-loaded ferrocene through ring-opening polymerization
(Figure 18). The amalgamated polyFc was impaired on glassy carbon, and its electrochemi-
cal potential was noticed through CV, GCD, and EIS techniques. All these characterization
techniques revealed that the modified material showed excellent electrochemical features
as a supercapacitor electrode with a high capacitance value of 200 Fg−1 [87].
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3.1.10. Uses of Ferrocene in Modern Fuel Cells or Batteries

Ferrocene as an organometallic compound has been investigated as a standard elec-
trode in redox potential measurements because of its excellent redox activity. In this study,
the redox activity of ferrocene was utilized to design two ferrocene-functionalized polymers
through cheap Schiff base interaction with melamine as the backbone [88]. Destructive
distillation of synthesized material produced nano hybrids along with the Fe3C/Fe moiety.
Further, a rechargeable zinc–air battery was constructed by utilizing Fe3C/Fe as a cathode
catalyst which exhibited high power density, a small charge–discharge gap, and remarkable
stability with less activity decay, in comparison to Pt/C containing commercial batteries
(Figure 19).
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Liu et al. introduced an efficient ferrocene-based electrode for Li1+ batteries with
excellent electrochemical features such as significant reversible power, high charge reten-
tion, and remarkable charge–discharge rate capability [89]. XRD and cyclic voltammetry
analysis showed that the electrochemical reaction of ferrocene was partially reversible and
some metallic iron (Fe) clung to the anode even after de-lithiation. The metallic iron and
solid electrolyte interface were amenable to the superb electrochemical properties of the
designed electrode.

3.1.11. Redox-Mediating Potential of Ferrocene Derivatives

Among redox-active materials, ferrocene and ferrocene-based polymeric materials
are of special interest due to their high stability in redox reactions and facile derivative
syntheses. For example, an array of redox poly-(2-methaarcryloyloxy) and light-sensitive
polymers based on ferrocenyl carboxidate-Co-4-methylacryloamino-4-nitroazobenzene (P
(FCEMA-MAAZoo)s) were synthesized through free radical oligomerization protocol [90].
Light-responsive potential and redox properties of these polymers were evaluated via
spectroscopy and cyclovoltammetric analysis. These polymeric slides were thought to have
vital applications in a potentially high-information storehouse, and their mechanism of
information storage is described in Figure 20.
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3.1.12. Application in Photo-Induced Electron Transfer: Cascaded Molecular Logic

Karmakar and co-workers combined the redox activity of ferrocene with the photo-
physical properties of coumarin and quinoline through the development of a molecular
tool that turned on luminescence through the photo-induced electron transfer (PET) phe-
nomenon with d10 metal ions [91]. Further, this research group also fabricated a prob
(a), which behaved differently with various metal ions through fluorescent expression.
Taking the edge of the differential selectiveness of this probe, binary basic logic circuits
“INHIBII” and “OR” were designed, which were used in biosensing applications with
slight modifications (Figure 21).
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3.1.13. Role of Ferrocene in Catalytic Graphitization

In laboratory-prepared, modified novolak phenolic resins, graphitization was induced
using ferrocene (PR). A recent study described the morphological and structural differ-
ences in the intermediate carbon structures containing iron throughout the graphitization
process, obtained after several steps of heat treatment from 200 to 1000 ◦C. The presence of
ferrocene (a catalyst and carbon source) and the reducing environment are both respon-
sible for the induction of phenolic resin graphitization in onion-like hollow carbon. The
hollow onion-shaped material facilitated 96% elimination in 5 min in the photocatalytic
research of the pesticide atrazine (ATZ) in an aqueous medium and affected the mechanism
of ATZ degradation and the synthesis of atrazine-2-hydroxy (HAT) in various reactors
(Figure 22) [92].
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3.1.14. Ferrocene-Based Polymer as a Scavenger for Radioiodine

By using the Schiff base reaction, the porous ferrocene-linked organic polymer (FcTz-
POP) was synthesized and exhibited a high iodine vapor capacity, 1.8 times that of a
reference material without ferrocene (BpTz-POP). FcTz-POP exhibits a rapid rate of I2
adsorption and a relatively high affinity due to the abundance of ferrocene blocks with
a high electron density (Scheme 42). The iodine capturing for FcTzPOP, which is sub-
stantially higher than that of ferrocene-free BpTz-POP, can reach up to 396 wt% at 348 K
and atmospheric pressure by integrating ferrocene building blocks. This is mostly due to
the cyclopentadienyl group, which interacts with the iodine molecule more strongly than
the benzene ring, and the Fe2+ on ferrocene, which may electrostatically bind negatively
charged polyiodides [93].
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3.1.15. Ferrocene-Based Hyperbranched Polymers as Electroactive Materials

Using the Sonogashira coupling reaction, Wei et al. developed a ferrocene-based
hyperbranched metallopolymer (89), incorporating the alternate units of TPA and fluorene
as the main skeleton. An efficient method of controlling their morphology was successfully
demonstrated to produce uniform nanostructures as spheres and hollow polyhedrons for
specific applications (Scheme 43). When built into laser-induced breakdown spectroscopy
(LIBs), the spherical polymer (SP) with a microporous structure had remarkable redox
performances and displayed high capacity, large cycle stability, and better rate capability.
The analogous HP provided rising BET surface areas of 1195 m2 g−1 in the precursor-
derived ceramics by merging the intrinsic micropore of the organic frameworks and the
macropore from the hollow polyhedron, and the as-made carbon materials were further
applicable to remove water [94].
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3.2. Applications in Catalysis

Because of their accessibility, novel stereochemical characteristics, the extensive vari-
ability of co-ordination approaches and options for the modification of the steric hindrance,
thermal stability and tolerance to oxygen and water, serene derivatization, and electronic
properties, ferrocene-grafted ligands created a large number of multipurpose ligand archi-
tectures in the recent trend of asymmetric catalysis.

3.2.1. Ferrocene-Functionalized Phosphine Ligand

The chemistry of the di- and polyphosphine ferrocene-based ligands in catalytic cross-
coupling is detailed in carbon–carbon, carbon–nitrogen, and carbon–oxygen bond-forming
reactions. Recently, an efficient ferrocene-grafted bi-functional phosphine-catalyzed enan-
tioselective cycloaddition reaction of oxo-allenes with a large number of ketones was
reported in order to prepare substituted dihydropyran derivative (90) [95]. Mechanistic
study revealed that multifunctional phosphine catalyst containing ferrocene moiety (P5),
had excellent stereoselectivity in Rauhut Currier reaction, allylation, and chiral cycload-
dition reaction, among all other ferrocene-functionalized phosphine ligands (Figure 23a).
Because of ferrocene’s strong electron-donating nature as well as its distinctive structure,
chiral compounds based on ferrocene played important roles in asymmetric processes.
Today, a wide range of chiral ferrocenyl ligands are known. Ferrocenyl chiral ligands
have been exercised for ruthenium (II)-catalyzed asymmetric transfer hydrogenation of
acetophenone using HCOOH/Et3N azeotrope as the hydrogen source. When (RC, SFc)-
1-(Diphenylphosphino)-2-[1-N-(3-methylpyridin-2-ylmethyl) ethyl] ferrocene (L1) was
employed, a moderate chemical yield of 1-phenylethanol with 83% ee was produced
(Figure 23b) [96].
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synthesis of 1-phenylethanol (ee) from acetophenone using ferrocenyl chiral ligand.

3.2.2. Ferrocene-Appended Thiazolidine Ligand Framework

Ferrocene derivatives bearing donating groups exhibit a large variety of applications,
especially in metal-catalyzed modern organic reactions. Based on the impetus provided us-
ing thiazoline–oxazoline ligands (91a–d), the investigations directed towards the synthesis
of asymmetric disubstituted ferrocenyl ligands functionalized on the thiazoline framework
were carried out. The ability of these new bidentate [N, S]-ferrocene ligands to act in
Pd-assisted asymmetric allylation had also been described and comes with their oxazoline
counterparts (Figure 24). Further, the ortho-directing property of thiazoline moiety for
stereoselective ortho-lithiation reaction was also observed to always give an endoselective
product [97].
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3.2.3. Chiral Oxazolinyl Hydroxyl-Clubbed Ferrocene in Asymmetric Reactions

Chiral oxazolinyl hydroxyl ferrocenes have been reported in the literature, particularly
the most recent developments in enantioselective applications of ferrocene derivatives and
diastereoselective production. Due to the successful functionalization of the aromatic Cp
ring over the past few decades, chiral ferrocene structural variety has increased. Accord-
ingly, multiple research groups have created sophisticated examples of synthetic procedures
for N,O bidentate ferrocene moieties (92a–c) that have mostly been used as chiral catalysts
in zinc-mediated nucleophilic addition reactions to carbonyl compounds. The mechanism
subsumes freshly designed competitive catalysts in alkyl and aryl transfers to aldehydes
(Figure 25) [98].
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3.2.4. Ferrocene Ligand in sp2–sp3 Coupling Reactions

In an advanced work, Xu and coworkers designed a series of novel ferrocene-based
bidentate ligands (93) with di(1-adamantyl)phosphine as an anchoring group. After a
complete characterization of the ligand structure through XRD, the group applied synthe-
sized chelating catalysts in many Csp2–Csp3 coupling reactions such as Murahashi–Feringa,
Kumada–Corriu, Negishi, and Suzuki–Miyaura, with good to excellent yields. The devised
method was employed for the synthesis of nine drug-like molecules in active pharmaceuti-
cal ingredient (API) synthesis (Figure 26) [99].
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Figure 26. Catalysis by ferrocene ligands bearing a bulky di-1-adamantylphosphino motif. 

3.2.5. Applications of Ferrocene-Based Diols in Hetero Diels Alder Reactions 
In a completely different work, Cunningham and Guiry reported a synthetic proce-
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plications in hetero Diels Alder reactions. The stereoselectivity of the prepared ligands 
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bonding interactions (Figure 27) [99]. 
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3.2.5. Applications of Ferrocene-Based Diols in Hetero Diels Alder Reactions

In a completely different work, Cunningham and Guiry reported a synthetic proce-
dure for novel library synthesis of various ferrocene-functionalized diols (94a–h) with
applications in hetero Diels Alder reactions. The stereoselectivity of the prepared ligands
was maintained carefully and crystallographic data of such components were reported to
confirm their structure. XRD study also revealed that these ligands exhibited both intricate
inter- and intramolecular hydrogen bonding, along with uncommon, bifurcated hydrogen
bonding interactions (Figure 27) [100].
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3.3. Industrial Applications

Ferrocene chemistry crisscrossed discipline lines and had a significant part in organic,
inorganic, biochemistry, materials science, chemical engineering, etc. These ferrocenyl
compounds have recently been developed for industrial use, including in agrochemicals,
additives for protective coatings to reduce rusting, fire retardants, rocket propellants,
burning rate modifiers, water purification, etc.

3.3.1. Chromatographic Applications

A recent study reported the novel brush-like chiral immobilized stationary phase
based on benzoyl-substituted N-ferrocenyl diphenyl ethyl alcohol installed on the sur-
face of silica xerogel [101]. The newly synthesized compound (NFCBFS) 95 was used in
HPLC and the synthesis employed γ-glycidoxypropyl trimethoxysilane as a binding agent.
Amazing separation among the mixture of aromatic amines, hydrocarbon, substituted
phenols, isoquinolines, pyrimidines, imidazole, and other aromatic systems was observed
(Figure 28).
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In the same way, Wang and partners developed a non-conventional ferrocene-modified
monolith that had a complex structure and was prepared through free radical elongation
of vinyl ferrocene inside a stainless-steel column [102]. Proteins and other biological
composites were separated by applying monolithic column chromatography. The fabricated
porous structure displayed high mechanical strength, high adsorption, and low pressure.
The different fractions of proteins were separated, and a highly efficient severance of small
molecules was attained.

3.3.2. Corrosion Inhibition Potential

Novel ferrocene-graded thiourea derivatives with a smaller value of carboxymethyl
starch (CMS) inhibition were reported as side-chain dependent [103]. These synthesized
compounds (96a–c) were efficient corrosion inhibitors for mild carbon steel (MCS) in 1M
aggressive hydrochloric acid solution, and their masking ability increased with temperature,
concentration, and side-chain length (Figure 29). Results of the degraded product of two
sample solutions with or without an inhibitor in HCl solution further confirmed the
corrosion inhibition potential of the synthesized compounds.
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Figure 29. Ferrocene-based corrosion inhibitor motifs.

Ferrocene-based Schiff bases (97a–c) with an extended aromatic system and a large
superficial zone have been recently reported (Figure 30). These manufactured bis-ferrocenyl
Schiff bases were considered virtuous anticorrosive ingredients for aluminum AA2219-T6
alloy in 0.1 M HCl solution [104]. Further, electron-donating groups OCH3 and OC2H5
bonded to Fcub and Fcuc, consequential in advanced inhibition competence.
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3.3.3. Water Treatment

Traditional methods of water purification by chlorine are commonly used but have
serious side effects [105]. One method to resolve these problems was the development
of novel eco-friendly water disinfectants based on ferrocenylamine compounds, namely,
4-ferrocenylaniline (98), N-(3-bromo-2-hydroxylbenzylidene)-4-ferrocenylimine (99), and
N-(3-bromo-5-chlorosalicyl)-4-ferrocenylimine (100) [104]. The antibacterial activity of
these ferrocene derivatives was evaluated against twelve diverse bacterial strains by ap-
plying the micro-dilution approach (Figure 31). In vitro bacterial analysis affirmed that
the ferrocenylamine species had more remarkable antibacterial activity than its precursor
ferrocene and could be used to eradicate bacteria from the aqueous media.
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Figure 31. The 96-well microtiter plate layout for the testing of ferrocenylimine compounds.

Metallocene, especially ferrocene, can encapsulate organic contaminants efficiently as
it has a cavity between two cyclopentadienyl rings and the Fe2+ center, but its solubility in
aqueous media is a notorious drawback. An advanced article reported the solution to this
issue via the preparation of novel ferrocene-functionalized organosilica nanoparticles and
investigated them for sewage water treatment (Figure 32). The fabricated MONs manifested
great absorption power for PO4

3− within the range of 729, 1299, and 835 mg−1/g, and
the adsorption capacity for Congo red and Pb2+ was also measured and compared with
reference SiO2-Fe. This comparison confirmed the strong adsorption potential of MONs,
and with further modifications, these materials could be used to resolve the issue of water
treatment [106].
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Figure 32. (a) Synthetic routes of ferrocene-containing organo-alkoxysilanes and (b) schematic
illustration of MONs.

Yang and co-authors reported a synthesis of two permeable cross-polymers denoted as
DPPF-HPP and DPPOF-HPP with excellent surface areas and comparable stoma structures
of the concomitant micropores and mesopores [107]. They exhibited excellent adsorption
of various colors with reported adsorption dimensions of 2280 mg g−1 and 1440 mg g−1

for Congo Red and Crystal Violet, respectively. Also, such materials exhibited no mark
of degradation under repeated cycles and offered a remarkable potential for wastewater
treatment (Figure 33).
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3.3.4. Use in Rocket Propellants

The addition of Fc-based BRCs to the propellant system enhances the combustion
process and lowers the pressure exponents because of their better ignitability, excellent
compatibility, reversible redox behavior, and thermal stability. In this regard, new ferrocene-
grafted BRCs, named 3-(ferrocenylcarbonyl) propionic acid diglycidyl ester, were synthe-
sized and their electrochemical properties were extensively studied (Scheme 44). Fc-PADE
exhibited remarkable performance in the catalytic decomposition of inorganic oxidizer
ammonium perchlorate (AP) and compromising anti-locomotory potential [108]. The novel
ferrocene-based epoxy compound (101) also had compatible properties for burning rate
catalysis in ammonium-perchlorate-based propellant [109].
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Scheme 44. Synthesis of 3-(ferrocenylcarbonyl) propionic acid diglycidyl ester.

The inclusion of ferrocene in highly branched structures enhanced the catalytic be-
havior of BRCs and can mitigate controlled migratory problems. Using the same concept,
Wang’s group reported the synthesis of ethylene-diamine-based ferrocene-terminated den-
drimers (0 G, 1 G, 2 G, and 3 G) and evaluated their electrochemical properties (Figure 34).
The burning rate catalytic action of all synthesized dendrimers on the thermal breakdown
of AP was inspected by TGA and differential thermogravimetry (DTG) techniques. Further
anti-locomotory analysis revealed that first, second, and third generations of synthesized
materials expressed upgraded anti-migration behavior in the ammonium-perchlorate-based
propellant [110].
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Cheng and co-workers blended ferrocene-grafted triazolyl compounds (Fc−TAZS) and
characterized their structure through spectroscopic studies (Figure 35). Anti-locomotion
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and stability aspects of all Fc−TAZS were investigated, compared with catocene, and evalu-
ated for their ignition capacity towards the thermal degradation of oxidizing agents [111].
Further, it was observed that the shear degradation potential of ammonium perchlorate
could be upgraded by utilizing the triazolyl derivatives 102e, 102g, and 102k.
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3.3.5. Applications in BR Catalysis 
In a recent article, Keshver reported a synthesis of ferrocene-based hydroxyl-termi-

nated polybutadiene conjugates 107(a–d) through Friedel Crafts acylation reaction and 
their thermal-stability-related features were studied via thermo-gravimetric experiments 
(Scheme 45). Various other features like viscosity iron percentage and glass transition tem-
perature confirmed HTPB as a superb burning rate accelerator catalyst for the construc-
tion of a composite gas generator [111]. 
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3.3.5. Applications in BR Catalysis

In a recent article, Keshver reported a synthesis of ferrocene-based hydroxyl-terminated
polybutadiene conjugates 107(a–d) through Friedel Crafts acylation reaction and their thermal-
stability-related features were studied via thermo-gravimetric experiments (Scheme 45). Vari-
ous other features like viscosity iron percentage and glass transition temperature confirmed
HTPB as a superb burning rate accelerator catalyst for the construction of a composite gas
generator [112].
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(Scheme 45). Various other features like viscosity iron percentage and glass transition tem-
perature confirmed HTPB as a superb burning rate accelerator catalyst for the construc-
tion of a composite gas generator [111]. 
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3.3.6. Use in Electrochromic Appliances

Ferrocene (Fc) is widely used as an organometallic functional group owing to its easy
modification, excellent electron-donating ability, and single-electron reversible redox reac-
tion potential. A research group performed a synthesis of ferrocene-based triphenylamine
derivative (E)-N-(4-(Diphenylamino) phenyl)-formimidoyl ferrocene) (TPAFc) and carried
out CV analysis that confirmed a coupling reaction between TPA units and the formation of
an electroactive polymer film during successive scans (Scheme 46). These PTPAFc films dis-
played reversible electrochromic potential, excellent display, and quick switching response,
which qualified these materials as an efficient contributor to the operation of electrochromic
appliances [113].
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3.3.7. Modified Voltammetric Sensors with Ferrocene

Beitollahi et al. developed modified sensor and biosensor designs. Due to ferrocene’s
benefits, numerous electrochemical sensors and biosensors with favorable analytical proper-
ties have been developed (Figure 36). The enhanced electrochemical sensitivity is connected
to surface fouling resistance, which calls for excellent stability [114].
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3.3.8. Application of Ferrocene in Aqueous Redox Flow Battery Suitable for
High Temperatures

Using free radicals, the ferrocene monomer was successfully copolymerized with a
water-soluble co-monomer. The redox potential of the ferrocene polymer (E1/2 = 0.52 V)
in an aqueous environment is marginally higher than that of the low-molar-mass ferrocene
derivatives previously disclosed, according to electrochemical characterization (Figure 37).
Testing on batteries showed that the polymer exhibited consistent cycling behavior through
100 cycles of charging and discharging at room temperature and 60 ◦C, with an average
Coulombic efficiency of over 99.8% throughout all cycling trials. Investigations into the
active materials’ temperature stability showed that they can not only endure high tem-
peratures with ease, but that they actually facilitate the electrochemical reactions. As a
result, costly cooling solutions are no longer essential, and the environmental effects can be
carefully considered [115].
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3.3.9. Ferrocene-Based Non-Enzymatic Hydrogen Peroxide Sensors

In a recent study, novel ferrocene-based naphthaquinone structures 2,3-diferrocenyl-
1,4-naphthoquinone (107a) and 2-bromo-3-ferrocenyl-1,4-naphthoquinone (107b) were
synthesized through the combination of 2,3-Dibromo-1,4-naphthoquinone with ferrocene
boronic acid [115]. Additionally, electrochemical characterization methods such as CV, CA,
DPV, and EIS were used to examine the H2O2 detection capabilities of ferrocene-based
naphthaquinone derivatives. The voltammetric behavior of H2O2 at 2-bromo-3-ferrocene-
1,4-naphthoquinone in PBS has been studied under ideal conditions (Figure 38) [116].
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3.4. Agricultural Applications
3.4.1. Herbicide and Pesticide Safeners

In an auspicious work, ferrocene-functionalized heterocycles 108(c–h) were prepared
by treating α-ferrocene alcohol with azole or sulfur nucleophiles in acid-free conditions
and investigated for their plant growth regulation effect (Scheme 47). These prepared
azole derivatives showed plant vegetation potential and herbicidal findings of growth
modulation, and the herbicide antitoxin properties of synthesized azoles were controlled
by taking maize seeds and a reference herbicide (60% metasulfuron-methyl). After a
comprehensive study, these ferrocene derivatives were considered efficient plant growth
activators with herbicide safeness [117].
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It is worth mentioning that ferrocenes proved to be useful in evidencing the redox
properties of Fe(II) adsorbed onto mineral surfaces. To give an example, an exceptional
electrochemical sensor was developed based on graphitic carbon–nitride and graphene
oxide nanocomposites covalently linked with a ferrocene scaffold (Figure 39). The synthe-
sized chemosensor exhibited a very low value of the limit of detection for Metolcarb which
proved its superiority. The practical use of this sensitive material was found in many fruit
and vegetable samples and attained satisfactory results with high precision [118].

Molecules 2023, 28, 5765 53 of 78 
 

 

3.4. Agricultural Applications 
3.4.1. Herbicide and Pesticide Safeners 

In an auspicious work, ferrocene-functionalized heterocycles 108(c–h) were prepared 
by treating α-ferrocene alcohol with azole or sulfur nucleophiles in acid-free conditions 
and investigated for their plant growth regulation effect (Scheme 47). These prepared az-
ole derivatives showed plant vegetation potential and herbicidal findings of growth mod-
ulation, and the herbicide antitoxin properties of synthesized azoles were controlled by 
taking maize seeds and a reference herbicide (60% metasulfuron-methyl). After a compre-
hensive study, these ferrocene derivatives were considered efficient plant growth activa-
tors with herbicide safeness [116]. 

 
Scheme 47. One-pot α-ferrocenylalkylations with α-ferrocenols. 

It is worth mentioning that ferrocenes proved to be useful in evidencing the redox 
properties of Fe(II) adsorbed onto mineral surfaces. To give an example, an exceptional 
electrochemical sensor was developed based on graphitic carbon–nitride and graphene 
oxide nanocomposites covalently linked with a ferrocene scaffold (Figure 39). The synthe-
sized chemosensor exhibited a very low value of the limit of detection for Metolcarb which 
proved its superiority. The practical use of this sensitive material was found in many fruit 
and vegetable samples and attained satisfactory results with high precision [117]. 

 
Figure 39. Mechanistic model of the sensor response to Metolcarb. 

CH3ON
H

O
H3C CH3ON

OH
H3C

CH3ON
H

O
H3C

+e--e- Metolcarb
Metolcarb

Metolcarb

g-C3N4/GO Fc-TED Metolcarb Metolcarb

Figure 39. Mechanistic model of the sensor response to Metolcarb.



Molecules 2023, 28, 5765 52 of 75

3.4.2. Plant Growth Activators

Lewkoweski and co-workers synthesized ferrocene-appended α-amino-phosphonates
separated in the form of crystals with a remarkable yield of 50–70% (Scheme 48). Toxicity
assay of compound 109c was evaluated and described as less harmful for radish and
oat plants while 109a exhibited activity against Vibrio fischeri. Among all derivatives,
109d displayed exceptional behavior, totally harmless to oat seedlings and thought to be
the best contender for further investigation with respect to its expected application as a
herbicide [119].
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3.4.3. Solid-Phase Microextraction for the Determination of Iron Organic Compounds in
Seawater and Soil

In an article, direct immersion of solid-phase microextraction (DI-SPME) and gas
chromatography coupled to microwave-induced plasma with atomic emission detec-
tion (GC-MIP-AED) were used for the determination of five ferrocene derivatives (1,1′-
dimethylferrocene, ferrocene carboxaldehyde, acetylferrocene, ferroceneacetonitrile, and
benzoylferrocene) in seawater and soil. For this purpose, commercial fibers made of at-
tached divinylbenzene and polydimethylsiloxane with good extraction efficiency were used
in the DI mode. The reported detection limits (DLs) for soil and seawater were 0.9–4 ng g−1

and 3–110 pg mL−1, respectively (Figure 40) [120].
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3.4.4. A Probe-Free Electrochemical Immunosensor for Methyl Jasmonate

Methyl jasmonate, an endogenous plant hormone that is crucial to the creation of food,
was identified by a unique probeless electrochemical immunosensor accomplished by Xing
and coworkers. The procedure includes the attachment of ferrocene with carboxylated
graphene (COOH-GR) and multi-walled carbon nanotubes (COOH-MWNT) to produce
a composite that was further processed to afford screen-printed electrodes (SPE). The
conductivity and catalytic activity of the sensor were enhanced by the application of
COOH-GR and COOH-MWNT while keeping the MeJA antibody fixed. As a result, MeJA
can be detected using the immunosensor without the use of an external redox probe solution
with a very low detection limit, such as 31.26 fM (Figure 41) [121].
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3.4.5. Ferrocene-Containing Nitrogen Fertilizers

A recent survey reported liquid nitrogen fertilizers containing some derivatives of
ferrocene, detailing their use, importance in agriculture, and spectral analysis. Experimental
studies revealed that cotton and wheat have better retention of yield elements than control
when applying a new Ferben–potassium nitrogen liquid fertilizer during the application
period. The final result reported a surge in the yield of cotton by 5–6 ts/ha and wheat by
10–16 ts/ha, indicating high economic efficiency (Scheme 49) [122].
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3.5. Biological Applications

Biochemical uses of ferrocene derivatives are typified by a wealth of contributions. In
advanced research, Jolly and group members reported the progress of a vastly penetrating
double-mode electrochemical podium for the recognition of microRNAs, which was a
significant tool in gene expression activity. The platform was industrialized by consuming
peptide nucleic acids as probes on gold electrode surfaces to capture target miRNAs,
and thiolated ferrocene offered a harmonizing detection approach by elevating miRNA
concentration (Figure 42) [123]. The electrochemical platform could also be readily extended
to other miRNA/DNA detection along with the preparation of microarray platforms.
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Another handy piece of work described the fabrication protocol of a trifle electro-
chemical immunosensor for the hypersensitive identification of the Avian Leukosis virus
subgroup (Alv-J) using β-cyclodextrin, gold nanoparticles, and ferrocene group host–guest
composite as marked and GR-PTCA provide the sensor surface (Figure 43). Impairment of
composite material directly onto the surface of the secondary antibody (ab2) confirmed its
powerful binding affinity to the host. Moreover, it was reported that the immunosensor
had higher receptiveness, remarkable reliability, and reusability, recommended for the
computable diagnosis of ALv-5 during clinical trials [124].
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The DNA–drug complex has attracted great attention recently and the linkage of
ferrocene-functionalized drugs with nucleic acids seems to be a “cherry on the top” in
the field of medicinal chemistry. In a comprehensive study, a synthetic protocol for the
synthesis of a new guanine-rich DNA ligand based on naphthalene diimide (NDI) linked
with ferrocene was reported, and the redox potential was analyzed using guanine-rich
DNA-immobilized gold electrodes [125]. The redox activity of these ligands was evaluated,
and the electrode surface was modified for DNA binding. Moreover, CV analysis described
greater selectivity of 111 and 113 for G-quadruplex and realized the anticancer activity of
these compounds with a low value of cytotoxicity for normal cells (Figure 44).

In a different work, Jia’s group synthesized three ferrocene-based naphthalimides
and evaluated their attaching abilities with DNA using ethidium bromide displacement
techniques [126]. Among all derivatives, 115 exhibited the highest binding potential
for DNA strands with remarkable activity against four different human cancerous cells,
evaluated by cytotoxicity tests. The synchronizing potential of the ferrocene nucleus was
responsible for the upgradation of cytotoxicity that was linked to the damaged DNA of the
cancer cell (Figure 45).

An array of ferrocenyl chalcones was investigated for their binding affinities with calf
thymus DNA and bovine serum albumin, inspected by UV–visible, circular dichroism,
and phosphorescence spectroscopy [127]. Likewise, topoisomerase retardation analysis
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was applied to suppress the action of topoisomerases I and II in humans, and a positive
response was observed in a concentration-dependent mode. Further, the interaction be-
tween BSA and the five selected ligands (116–120) was analyzed by fluorescence quenching
spectroscopy (Figure 46).
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Ferrocene derivatives have quickly received significant interest in drug delivery re-
search due to their unique structure, redox character, and hydrophobicity, as they could
be transformed into a hydrophilic ferrocenium cation in the presence of a mild oxidizing
agent [128]. In this regard, a significant effort was made to design hydrophilic ferrocene
tetradecyl units to build up cationic micelles through self-assembly, and the detailed mecha-
nism is described in Figure 47. Micelles were then converted with hyaluronic acid to obtain
the HA-Fe-C14 complex. These micelles were used for the delivery of Adriamycin drugs,
released under a higher GHS environment. The synthesized micelles were concentrated
inside tumor cells and revealed highly efficient antitumor potential in both primary and
secondary biological screening tests [129].
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Recently, poly-functionalized chiral spiropyrazoline–ferrocene hybrids were synthe-
sized through asymmetric organic catalysis and screened for their RalA inhibition po-
tential (Scheme 50) [130]. Among all synthesized compounds, 123a exhibited powerful
RalA inhibition and led to the accretion of RSO and passive spread of pancreatic can-
cer cells via tempted mitochondrial damage and apoptosis in pancreatic tumor cells.
This was a competent application of asymmetric organic catalysis in organometallic
bio-organometallic chemistry.
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3.6. Medicinal Applications

Organometallic compounds like ferrocene have unique properties like low toxicity,
low oxidizing potential, water and air stability, and electrochemical aspects that allow
them to have wide applications in medicinal chemistry. Nowadays, ferrocene derivatives
have found their way into pharmacology as potent HIV, anti-cancer, anti-trypanosomal,
antimalarial, anti-diabetic, and antiviral agents, among others. These potent ferrocene-
based drugs were either prepared through organic synthesis or developed from already-
recommended drugs via drug reprofiling or repurposing strategies in which the structural
variation of established drugs with ferrocene scaffolds was reported [131,132].

3.6.1. Anticancer Activity

Ferrocene derivatives have been reported to display anti-proliferative activity against
several tumor cell lines with less toxic effects in comparison to known anticancer drugs.
Since 1970, several types of ferrocenyl compounds were synthesized and subjected to
anticancer studies because of their remarkable electrochemical properties and lower toxicity.
Ahmad et al. carried out the synthesis of four newly modified Mannich bases of Lawsone
that accommodated the Ferrocene units. Lawsone contains a naphthoquinone nucleus
whose drug properties were already reported [133]. The biological study showed that
compound 124a is the most active member among a series of four compounds that had
maximum antiproliferative activity and it could be a promising lead for the development
of ligands that could be used for the treatment of hormone-refractory prostate carcinomas
and MDR tumors (Figure 48).

Numerous ferrocene conjugates, including the new N-(p-chlorophenyl)-carboxamido
ferrocene (125–131), were synthesized and their antitumor activity was explored in de-
tail [134]. Among these ligands, 126 and 128 with benzimidazole mainstay were potent
against HeLa cells, attaining IC50 values of ~5 µM and ~6 µM, respectively. Complex 130,
also bearing a benzimidazole support, presented somewhat higher values (~11 µM). These
complex mechanisms were thought to be related to a more operative cytotoxic potential
(Figure 49).

Sonia and Martina synthesized ferrocenyl conjugates of clotrimazole by replacing one
of the aryl rings with ferrocene in the triphenylmethane system (Figure 50). Biological
screening tests of these derivatives on two different human prostate cells were carried out
and compared with the parent drug that exhibited a twofold increment in the cytotoxicity of
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these ferrocenyl conjugates on HT29 colorectal carcinoma cells. Moreover, commensurable
activity was shown against MCF-7 breast cancer cells [135].
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In an advanced work, unique nitric oxide accommodating pyrazole–ferrocene con-
jugates were synthesized and reported as COX-2 suppressors [136]. Bioassay analysis of
the synthesized compound confirmed the potency of 134 which was the highest among all
the synthesized compounds (Scheme 51) and had the maximum anti-propagative capacity
and could be destroyed by depolarization of the cell’s powerhouse, and discharge took
place not inside HeLa cells. This phenomenon was harmonized with the antiproliferative
potential for 134 which is thought to be a suitable drug for cancer therapy.
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Scheme 51. Synthesis of nitric-oxide-bearing pyrazole–ferrocene conjugate.

Ferrocene and furan derivatives have long been known to be some of the most bio-
logically active compounds [137,138]. Herein, five furoylferrocene analogs were prepared
through EAS reaction using AlCl3-EtAlCl2 Lewis acids (Scheme 52). Though toxicity is di-
rectly linked to concentration, at a 100 mg/mL concentration, the protection of cell viability
was observed to be 70%. For compounds 135–139, the necrotic effects were found to be
between 21% and 39% at a 50 mg/mL concentration [139].
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Combinatorial synthesis of ferrocene-linked amides was performed by Sansook and
co-workers through an amide coupling reaction (Scheme 53). Three final ferrocene-grafted
conjugates were characterized in the solid form by X-ray crystallography and exhibited
hydrogen bonding as found in NH---C=O N-methylation of the amide, which was used to
carry out a pharmacophore identification study. These synthesized ligands are realized as
effective-cannabinoid receptor (CB1, and CB2) agonists, representing single-digit nanomolar
potency [140].
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Realizing the anticancer potential of quinoline scaffolds, Maracic and colleagues syn-
thesized novel O-substituted and N-substituted 4-quinoline conjugates having ferrocene
scaffolds [141]. In vitro analysis exhibited that the N-substituted compound displayed cyto-
static activity on selective cancerous cells. Among all N-alkylated derivatives, 145 showed
remarkable activity against acute leukemia in blast crisis, whereas 146c realized a selective
inhibitory effect on Raji cells without harming the normal cell (Figure 51).
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In a different work, a group of Wei and coworkers synthesized a series of seven
Ferrocene-based coumarin conjugates and performed their biological screening, with the
conclusion that FcL1 and FcL5 showed excellent anticancer potential due to the small
value of formal potential E◦, and the latter exhibited promising activity against SGC line
cells [142]. Exceptionally, FcL4 displayed well-marked cytotoxicity against cancer cells with
an IC50 value of 1.09 µmol·L−1, comparable to Adriamycin (Scheme 54).
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3.6.2. Antimalarial Agents

Polymeric conjugates, introduced by Ringsdorf, have several benefits over non-
polymeric agents due to their high molecular mass and drug release can be delayed,
therefore improving drug bioavailability and thus allowing the administration of smaller
doses over larger intervals of time. Using the same concept, Mukaya synthesized two
groups of polymeric co-conjugates, one bearing ferrocene and the other containing a
neridrote moiety, and evaluated their antimalarial activity by secondary bioassay analy-
sis [143]. Among the two groups of drugs, ferrocene-grafted derivatives proved active
against a chloroquine-resistant strain of malarial agent, and especially 148e, along with
its co-conjugate, expressed outstanding antimalarial activity. Blood component analysis
revealed the selectiveness of these compounds for erythrocytic parasites without harming
the host’s red blood cells (Figure 52).
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Several drugs have been repurposed through ferrocene inclusion, and the most out-
standing compound reported so far is ferro-chloroquine, with notable in vitro antimalarial
activity against CQ-resistant plasmodium falciparum strains. Recently, a research group
reported the synthesis of an unusual ferrocene-functionalized artemisinin ligand through a
piperazine bridge and subjected it to biological screening tests on chloroquine cognizant
(NF54) and chloroquine refractory strains of the malarial causative agents [144]. Cytotoxic-
ity tests were carried out on fetus kidney cells and they concluded that amino artemisinin
derivatives with a ferrocene scaffold exhibited differential activity towards malarial para-
sites in the company of normal cells (Figure 53).
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An array of advanced cathomycin conjugates was contrived with compromising
product amounts by Mbaba and co-authors [145]. Primary biological screening analysis
confirmed the antimalarial activity of the target compound 152 towards the falciparum
pathogen. It was observed that the ferrocene scaffold elevated the potency of novobiocin
derivatives against plasmodium strains. Moreover, a secondary bioassay proved the
inhibition face behavior of these conjugates for heat shock proteins Hsp90 (Figure 54).
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Synthesis of three groups of new quinoline-based ferrocenyl conjugates through
an easy and effective study was performed by Minic’s group, and they evaluated their
antimalarial activity through a secondary bioassay [146]. It was realized that all three
derivatives showed little micro-molar potential towards the chloroquine-effective strain
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of P. falciparum, whereas 154 and 155 also expressed their sub-molecular activity towards
the chloroquine-ineffective strain of P. falciparum, making them leads for future malarial
investigation studies (Figure 55).
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3.6.3. Antioxidant Activity

Ferrocene and adamantane are chemically very different but are quite similar in size
and hydrophobicity, and the results obtained in these studies open wide possibilities
for applications of adamantly ferrocene derivatives. In an article, Stimac and colleagues
synthesized and reported the antioxidant potential of ferrocene derivatives through the
DPPH free radical scavenging method [147]. The percentage of DPPH quenching in
the presence of Fc-COOH and all prepared compounds was measured and shown in a
graph exposing that monosubstituted compounds 156 and 158 exhibited better antioxidant
potential than disubstituted compounds 157 and 159 (Figure 56). Further, an IC50 value
of 159 was the minimum among all synthesized ligands, which further confirmed its
antioxidant potential.
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3.6.4. Antidiabetic Agents

The group of Bano and Khan recently conducted a detailed study of ferrocene-grafted
acyl urea derivatives and homoleptic carboxylates through in silico and in vivo analysis
and evaluated their antidiabetic potential [148]. All examined scaffolds showed large
binding interactions for target sites, including receptors and enzymes, i.e., aldose reductase,
glucokinase, Cα glycosides, etc. In vivo analysis of these compounds on alloxan-coaxed
mice confirmed that DPC1 (160) and DPAA (161) decreased the blood glucose level of
the host body mass and dose-dependently (mg/kg) reduced the level of glycosylated
hemoglobin in the diabetic host (Figure 57).
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3.6.5. Ferrocene-Grafted Anti-Trypanosomal Agents

In another interesting example of drug repurposing, Mbaba and assistants developed
novel ferrocene 1,3-benzoxazine conjugates by applying a drug reprofiling strategy and
carried out their biology screening tests to confirm their anti-trypanosomal activity [149].
The remarkable medicinal potential of these compounds was observed against T. Brucei-
infected strains with an IC50 value of 0.15–38.6 µM. Moreover, compound 163c showed
maximum efficacy due to the side-chain CH2NMC2O4, and a 20-fold rise in the potency of
the reprofiled drug was observed (Figure 58).
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Using a different protocol, Paucar and co-researchers developed new ferrocenyl Man-
nich bases and carried out artificial insemination tests to check out their inhibitory potential
toward sleep sickness parasites [150]. Compound 164 showed superior suppressing ca-
pacity among all conjugates and the calculated IC50 value was also high, reaching the
maximum for the Arequipa strain. Further, this compound also minimized many damaged
cells through a genotoxic phenomenon. In the end, molecular docking was also performed
to find the binding capacities of the examined compound with Fe-SoD enzymes (Figure 59).
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3.6.6. Antimicrobial Agent

Antimicrobial agents have been effectively applied to treat patients with micro-
organism diseases, but the major problem is that their causative agents have become
immune to these drugs. Many drugs that are based on metallocene, especially ferrocene,
possess modified pharmacological and toxicological characteristics compared to their origi-
nal characteristics when administered as metal-based compounds.

Parveen et al. explored the synthesis of new pyrazoline-appended ferrocenyl quinoline
compounds 165a–f and checked out their antimicrobial potential [151]. Fifteen bacterial and
fungal strains were exposed to these derivatives via the Broth micro-dilution method, and
the compounds exhibited extraordinary MIC values against the examined stains. Among
all samples, ligands 165d exhibited remarkable antimicrobial activity by measuring MIC
value within the range of 8–32 Hg/mol. These organometallic compounds could be used
as part of a two-in-one strategy to synthesize potential antimicrobials (Figure 60).

Molecules 2023, 28, 5765 69 of 78 
 

 

Figure 59. Synthesis, cytotoxicity assay, mode of action, and computational analysis of compound 
164. 

3.6.6. Antimicrobial Agent 
Antimicrobial agents have been effectively applied to treat patients with micro-or-

ganism diseases, but the major problem is that their causative agents have become im-
mune to these drugs. Many drugs that are based on metallocene, especially ferrocene, 
possess modified pharmacological and toxicological characteristics compared to their 
original characteristics when administered as metal-based compounds. 

Parveen et al. explored the synthesis of new pyrazoline-appended ferrocenyl quino-
line compounds 165a–f and checked out their antimicrobial potential [150]. Fifteen bacte-
rial and fungal strains were exposed to these derivatives via the Broth micro-dilution 
method, and the compounds exhibited extraordinary MIC values against the examined 
stains. Among all samples, ligands 165d exhibited remarkable antimicrobial activity by 
measuring MIC value within the range of 8–32 Hg/mol. These organometallic compounds 
could be used as part of a two-in-one strategy to synthesize potential antimicrobials (Fig-
ure 60). 

 
Figure 60. Chemical structure of ferrocene-grafted pyrazoline conjugated. 

3.6.7. Ferrocene Hybrids as BET Bromodomain Inhibitors 
Hassell’s group synthesized a wisely intended bromodomain inhibitor 166b that was 

a rationally designed ferrocene conjugate of the BET bromodomain (BRD) probe molecule 
166a [151]. The newly developed probe 166b displayed excellent BRD affinity in biochem-
ical assays as well as in pharmacokinetic studies, and a slight rise in cell potency was ob-
served when the same molecule was converted to a purported Fe (III) species in cells after 
exposure to sodium nitroprusside. The metabolism of the synthesized structure calls for 
an extensive study of its metabolism in metal-comprising compounds, which may im-
prove their application in clinical settings (Figure 61). 

 

Figure 60. Chemical structure of ferrocene-grafted pyrazoline conjugated.

3.6.7. Ferrocene Hybrids as BET Bromodomain Inhibitors

Hassell’s group synthesized a wisely intended bromodomain inhibitor 166b that
was a rationally designed ferrocene conjugate of the BET bromodomain (BRD) probe
molecule 166a [152]. The newly developed probe 166b displayed excellent BRD affinity in
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biochemical assays as well as in pharmacokinetic studies, and a slight rise in cell potency
was observed when the same molecule was converted to a purported Fe (III) species in
cells after exposure to sodium nitroprusside. The metabolism of the synthesized structure
calls for an extensive study of its metabolism in metal-comprising compounds, which may
improve their application in clinical settings (Figure 61).
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3.6.8. Antiviral Agent

The synthesis of 1,1-ferrocenediyl conjugates and their HCV GT-1a and GT-1b replicons
has been extensively studied by Gadhachanda’s group by exploiting the versatility of
ferrocene chemistry [153]. Among all reported compounds, 167a offered a fragile rotary
component that bargains extra conformational flexibility to provide promising affinities
with the marked NS5A protein. The QSAR derived after these organometallic materials
opened an influential door for the groundbreaking design of the geometrically associated,
and favorably pursued, biplanar organic analog Odalasvir (Figure 62).
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3.7. Electrochemical Insulin Detection

Using an advanced methodology, a stepwise fabrication process of the electrochemi-
cal sensor based on a polyfunctional fullerene/BSA-luminol nanocomposite, Fc-aptamer
II, and a sandwich-like ECL detector was reported and subjected to insulin detection
(Figure 63). Ferrocene, with remarkable conductivity and promising catalytic accomplish-
ment for H2O2, was employed to inactivate aptamer II with the maximum capability,
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and the corresponding ferrocene-grafted aptamer II acted as a seizure probe to char-
acterize insulin with greater specificity. Additionally, the constructed ECL aptasensor
represented a sensitivity range of 0.0001–1000 ng/mL and a low limit of detection of
0.04 pg./mL (S/N = 3) for insulin [154].
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An electrochemical immunosensor was selected as an efficient analytical technique
to assess the ultra-sensitive detection of neuron-specific enolase (NSE) in human serum.
During the experiment, it was discovered that DPV significantly altered the peak value
signals of Cu-MOFs-Au and Fc-L-Cys at potentials of 0.20 V and 0.20 V, respectively. As a
result, a ratiometric electrochemical immunosensor for the quantitative determination of
NSE was created using Fc-L-Cys as the label for Ab2 and Cu-MOFs-Au as the electrode-
sensing surface. DPV tested and examined the immunosensor’s data and performance
results. Cu-MOFs can deposit Au nanoparticles on a greater number of sites because they
have a large specific surface area in addition to offering the immunosensor the signal
it needs. L-cysteine (L-Cys) can significantly reduce Fc-COOH leakage, allowing Fc+ to
steadily deliver the additional signal that is needed. Cu-MOFs-redox Au’s peak fell while
Fc-L-Cys’ redox peak rose as the NSE concentration was increased. At a specific range
of values, the ratio (I = ICu/IFc) of two distinct signals was linear with the logarithm of
NSE concentration. In short, the immunosensor demonstrated good performance in the
concentration range of 1 pg/mL to 1 g/mL, and the detection limit was 0.011 pg/mL, under
the optimal experimental conditions. It demonstrated an unexpectedly high sensitivity
when compared to other immunosensors. Also, this technique offered a fresh concept for
the highly precise quantitative detection of other biomarkers [155].
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4. Conclusions

This review provides insight into a wide range of aspects regarding the synthesis
of organic conjugates functionalized with ferrocene motifs and their multidisciplinary
applications. Ferrocene derivatives constitute an important class of organometallic com-
pounds with an extensive range of applications due to the inspiring chemistry of the iron
(II) center and the adamancy in aqueous and aerobic media integrated with aromaticity.
This recapitulation not only gives access to a great heterogeneity of ferrocene derivatives
but also highlights the ability of these derivatives to endure simplistic iron oxidation, which
makes them mesmerizing targets in numerous disciplines like materials science, agriculture,
industry, electrochemistry, bio-organometallic chemistry, catalysis, and pharmacological
applications. The content of this review article is confined to the literature published from
2016 to the start of 2023.
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