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Abstract: New substituted [30]trithiadodecaazahexaphyrines (hemihexaphyrazines) were synthesized
by a crossover condensation of 2,5-diamino-1,3,4-thiadiazole with 4-chloro-5-(2,6-diisopropylphenoxy)-
or 4,5-bis-(2,6-diisopropylphenoxy)phthalonitriles. The compounds were characterized by 1H-, 13C-
NMR, including COSY, HMBC, and HSQC spectroscopy, MALDI TOF spectrometry, elemental analysis,
IR and UV-Vis absorbance and fluorescence techniques.
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1. Introduction

Porphyrinoids have emerged as attractive molecular building blocks for arrangement
into molecular materials and nanotechnological devices [1–5]. To date, they have been
successfully incorporated by us as active components in photo- and electroactive sys-
tems for optoelectronics [6–9], solar energy conversion [10–13], and biomedicine [14–17],
among others.

Hemihexaphyrazines (Hhps), are a class of macrocyclic compounds that exhibit unique
chemical properties and have gained significant attention in various scientific fields. These
compounds consist of nitrogen, sulfur, and carbon atoms arranged in a highly symmetrical
and complex structure, including three thiadiazole and three isoindole units linked together
in an alternating fashion via nitrogen atoms to form a six-member macroheterocyclic system
(see 4, for example). They can be classified as expanded hemiporphyrazines [18]. Their
large conjugated systems enable efficient absorption and emission of light. Moreover, Hhps
exhibit tunable redox behavior, which can be exploited in energy storage systems and
electrochemical devices. Their ability to coordinate with metal ions allows for the creation
of functional metallo-Hhp complexes with potential applications in molecular recognition
and sensing.

Their structure was unequivocally established by us by gas-phase electron diffrac-
tion [19–21] and X-ray data [22]. It was revealed that H3Hhp is characterized by extremely
high thermal stability [23] and is able to form long self-organized rows on the surface of
Au(111), which assumes a space-controlling deprotonating process, and thereby shows
potential as a new material for information storage [24]. Hhps have an expanded inner
cavity and therefore are able to accommodate three metallic atoms [25–27]. Recently it
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was shown that due to the presence of nine nitrogen atoms in the inner ring, H3Hhp can
form a double-decker complex with potassium [28]. Metallation of the macrocycle with
diethylamid lithium led to another unusual double-decker structure in which two Li3Hhp
are joined by Cl atom [29].

Hhps are flat expanded macrocycles with high structural versatility, including mul-
tiple modifications by the introduction of peripheral groups and the incorporation of
various metal atoms in the central cavity. It was established that homotrinuclear Ni- and
Cu-complexes of Hhp can be reduced in anaerobic conditions to produce dianion rad-
icals with interesting magnetic properties [30,31]. These compounds show promising
properties of great interest as components of molecular conjugates with other photo- and
electroactive species. However, as free, unsubstituted bases, H3Hhps are very poorly
soluble in organic solvents, which results in aggregation phenomena that can be obvi-
ated by the introduction of bulky peripheral substituents, facilitating their synthetic use
in functionalization processes [32,33]. Recently we have reported on the synthesis of
hexa(3,6-hexyl)hemihexaphyrazine [34].

Among these bulky substituents, diisopropylphenoxy groups have been frequently
used in Hph-related porphyrinoides because they provide high macrocycle solubility and
dramatically reduce macrocycle aggregation [35–40]. For this reason, in this work, we
propose the preparation of new Hphs with bulky substituents from precursors such as 4,5-
bis(2′,6′-diisopropylphenoxy)- and 4-(2′,6′-diisopropylphenoxy)-5-chlorophthalonitriles.
The latter would allow the post-functionalization of the macrocycle by reactions on the
chlorine atoms.

2. Results and Discussion

Substituted phthalonitriles 1 and 2 were synthesized from commercially available 2,6-
diisopropylphenol and 4,5-dichlorophthalonitrile according to reported procedures [37,38].
The compounds were characterized by 1H-NMR, and correct assignment of signals of both
was necessary for achieving the proper assignation of the protons of the target macrocycles
3 and 4. 2,5-Diamino-1,3,4-thiadiazole was prepared according to a known procedure [41].
Substituted H3Hhps 3 and 4 were prepared by a crossover condensation of the corre-
sponding phthalonitriles with an equimolar amount of 2,5-diamino-1,3,4-thiadiazole in
anhydrous ethylene glycol in an argon atmosphere at reflux temperature (Scheme 1). Com-
pound 3 consists of a mixture of two regioisomers with symmetries C1 and C3, respectively,
due to the asymmetry of the starting phthalonitrile 1, which could not be separated.
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Column chromatography in silica gel using a mixture of heptane/ethyl acetate (5:1)
as an eluent was applied to yield intensely orange-colored macroheterocycles 3 and 4. It
was found that due to the presence of the bulky substituents on the periphery, 3 and 4
were highly soluble in common organic solvents such as DCM, CHCl3, THF, ethyl acetate,
acetone and toluene at room temperature. Compounds 3 and 4 were characterized by MS
(MALDI-TOF), UV-Vis, IR, NMR and elemental analysis.

The MS spectrum of 3 (Figure 1) shows a molecular ion located at 1314.6 m/z,
which corresponds to protonated form [3 + H]+, along with signals of lower intensities at
1336.4 m/z and 1352.6 m/z, corresponding to [3 + Na]+ and [3 + K]+ ions, respectively.
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A peak at 1738.8 m/z (Figure 2) that corresponds to molecular ion [4 + H]+ was
detected in the mass spectrum of 4 along with signals of lower intensity at 1760.7 and
1776.7 m/z corresponding to [4 + Na]+ and [4 + K]+ ions.
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Due to their high solubility in organic solvents, these compounds are of great interest
as subjects for NMR spectroscopy studies. 1H-NMR spectra of 3 and 4 recorded in CDCl3
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are showed in Figures 3 and 4, respectively. One can distinguish three principal areas of the
signal location: 0.5–3.2 ppm—protons of aliphatic isopropyl groups; 6.5–8.1 ppm—protons
of aromatic systems; and 12.0–12.5 ppm—portions of intrinsic N-H groups. Positions and
integrals of the proton signals of the first two groups of signals are in good agreement with
data described previously for the aliphatic and aromatic parts of porphyrinoids bearing
bulky groups [32,33,42]. Hence, in comparison with octasubstituted phthalocyanine [37],
where the signal of protons of inner imino groups was found to be located in a high field
(−0.53 ppm), the corresponding signals of H3Hhps 3 and 4 were found in a low field, ca.
12 ppm. The appearance of these signals in a low field is typical of hemiporphyrazine free
bases and confirms the nonaromatic character of the ABABAB macrocyclic system.
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It is worth noting that a singlet at 12.24 ppm in the 1H-NMR spectrum of 4 (Figure 4) is
split into two signals (12.35 and 12.40 ppm) for 3 due to its lower symmetry. The presence
of these two signals in the spectrum of 3 can be explained by the formation of the C1 and
C3 regioisomers. Previously, the same effect was observed for related camphor-substituted
H3Hhps [32]. The integrals of these two signals can be used to estimate the ratio of the C1
and C3 regioisomers at 3:2.

For a comprehensive structural characterization of compound 4, various NMR spectra
including 1H-, 13C-NMR, 2D-correlations COSY 1H-1H, HSQC 1H-13C and HMBC 1H-
13C were performed (Figures S1–S4). To accurately assign the signals in the 1H, 13C
NMR spectra, quantum chemical calculations of the magnetic shielding constants were
performed using the GIAO method based on the optimized structure of 4 obtained through
DFT CAM-B3LYP 6-31G(d,p) calculations. Notably, a high level of agreement between the
experimental and calculated chemical shifts was observed (Table S1).
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The analysis of the COSY spectrum (Figure S2) revealed the presence of cross-peaks
originating from the interaction between protons CH (3.08 ppm) and CH3 (1.21, 1.15 ppm) of
the diisopropyl fragments. Additionally, the cross-peaks of the phenyl protons overlapped
with the diagonal signals. In the HMBC 1H-13C correlation spectrum (Figure S3), cross-
peaks between protons b, c, d, e, f (as denoted in Figure 4) and the corresponding carbon
atoms were observed. Moreover, in the HMBC 1H-13C spectrum (Figure S4), cross-peaks
resulting from the interaction between NH protons (12.24 ppm) and carbon atoms (128.5,
152.82 ppm) of the pyrrole fragment were noteworthy.

The aromaticity of the macrorings, which form the foundation of porphyrinoids, is
a crucial aspect in the chemistry of these compound families. The optimized geometry
of compound 4 reveals a planar framework consisting of three thiadiazole and isoindole
rings connected by nitrogen atoms. The phenyl rings of the lateral substituents, specifically
the 2,6-diisopropylphenoxyl groups, exhibit a rotational orientation with respect to the
macrocyclic plane of approximately 76 degrees (+0.22/−0.07). Overall, the structure of
molecule 4 exhibits approximate D3 point group symmetry.

The evaluation of global and local aromaticity was conducted using the GIAO/CAM-
B3LYP/6-31G(d,p) method based on the geometry optimized at the DFT/CAM-B3LYP/6-
31G(d,p) level. The results of these calculations are presented in Table 1. To assess the
impact of bulky substituents on aromaticity, the nonsubstituted H3Hhp molecule was also
calculated using the same methodology (Table 1).

A positive NICS (nucleus-independent chemical shift) value of 1.52 ppm was observed
at the mass center A of molecule 4, indicating its nonaromatic nature. Additionally, the
calculated chemical shifts near the exocyclic N-atoms B exhibited low negative values,
suggesting weak electron circulation, and further supporting the nonaromatic character of
the macrocycle. Furthermore, a significant alternation (0.085 Å) was observed in the bond
lengths of the exocyclic atoms N (Nex-Cthia (1.369 Å) and Nex-Cpyrr (1.284 Å), consistent
with previous findings [22] for hexapentoxyhemihexaphyrazine. These results provide
additional evidence for the nonaromatic nature of the macrocycle based on hemihexa-
phyrazine.



Molecules 2023, 28, 5740 6 of 13

Table 1. NICS (nucleus-independent chemical shift) criteria, measured in ppm, evaluated using the
GIAO method at the DFT/CAM-B3LYP/6-31G(d,p) level. These criteria were determined for the
centers depicted in the fragment of compound 4.
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4 H3Hhp

A 1.52 1.48

B −2.08–−2.10 −2.06

C 1.15 1.25

D −9.73 −8.72

E −8.81 −8.81

F −10.55 −

It is worth noting that the pyrrole moieties (centers C) within the isoindoline subunits
lose their aromaticity due to the presence of double bonds connecting them to the exocyclic
nitrogen atoms. This structural modification significantly disrupts their local aromaticity.
However, the aromaticity of the benzene rings (centers D), thiadiazole rings (centers E),
and benzene cycles (centers F) in the lateral substituents remains preserved.

As shown in Table 1, the introduction of bulky substituents at the periphery of the
macrocycle has minimal impact on the aromaticity of compound 4.

The UV-Vis and emission spectrum of 3 and 4 were recorded in CHCl3 (Figure 5).
The shape of the spectral curve of the spectrum is typical for the ABABAB family of
macrocycles [24,25,41]. The location of the absorption maxima in the violet part of visible
spectrum confirms the nonaromatic character of the compounds.
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Measurements by emission spectroscopy of compounds 3 and 4 in chloroform were
carried out at room temperature using excitation by visible light, the wavelengths of which
correspond to absorption maxima of 419 and 423 nm, respectively. It was established that 4
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generates fairly broad fluorescence spectra that maximize around 600 nm (Figure 5), giving
rise to a virtual mirror image with different intensities than in the absorption spectrum.
The fluorescence quantum yields of 3 and 4 in CHCl3 were found to be equal to 0.050 and
0.084 respectively. It is worth noting that the characteristics found are in agreement with
those revealed earlier for pentoxy-substituted H3Hhps [22], and their low values indicate
the essential participation of radiationless channels for quenching of excited states. The
huge values of the Stoke’s shift (161 nm for 3, 158 nm for 4) show that essential structural
rearrangements take place when the molecules are in the excited states. The reasons for
this are under study.

Views of molecular orbitals of 4 are shown in Figure 6.
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3. Experimental Section
3.1. Materials and Methods

Inert conditions and standard glassware were used to perform all reactions, which
were monitored using TLC plates pre-coated with silica gel 60-F254 (Merck). Column
chromatography was carried out using Merck silica gel 40–63 µm, 230–400 mesh and
Fluka silica gel, 40–200 mesh. 1H-NMR spectra were performed using Bruker DRX 500,
Bruker Avance and Bruker Avance II (300 and 500 MHz) spectrometers furnished by the
Interdepartmental Investigation Service (SIdI) of the Universidad Autónoma de Madrid
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(UAM). Internal references for all spectra were established using the residual solvent of
CDCl3 (1H: δ = 7.26), relative to SiMe4. 13C-NMR, 2D spectra were performed using an
Avance III Bruker 500 NMR spectrometer furnished by the Joint Research Center, Upper
Volga Regional Center of Physical and Chemical Research, Ivanovo, at operating frequencies
of 500.17, 125.77 MHz, respectively. A 5 mm 1H/31P/D-BBz-GRD Triple Resonance Broad
Band Probe (TBI) was employed. The standard pulse sequence WALTZ 16 from the TopSpin
3.6.1 software was used for 13C{1H} NMR spectra registration. There were 16,000 scans
in the spectral range of 29761.9 Hz with a power of RG amplifier (RG = 2050); 32,768
data points were acquired. To assign the NMR signals in the 1H- and 13C-spectra, the
two-dimensional methods COSY, HSQC and HMBC were used. Temperature control was
achieved using a Bruker variable temperature unit (BVT-2000) in combination with a Bruker
cooling unit (BCU-05) to provide chilled air. Experiments were run at 298 K without sample
spinning. The inaccuracy of the chemical shift measurement with respect to the external
standard, HMDSO (Sigma Aldrich, St. Louis, MO, USA), was evaluated as ±0.01 ppm for
1H and ±0.1 ppm for 13C NMR spectra.

The two-dimensional correlation spectroscopy (2D COSY) spectra with a zero-quantum
suppression element were acquired with a 16.96 ppm spectral window in the direct dimen-
sion F1 with 2048 complex data points and a 16.96 ppm spectral window in the indirect
dimension F2 with 128 complex points. The spectra were acquired with 64 scans and
relaxation delay of 2 s.

The 2D 1H-13C HSQC (1H-13C correlation via double INEPT transfer) spectra were
recorded in a phase-sensitive mode using the Echo/Antiecho-TPPI gradient selection with
decoupling during acquisition.

The 2D 1H-13C HMBC correlation via heteronuclear zero and double quantum coher-
ence optimized on long-range couplings (no decoupling during acquisition) using gradient
pulses for selection were recorded using «Hmbcgpndqf» (TopSpin3.6.1). JASCO V-660
and JASCO FP-8600 spectrophotometers were used to measure UV-Vis and fluorescence,
respectively, in the Department of Organic Chemistry at Universidad Autónoma de Madrid.
Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) was recorded
using a AXIMA Confidence Shimadzu spectrometer, elemental analysis was performed on
a Flach EA 1112 instrument, and IR spectra were carried out on an Avatar 360 FT-IR ESP
spectrophotometer using the resources of the Center for Collective Use of Scientific Equip-
ment of Ivanovo State University of Chemistry and Technology. Fluorescence quantum
yields were determined as reported in the literature [43], using tetraphenylporphyn (TPP)
as a standard.

3.2. Synthesis

4-Chloro-5-(2,6-diisopropylphenoxy) phthalonitrile (1) [37]. Anhydrous potassium carbon-
ate (2.4 g, 15.5 mmol) was added to a solution of 2,6-diisopropylphenol (0.9 g, 5 mmol)
and 4,5-dichlorophthalonitrile (0.98 g, 5 mmol) in dry DMF (75 mL). The reaction mixture
was heated in an argon atmosphere at 45 ◦C for 24 h. It was then cooled down and poured
into water and the precipitate was filtered off and washed with water. After drying, the
crude product was purified by column chromatography using a mixture of heptane/ethyl
acetate (5:1) as an eluent. Yield: 64% (1.09 g); mp 181 ◦C. 1H-NMR (300 MHz, CDCl3):
δ (ppm) = 7.83 (s, H), 7.32–7.21 (m, 3 H), 6.68 (s, H), 2.68 (sept, J = 6.9 Hz, 2H), 1.12 (d,
J = 6.9 Hz, 12H).

4,5-Bis(2,6-diisopropylphenoxy) phthalonitrile (2) [38]. Anhydrous potassium carbonate
(2.4 g, 15.5 mmol) was added to a solution of 2,6-diisopropylphenol (1.8 g, 10 mmol) and
4,5-dichlorophthalonitrile (0.5 g, 2.5 mmol) in dry DMF (40 mL). The reaction mixture
was heated at 80 ◦C in an argon atmosphere for 48 h. It was then cooled down and
poured into water and the precipitate was filtered off and washed with water. After
drying, it was purified by column chromatography using a mixture of heptane/ethyl
acetate (5:1) as an eluent. Yield: 34% (0.41 g); mp 179-180 ◦C. 1H-NMR (300 MHz, CDCl3):
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δ (ppm) = 7.31 − 7.19 (m, 6H), 6.68 (s, 2H), 2.88 (sept, J = 6.9 Hz, 4H), 1.15 (d, J = 6.9 Hz,
24H).

2,14,26-Trichloro-3,15,27-tri[2′,6′-diisopropylphenoxy]-5,36:12,17: 24,29-triimino-7,10:
19,22: 31,34–tritio-[f,p,z]–tribenzo-1,2,4,9,11,12,14,19,21,22,24,29-dodecazacyclotriaconta-
2,4,6,8,10,12,14,16,18,20,22,24,26,28,30-pentadecaene (3)

A mixture of 4-chloro-5-(2,6-diisopropylphenoxy)phthalonitrile (0.58 g 0.72 mmol) and
2,5-diamino-1,3,4-thiadiazole (0.2 g 1,72 mmol) in 10 mL of anhydrous ethylene glycol was
heated at reflux during 24 h in an argon atmosphere. Water was added to the solution, resulting
in the formation of a precipitate that was filtered off, washed with water, and extracted
with CHCl3 after drying. The solution was dried over MgSO4 and filtered off, and the
solvent was evaporated under reduced pressure. Final purification was performed by column
chromatography using silica gel as a solid phase and a mixture of heptane/ethyl acetate
(5:1) as an eluent, resulting in an orange crystalline solid. Yield: 24% (0.18 g); mp > 240 ◦C.
1H-NMR (500 MHz, CDCl3): δ (ppm) = 12.40–12.35 (m, 3H) 8.06–7.98 (m, 3H), 7.27–7.19
(m, 8H), 7.12–7.11 (m, 3H), 6.97–6.94 (m, 3H), 2.93–2.88 (m, 6H), 1.19–1.01 (m, 36H). UV-Vis
(CHCl3) λmax nm (log ε, dm3·mol−1·cm−1): 397 (4.89), 419 (4.91), 467 (4.12), 507 (3.76). IR
(KBr) ν (cm−1): 3434, 3225, 2936, 2926, 2860, 1627, 1433, 1364, 1257, 1209, 1065, 965, 534. MS
(MALDI-TOF, CHCA), m/z: 1314.6 [M + H]+, 1336.4 [M + Na]+, 1352.6 [M + K]+.

2,3,14,15,26,27-Hexa[2′,6′-diisopropylphenoxy]-5,36:12,17:24,29-triimino-7,10:19,22:31,34-
trithio-[f,p,z]-tribenzo-1,2,4,9,11,12,14,19,21,22,24,29-dodecazacyclotriaconta-2,4,6,8,10,12,
14,16,18,20,22,24,26,28,30-pentadecaene (4)

A mixture of 4,5-bis-(2,6-diisopropylphenoxy) phthalonitrile (0.4 g 0.833 mmol) and
2,5-diamino-1,3,4-thiadiazole (0.096 g 0.833 mmol) in 10 mL of anhydrous ethylene glycol
was heated at reflux during 24 h in an argon atmosphere. The reaction mixture was added
to water, resulting in the formation of a precipitate that was filtered off, washed with water,
and extracted with CHCl3 after drying. The solution was dried over MgSO4 and filtered off,
and the solvent was evaporated under reduced pressure. Final purification was performed
by column chromatography using silica gel as a solid phase and a mixture of heptane/ethyl
acetate (5:1) as an eluent, resulting in an orange crystalline solid. Yield: 17% (0.08 g)
mp > 240 ◦C. 1H-NMR (500 MHz, CDCl3): δ (ppm) = 12.24 (s, 3H), 7.33–7.19 (m, 24H),
3.13–3.04 (m, 12H), 1.22–1.12 (m, 72H). 13C-NMR (125 MHz, CDCl3): δ (ppm) = 169.77,
152.82, 152.17, 148.27, 141.38, 128.49, 126.63, 124.88, 107.9, 27.5, 24.24,22.73.

UV-Vis (CHCl3) λmax nm (log ε, dm3·mol−1·cm−1): 292 (4.80) 400 (4.96), 423 (4.91), 466
(4.37), 509 (4.16). IR (KBr) ν (cm−1): 3410, 2963, 2924, 2861, 1620, 1480, 1444, 1364, 1376,
1274, 991, 887, 850, 480. MS (MALDI-TOF, CHCA), m/z: 1738.8 [M + H]+, 1760.7 [M + Na]+,
1776.7 [M + K]+.

3.3. Quantum Chemical Calculations

Geometry optimization of 4 was carried out using density functional theory (DFT)
calculations utilizing long-range corrected hybrid functional CAM-B3LYP [44] with a
6-31G(d,p) basis set. Force field calculations performed at the same level indicated no
imaginary frequencies. All calculations were performed using Gaussian 16 software [45].
Optimized geometry parameters are shown in Table S2.

To account for solvation effects, the NMR shielding constants were calculated using
the GIAO method [46] using the polarizable continuum model (PCM). To ensure accurate
calculations, benzene and TMS (tetramethylsilane) were selected as the standards for de-
termining the chemical shifts of sp2- and sp3-hybridized carbons, respectively, following
established recommendations [47,48]. The geometry and shielding parameters of the refer-
ence compounds were calculated using the same theoretical approach as the compounds
under investigation.

δi = σre f − σi + δre f
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where σref, σi represent the shielding constants calculated for 4 and standards, and δref
is an experimental chemical shift of the reference compound (128.5 ppm for benzene
13C NMR, 0 ppm for TMS). Correlations between experimental (dexp) and computational
(dcalc) (GIAO) 13C and 1H chemical shifts (4) are shown in Table S1. Calculations of the
nucleus-independent chemical shift (NICS) [49] were performed for structure 4.

4. Conclusions

Bulky substituted trichlorotri(2,6-diisopropylphenoxy)- and hexa(2,6-diisopropylphenoxy)
hemihexaphyrazines 3 and 4 were prepared for the first time by condensation of 4-chloro-5-
(2,6–diisopropylphenoxy) phthalonitrile and 4,5-bis-(2,6–diisopropylphenoxy) phthalonitrile,
respectively, with 2,5-diamino-1,3,4-thiadiazole using ethylene glycol as solvent. Their high
solubility and lack of aggregation in organic solvents allowed easy purification by column
chromatography and spectroscopic characterization, which is unusual with these kinds of
porphyrinoids. The compounds were characterized by IR, NMR, absorption and emission
UV-Vis spectroscopy, and mass spectrometry. An expanded inner cavity endowed with 15
nitrogen and 12 carbon atoms provides these systems with unique coordination properties,
which will be reported in due course.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules28155740/s1. Figure S1: 13C-NMR spectrum of 4 in
CDCl3; Figure S2: COSY 1H-1H NMR spectrum of 4 in CDCl3; Figure S3: HSQC 13C-1H NMR spec-
trum of 4 in CDCl3; Figure S4: HMBC 13C-1H NMR spectrum of 4 in CDCl3; Table S1. Experimental
and computational (GIAO) chemical shifts (4) 13C and 1H; Figure S5: IR spectrum of 3 in palette
with KBr; Figure S6: IR spectrum of 4 in palette with KBr; Table S2. (a) Geometry parameters (Å)
and and Etot (a.u.) of 4 optimized using the DFT/CAM-B3LYP/6-31G(d,p) method; (b) Geometry
parameters (Å) and Etot (a.u.) of H3Hhp optimized using the DFT/CAM-B3LYP/6-31G(d,p) method
of D3h symmetry.
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