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Abstract: Milk is one of the preferred beverages in modern healthy diets, and its freshness is of great
significance for product sales and applications. By combining the two-dimensional (2D) correlation
spectroscopy technique and chemometrics, a new method based on visible/near-infrared (Vis/NIR)
spectroscopy was proposed to discriminate the freshness of milk. To clarify the relationship be-tween
the freshness of milk and the spectra, the changes in the physicochemical indicators of milk during
storage were analyzed as well as the Vis/NIR spectra and the 2D-Vis/NIR correlation spectra. The
threshold-value method, linear discriminant analysis (LDA) method, and support vector machine
(SVM) method were used to construct the discriminant models of milk freshness, and the parameters
of the SVM-based models were optimized by the grid search method and particle swarm optimization
algorithm. The results showed that with the prolongation of storage time, the absorbance of the
Vis/NIR spectra of milk gradually increased, and the intensity of autocorrelation peaks and cross
peaks in synchronous 2D-Vis/NIR spectra also increased significantly. Compared with the SVM-
based models using Vis/NIR spectra, the SVM-based model using 2D-Vis/NIR spectra had a >15%
higher prediction accuracy. Under the same conditions, the prediction performances of the SVM-
based models were better than those of the threshold-value-based or LDA-based models. In addition,
the accuracy rate of the SVM-based model using the synchronous 2D-Vis/NIR autocorrelation spectra
was >97%. This work indicates that the 2D-Vis/NIR correlation spectra coupled with chemometrics
is a great pattern to rapidly discriminate the freshness of milk, which provides technical support for
improving the evaluation system of milk quality and maintaining the safety of milk product quality.

Keywords: milk; freshness; Vis/NIR; two-dimensional correlation spectra; chemometrics

1. Introduction

Milk is a natural food with high nutritional values. It is rich in lipids, proteins,
lactose, vitamins, minerals, and other bioactive nutrients [1,2], and is thus deeply loved by
consumers. Milk, however, is very perishable. Particularly, the improper storage or lack of
a complete cold chain system in collection, processing, transportation, and sales leads to
lactose being fermented to produce acids, increasing the total number of colonies, causing
fat oxidation and rancidity, and largely reducing its nutritional and edible values [3,4].
Different solutions have been developed to delay the occurrence of milk spoilage, such
as thermal treatment, special package, refrigeration, etc. [5]. However, the changes in
environmental conditions or damaged packages still cause milk to spoil before shelf life.
Around 128 million tons of milk are wasted globally every year [6]. Therefore, monitoring
the freshness of milk is crucial to ensure the safety of dairy products and the health
of consumers.
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At present, there are two main methods for the identification of milk freshness. One
is based on the evaluation of microbial growth, such as total aerobic bacteria (TAB), psy-
chrotrophic bacteria (PCB), and lactic acid bacteria (LAB) [7]. The method can characterize
the internal freshness of milk, but requires skilled technicians, analytical equipment, and a
long measurement period. Hwang et al. [8] found that the electrical conductivity freshness
index can predict the growth of TAB, PCB, and LAB in milk. However, the electrical
conductivity method is limited to specific contaminants and temperature ranges, and the
model works well at 20 ◦C, which is significantly higher than the typical refrigeration
temperature. The other is to judge the freshness by the internal composition, odor, or
physical and chemical indices of the milk, such as acidity, lactose, fatty acid, and pH
value [9–11]. Using the fluorescein isothiocyanate (FITC)/FITC-dextran (FITC-dex) and
Tris (2,2′-bipyridyl) dichloro ruthenium (II) hexahydrate (Ru-bpy), Choudhary et al. [12]
developed the solution phase and immobilized phase pH sensors to monitor the changes
in milk quality. This approach is successful to a certain extent. However, the safety of the
materials used for sensor preparation needs to be further evaluated. In addition, headspace
odor sensing was also reported to determine milk freshness or spoilage [13–17]. However,
the volatile inventories reported by different researchers vary largely depending on the
differences in milk freshness and spoilage conditions, and there is not yet a clear set of
volatiles as reliable indicators for the freshness or spoiled state of milk. The instruments
used to monitor milk freshness or spoilage must have sufficient sensitivity, specificity, and
a detection limit. Liquid chromatography-high resolution mass spectrometry has been
reported for the classification of non-fresh milk [18]. Although it offers high-level analytical
accuracy, the expensiveness of instruments, the need for professional skills, and the high
running costs make it economically unviable for routine milk monitoring.

In recent years, visible/near-infrared (Vis/NIR) spectroscopy has been recognized as
a rapid, non-destructive, and environmentally friendly detection technique and has been
applied in the evaluation of food freshness. Zhang et al. [19] used Vis/NIR spectroscopy to
quickly identify the freshness of mutton. Nakajima et al. [20] used Vis/NIR spectroscopy
to evaluate the freshness of stored cabbage. Kuroki et al. [21] used Vis/NIR spectroscopy
to evaluate the freshness of spinach leaves under low-oxygen conditions. Vis/NIR spec-
troscopy was also used to evaluate the freshness of protein and pork [22,23]. However,
there are few reports on the detection of milk freshness by Vis/NIR spectroscopy. This
is because some problems need to be overcome when using the Vis/NIR spectroscopy
technique to detect the quality of milk and its dairy products, such as sensitivity. In addition
to absorbing light, milk also has strong scattering properties [24], which makes it extremely
difficult to extract the useful information from the spectrum. Moreover, the wide spectral
band and overlapping of the characteristic absorption peaks further increase the difficulty
in extracting the useful information. In this work, consequently, the 2D correlation analysis
technique was introduced into the Vis/NIR spectroscopy of milk to improve the extraction
of the useful information from its spectra.

The emergence and rapid development of chemometrics provide a theoretical tool
for the analysis of complex data. Chemometrics is the science of extracting the chemical
information from data using mathematical and statistical tools [25]. In recent years, various
analytical methods (chromatography, mass spectrometry, spectrometry, etc.) coupled with
chemometrics have been used in the detection of dairy products, such as the geographic
origin of cheese [26], quality identification of milk powder [27], milk adulteration [22], and
others. In general, chemometric methods can be classified into qualitative and quantita-
tive, or linear and nonlinear methods. Common linear methods include multiple linear
regression (MLR), linear discriminant analysis (LDA), partial least square (PLS), etc., while
the most commonly used nonlinear methods are artificial neural network (ANN), support
vector machine (SVM), etc. In this study, the discrimination model of milk freshness was
established by linear discriminant analysis (LDA) and support vector machine (SVM).
Spectral changes during milk storage were studied to determine the relationship between
spectral peaks and freshness. Different modeling methods were compared to evaluate
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the capacity of the 2D-Vis/NIR correlation spectroscopy technique in the detection of
milk freshness.

2. Results and Discussion
2.1. Analysis of Physical and Chemical Indices of Milk

The freshness of milk samples can be characterized by physicochemical indices [26],
and the changes in the physicochemical indices of milk during low-temperature storage
are shown in Table 1. The relative density and fat and protein contents of milk changed
minimally with the coefficients of variation (CV) of <0.02 during storage. The protein
and fat contents were still within the range of the National Standard GB 19301-2010 [28]
during 6 days of storage. However, with the extension of storage time, the acidity of milk
increased by 6.9 ◦T with a CV of 0.1408; the lactose content in milk decreased by 0.32%
with a CV of 0.0217. The acidity of milk was initially 14.1 ◦T (Figure 1), and increased
gradually within the first 4 days and rapidly from the 5th day onwards. The acidity of
milk reached 21 ◦T after a storage time of 6 days, which exceeded the acidity requirement
(12~18 ◦T) regulated by the National Standard GB 19301-2010. Sensorily, milk exhibited
signs of internal coagulation in the form of lumps, which indicates that the milk had
deteriorated and was not suitable for consumption. Within 6 days of low-temperature
storage, the changing degree of each physicochemical index of milk followed the order:
acidity > lactose > other indicators (relative density and fat and protein contents). Thus,
acidity can better characterize the freshness of milk and was used as the characteristic
indicator to classify the milk samples into three types: fresh A (13~15 ◦T), sub-fresh B
(15~18 ◦T), and spoiled C (>18 ◦T).

Table 1. Changes of quality indicators in milk during storage.

Indicators Range of Variation Mean Standard Deviation CV 1 GB 19301-2010

Fat (%) 3.70~3.93 3.78 0.0711 0.0188 ≥3.1
Protein (%) 3.72~3.76 3.74 0.0127 0.0034 ≥2.8
Lactose (%) 5.03~5.35 5.15 0.1117 0.0217 - 2

Acidity (◦T) 14.1~21.0 16.3 2.2904 0.1408 12~18
Relative density (20 ◦C/4 ◦C) 1.032~1.034 1.033 0.0007 0.0007 ≥1.027

1 CV is the coefficient of variation. 2 “-” means not specified in GB 19301-2010.

Molecules 2023, 28, 5728 3 of 15 
 

 

machine (SVM). Spectral changes during milk storage were studied to determine the re-
lationship between spectral peaks and freshness. Different modeling methods were com-
pared to evaluate the capacity of the 2D-Vis/NIR correlation spectroscopy technique in the 
detection of milk freshness. 

2. Results and Discussion 
2.1. Analysis of Physical and Chemical Indices of Milk 

The freshness of milk samples can be characterized by physicochemical indices [26], 
and the changes in the physicochemical indices of milk during low-temperature storage 
are shown in Table 1. The relative density and fat and protein contents of milk changed 
minimally with the coefficients of variation (CV) of <0.02 during storage. The protein and 
fat contents were still within the range of the National Standard GB 19301-2010 [28] during 
6 days of storage. However, with the extension of storage time, the acidity of milk in-
creased by 6.9 °T with a CV of 0.1408; the lactose content in milk decreased by 0.32% with 
a CV of 0.0217. The acidity of milk was initially 14.1 °T (Figure 1), and increased gradually 
within the first 4 days and rapidly from the 5th day onwards. The acidity of milk reached 
21 °T after a storage time of 6 days, which exceeded the acidity requirement (12~18 °T) 
regulated by the National Standard GB 19301-2010. Sensorily, milk exhibited signs of in-
ternal coagulation in the form of lumps, which indicates that the milk had deteriorated 
and was not suitable for consumption. Within 6 days of low-temperature storage, the 
changing degree of each physicochemical index of milk followed the order: acidity > lac-
tose > other indicators (relative density and fat and protein contents). Thus, acidity can 
better characterize the freshness of milk and was used as the characteristic indicator to 
classify the milk samples into three types: fresh A (13~15 °T), sub-fresh B (15~18 °T), and 
spoiled C (>18 °T). 

Table 1. Changes of quality indicators in milk during storage. 

Indicators Range of Variation Mean Standard Deviation CV 1 GB 19301-2010 
Fat (%) 3.70~3.93 3.78 0.0711 0.0188 ≥3.1 

Protein (%) 3.72~3.76 3.74 0.0127 0.0034 ≥2.8 
Lactose (%) 5.03~5.35 5.15 0.1117 0.0217 - 2 
Acidity (°T) 14.1~21.0 16.3 2.2904 0.1408 12~18 

Relative density (20 °C/4 °C) 1.032~1.034 1.033 0.0007 0.0007 ≥1.027 
1 CV is the coefficient of variation. 2 “-” means not specified in GB 19301-2010. 

 
Figure 1. Change in milk acidity during storage (different lowercases indicated the significant dif-
ference (p < 0.05).  
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difference (p < 0.05).

2.2. Analysis of Vis/NIR Spectra and Synchronous 2D-Vis/NIR Spectra of Milk

The Vis/NIR spectra of milk samples with different storage times are shown in Figure 2.
Regardless of freshness, all milk samples had a roughly similar overall trend in the Vis/NIR
spectra. With the increase in storage time, significant differences were observed in the
wavelength ranges of 1400~1508 nm and 1882~2100 nm, which is attributed to the changes
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in the internal tissue structures and component contents of milk. The absorption peaks
at 1450 nm and 1940 nm were associated with water and were the first overtone and
combination bands of O-H residue, respectively [29]. The absorption bands corresponding
to the fat and fatty acid contents were located at 1210, 1790, and 2300 nm, respectively [30].
The absorption peaks at 2050 and 2180 nm indicated the protein content. The characteristic
absorptions of lactose and lactic acid were located at 1194, 1560~1750, and 2094 nm [31]. In
addition, the absorption peaks of carotenoids in milk were located at 460 nm [32].
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Figure 2. Vis/NIR spectra of milk during storage.

Although there were some differences in the one-dimensional Vis/NIR spectra of milk
at different storage times (freshness), the variations were relatively small. Particularly, the
spectra of sub-fresh milk samples and spoiled milk samples were difficult to be distin-
guished. Thus, the 2D correlation spectroscopy technique was introduced into the study to
improve the resolution of Vis/NIR spectra.

The synchronous 2D-Vis/NIR spectra of milk are shown in Figure 3. Significant
differences were observed in the 2D correlation spectra of milk with different storage times.
Ideally, a set of n × n synchronous spectral matrices with zero values should be obtained
after the 2D correlation analysis of fresh milk spectra and reference spectra. However,
the synchronous spectral matrix of fresh milk was not exactly zero due to various factors,
such as the samples themselves and the stability of the instrument employed. When the
storage time was less than 24 h, neither obvious autocorrelation peaks nor cross peaks
were observed in the synchronous 2D-Vis/NIR spectra of milk, and their peak values
were all <0.0001. When the storage time was 48 h, two strong autocorrelation peaks and
three positive cross peaks appeared in the synchronous spectra, and the cross peaks were
located at (1450, 1940), (1450, 2498), and (1940, 2498) with values of >0.01, >0.006, and >0.01,
respectively. The intensities of the autocorrelation peaks (1450 nm) and cross peaks (1450,
1940) in the synchronous spectra increased significantly with the extended storage time
and enhanced all >104 times after 6 days of storage time. This is consistent with the results
from the physicochemical indicators of spoiled milk (Table 1 and Figure 1).

The synchronous 2D-Vis/NIR autocorrelation spectra of milk under different storage
conditions are shown in Figure 4. The intensities of the autocorrelation peaks at 1194, 1450,
1790, and 1940 nm showed a significant increasing trend with the prolongation of storage
time, and the information contained at these wavelength positions were all related to the
freshness indices of milk. Based on the changes in each index during milk storage and
the results in Figure 2, it was initially determined that the autocorrelation peaks at 1450
and 1940 nm were attributed to water, the autocorrelation peak at 1194 nm was related to
lactose and lactic acid, and the autocorrelation peak at 1790 nm reflected the fat-related
information. Compared with the traditional Vis/NIR spectra (Figure 2), the synchronous
2D Vis/NIR autocorrelation spectroscopy can more clearly show the relationship between
the internal quality changes in milk and different spectral bands under different storage
times. In summary, the three types of milk can be directly distinguished based on the
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differences in synchronous 2D-Vis/NIR spectra. Therefore, the 2D-Vis/NIR technique has
potential applications as a visualization method to explore the freshness of milk.
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Figure 4. Synchronous 2D-Vis/NIR autocorrelation spectra of milk during storage.

2.3. Milk Freshness Identification
2.3.1. Threshold-Value Method

In the threshold-value method, the freshness of milk was judged by the values of
the peaks in the synchronous 2D correlation spectra. The standard deviations of the
autocorrelation peaks of fresh milk at 1450 and 1940 nm and the cross peaks at (1450, 1940)
were less than 3.0 × 10−5 (2.87 × 10−5, 1.04 × 10−5, and 1.29 × 10−5), indicating that the
dispersions of peak values at the same location were small. Therefore, the peak values of
the above three locations were taken as the discrimination threshold, as shown in Figure 5.
Using the three values of peaks, the identification accuracy for fresh milk was 100%. In
particular, the autocorrelation peak at 1940 nm between fresh and non-fresh milk was more
differentiated from the discrimination threshold, while the differentiation was small for
sub-fresh and spoiled milk samples. In contrast, the peaks at 1940 nm and (1450, 1940) had
a good linear relationship with storage time, and their correlation coefficients (R2) were 0.92
and 0.89, which indicates that the storage time (freshness) of milk can be roughly predicted
based on these two peaks. However, as the storage time increased, the standard deviations
of the peak values from different samples increased, reducing the prediction accuracy of
milk freshness. Therefore, the threshold-value method can be used to only simply identify
the fresh milk in some simple scenarios.
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2.3.2. LDA Identification Analysis

The spectral data contain not only the useful information of analytes, but also irrelevant
information, such as noise, background, stray light, etc. To eliminate the influences of
irrelevant information, the first derivative (1st), multiplicative scatter correction (MSC),
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and standard normal variate (SNV) methods were used to preprocess the Vis/NIR and 2D-
Vis/NIR spectra, followed by establishing milk classification models by the LDA method
with linear as the discriminant function (Table 2). The prediction accuracy of the calibration
set of the models improved slightly after the spectra were treated by MSC or SNV, while the
robustness of the models decreased significantly after the 1st treatment, and the prediction
accuracy of the prediction set reduced by >45%. This may be because the noise of the
original data was amplified after the 1st treatment, increasing the interference information
and decreasing the spectral signal-to-noise ratio. Considering the prediction accuracy of
the model and easy-to-use, original data rather than pretreated data were directly used for
following studies.

Table 2. Prediction results based on Vis/NIR spectra and 2D-Vis/NIR spectral LDA models.

Data Preprocessing
Calibration Set

Accuracytotal (%)
Prediction Set

Accuracytotal (%)
A (%) B (%) C (%) A (%) B (%) C (%)

Vis/NIR

Raw spectra 96.3 90.7 96.3 93.8 100.0 93.3 77.8 90.9
SNV 100.0 90.7 96.3 94.8 100.0 86.7 88.9 90.9
MSC 100.0 97.7 100.0 99.0 100.0 86.7 88.9 90.9
1st 100.0 90.7 100.0 95.9 0.0 100.0 0.0 45.5

2D-Vis/NIR

Raw spectra 100.0 95.3 100.0 97.9 100.0 86.7 100.0 93.9
SNV 100.0 97.7 100.0 99.0 100.0 86.7 88.9 90.9
MSC 100.0 97.7 100.0 99.0 100.0 86.7 100.0 93.9
1st 100.0 97.7 77.8 92.8 100.0 0.0 0.0 27.3

After comparing the modeling performances of the Vis/NIR and 2D-Vis/NIR datasets,
it was found that the 2D correlation spectroscopy technique led the samples in the new
subspace to have relatively close intra-class distances and relatively far inter-class distances
(Figure 6), especially between the fresh milk samples and the spoiled milk samples. The
performances of the 2D-Vis/NIR-based models were better than those of the Vis/NIR-
based models, with a prediction accuracy of 100%, 86.7%, and 100% for fresh milk (A),
sub-fresh milk (B), and spoiled milk (C), respectively. The overall improvement of 3% from
the 2D-Vis/NIR-based models was obtained in comparison with that of the Vis/NIR-based
models. Since milk is a very complex medium [33], there is no ideal linear relationship
between the spectra and physicochemical indicators of milk, making the LDA-based models
unable to completely distinguish sub-fresh and spoiled milk. Jin et al. [34] used LDA and
ANN to construct a discrimination model for recovered and fresh milk, and the prediction
performance of the nonlinear ANN-based model (99.6%) was better than that of the LDA-
based model (94.9%), which also further illustrates the unsatisfactory applicability of LDA
for nonlinear problems with complex systems.
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2.3.3. SVM Identification Analysis

Four kernel functions (linear, polynomial, RBF, and sigmoid) were used to construct
SVM-based models using the Vis/NIR and 2D-Vis/NIR spectra of milk, and the optimum
model parameters were selected by the grid search method and particle swarm optimiza-
tion. The results are shown in Figure 7 and Table 3. The cross-validation method was used
to evaluate the performance of the SVM-based models with accuracy as the evaluation indi-
cator. Taking the modeling process of the 2D-Vis/NIR spectral data of milk as an example,
the optimized region of parameters was determined by a grid search with large steps, and
then the best combination of [C, G] was found by the particle swarm algorithm when the
RBF kernel was selected. Too large or too small values of C and G will cause the overfitting
or underfitting phenomenon of the model. After the parameter optimization, when [C, G]
was [7.74 × 103, 3.59], the kernel function was RBF, the number of support vectors was 6,
and the accuracy of the SVM-based model was 100%. Similarly, the parameters of other
SVM-based models were optimized, and the results are shown in Table 3.
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Table 3. Prediction results of SVM-based models using Vis/NIR data or 2D-Vis/NIR data as calibra-
tion set.

Data
Information Indices

Linear Polynomial RBF Sigmoid

A B C A B C A B C A B C

Vis/NIR

SVs 18 21 24 20
A 27 0 0 27 0 0 27 0 0 27 0 0
B 0 40 0 0 39 1 0 41 0 0 39 0
C 0 3 27 0 4 26 0 2 27 0 4 27

Accuracy (%) 96.9 94.8 97.9 95.9

2D-Vis/NIR

SVs 10 7 6 6
A 27 0 0 27 0 0 27 0 0 27 0 0
B 0 42 0 0 43 2 0 43 0 0 43 1
C 0 1 27 0 0 25 0 0 27 0 0 26

Accuracy (%) 99.0 97.9 100.0 99.0

All SVM-based models can discriminate fresh milk with an accuracy of up to 100%
(Table 3), which is the same prediction performance as the threshold-value-based and
LDA-based models. The performances of SVM-based models using 2D-Vis/NIR spectra
data were significantly better than those using Vis/NIR spectra data, and the prediction
accuracy of the calibration sets were all greater than 97%. Although SVM-based models
using 2D-Vis/NIR data had significantly fewer support vectors than SVM-based models
using Vis/NIR data, the prediction abilities improved for the three types of milk, which
indicates that 2D correlation spectroscopy can effectively extract the useful information
and enhance the robustness of the models. The SVM-based model performed best when
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the kernel function was RBF, with 100% accuracy for all three types of milk, followed
by linear, while the model with polynomial as the kernel function showed a relatively
poor performance and had difficulty in distinguishing between the sub-fresh and spoiled
milk samples.

To verify the modeling performance, 33 unknown milk samples were selected as
the prediction set and the 2D-Vis/NIR data were used as independent variables to pre-
dict the freshness of milk by SVM-based, LDA-based, and threshold-value-based models.
After comparing the SVM-based models using Vis/NIR data, the results are shown in
Figure 8. The prediction performances of the SVM-based models were better than those
of the LDA-based and threshold-value-based models. For sample A (fresh milk), the pre-
diction accuracies from the three methods were not much different and their accuracy
rates were 100%. For sample B (sub-fresh milk) and sample C (spoiled milk), however,
the prediction performances differed significantly. The SVM-based and LDA-based mod-
els using 2D-Vis/NIR data could accurately classify all samples C (spoiled milk), while
their accuracy rates were 93.3% and 86.7% for sample B (sub-fresh milk). One sample B
(sub-fresh milk) was wrongly identified as sample C (spoiled milk) by the SVM-based
model, and two samples B (sub-fresh milk) were misjudged by the LDA-based model.
The prediction performances of the threshold-value-based models were unsatisfactory,
and the prediction accuracy was 73.3% and 66.7% for samples B (sub-fresh milk) and C
(spoiled milk), respectively, with more than two erroneous judgements for both samples.
The freshness monitoring of milk is related to food safety and consumers’ health, especially
for the identification of spoiled milk. The identification of spoiled milk as sub-fresh milk
here is unacceptable in this study. Compared with Vis/NIR, 2D-Vis/NIR improved the
accuracy of SVM-based models by >15%. In summary, it is feasible to couple 2D-Vis/NIR
spectroscopy with the SVM method for the prediction of the freshness of milk.
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3. Materials and Methods
3.1. Sample Preparation

Fresh raw milk samples (10 types) were purchased at a local dairy factory (Zhengzhou,
Henan, China) and the samples were immediately transported to the laboratory in a
refrigerated box and placed in a 4 ◦C refrigerator for storage. The milk samples were stored
for 6 days and subjected to Vis/NIR scanning and physicochemical analysis (fat, protein,
lactose, acidity, etc.) every 12 h. Spectral information and physicochemical data were
obtained from 130 milk samples with different degrees of freshness. Since the freshness of
milk is closely related to its acidity, the milk samples were classified into fresh A (13~15 ◦T),
sub-fresh B (15~18 ◦T), and spoiled C (>18 ◦T) according to their acidity status. The 130 milk
samples were divided into two groups, and 97 samples were selected to form the calibration
set and the remaining 33 samples formed the validation set.
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3.2. Vis/NIR Collection

The diffuse reflectance spectra of the milk samples were acquired using a DS2500
NIR spectrometer (FOSS, Hillerød, Denmark) equipped with silicon (400~1100 nm) and
lead sulfide (1100~2500 nm) as the detectors. The scanning range was 400~2500 nm with
32 scans, 2 nm resolution, and a detection temperature of 35 ◦C. The average of the three
individual measurements was used for each sample.

3.3. Measurement of Milk Acidity

The acidity of the milk samples was quantified according to the National Standard
method GB 5009.239-2016 [35]. Ten milliliters of milk samples were diluted with 20 mL of
deionized water and then titrated with 0.1 mol/L NaOH solution using phenolphthalein
as the indicator solution. The average of the three individual measurements was used for
each sample.

3.4. Measurement of the Main Components of Milk

The protein content of the milk samples was determined by referring to the National
Standard method GB/T 5009.5-2016 [36]. Fifteen grams of each sample were put into a
digestion tube, followed by 0.4 g of copper sulfate, 6.0 g of potassium sulfate, and 20 mL of
concentrated sulfuric acid, all of which were added into the digestion oven for digestion.
The digestion was carried out at a temperature of 420 ◦C for about 1 h. The digestion
solution was taken out once it became bright green and clear. After cooling, 50 mL of water
was added slowly, and then an automatic Kjeldahl analyzer was used to determine the
protein content in the sample. The fat content was determined by referring to the National
Standard method GB/T 5009.6-2016 (Geber method) [37], and the lactose content was
determined by referring to the National Standard method GB/T 5413.5-2010 (Rein-Enon
method) [38].

3.5. Data Processing
3.5.1. Two-Dimensional Correlation Spectra

The traditional one-dimensional Vis/NIR spectra take the wavelength or wavenumber
as the horizontal coordinate and the absorbance as the vertical coordinate to characterize
the spectral properties of the samples measured. Milk is a complex mixed system, and
the interactions between light and milk are extremely complex [24]. Due to the serious
overlapping of the Vis/NIR spectra from milk components, it is difficult to extract the
feature information effectively in the traditional one-dimensional spectra. Two-dimensional
correlation spectra provide the correlation information among the absorption peaks of
the functional groups of different chemical components in the studied system, and can
effectively analyze the weak peaks, overlapping peaks, and offset peaks with high spectral
resolution [39].

Two-dimensional correlation spectra include synchronous and asynchronous spectra.
The synchronous 2D correlation spectra are symmetric about the diagonal, showing the
synergy between two dynamic signals. The peaks located on the diagonal are the auto-
correlation peaks, the sizes of which indicate the total degree of the dynamic fluctuation
of the spectral intensity in the correlation cycle. The peaks located outside the diagonal
are the synchronous cross peaks, which indicate the synchronous change of the spectral
signals at different wavelengths. When the spectra are affected by external disturbances, if
the two spectral intensities increase or decrease at the same time, it is a positive correlation
peak; however, if the two spectral intensities change in opposite directions, it is a negative
correlation peak. The asynchronous 2D correlation spectra are antisymmetric about the
diagonal, showing the order of intensity changes in the two dynamic signals. The specific
theory can refer to the literature reported by Park et al. [40].

In this study, the spectra of fresh milk were averaged as the reference spectra. Firstly,
the Vis/NIR spectra of milk and the reference spectra were subjected to a 2D correla-
tion operation to obtain the synchronous 2D correlation spectral matrix of milk. Then,
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the autocorrelation spectral data of the synchronous 2D correlation spectral matrix was
extracted. Finally, using the synchronous spectra of milk samples as a data set, the relation-
ship between the features of synchronous 2D correlation spectra and the changes in milk
freshness was analyzed, and classification models were constructed by combining LDA
and SVM. All calculation and plotting of the 2D correlation spectra were accomplished
using MATLAB 2018a.

3.5.2. LDA Algorithm

The LDA algorithm is a classification method in which n-dimensional feature vectors
(or samples) are linearly transformed into m-dimensional space (m < n) so that samples
belonging to the same class are close to each other and samples of different classes are far
apart [41]. Specifically, LDA seeks an optimal projective transformation matrix V.

max
V

tr
(
VTSBV

)
tr(VTSWV)

(1)

where the inter-class dispersion SB and intra-class dispersion SW are defined as:

SB =
1
N ∑C

i=1 Ni

(−
x i −

−
x
)(−

x i −
−
x
)T

(2)
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1
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i=1 ∑Ni
j=1

(−
x ij −

−
x i

)(−
x ij −

−
x i

)T
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where N is the total number of samples, Ni is the number of samples in the ith class, C is the

number of class,
−
x i is the average spectrum of samples in the ith class,

−
x ij is the spectrum

of jth samples in the ith class, and
−
x is the average spectrum of all samples.

3.5.3. SVM

SVM is a pattern recognition method widely used in data mining applications to solve
small-samples, nonlinear, and high-dimensional problems [42]. Like LDA, it provides a
supervised classification method. SVM is used to map samples to a high-dimensional fea-
ture space using kernel functions. To find the optimal hyperplane in the high-dimensional
feature space, the structural risk minimization criterion was applied to solve nonlinear
classification problems. The input feature dataset, kernel function, and kernel parameters
are the keys to affecting the performance of the SVM-based model. SVM theory is described
in detail in the literature reported by Cristianini and Shawe-Taylor [43] and Devos et al. [44].

In this study, the following parameters were evaluated: (1) the input feature dataset,
including the Vis/NIR spectral (Vis/NIR) dataset of milk and the 2D-Vis/NIR correlation
spectral dataset; (2) the kernel functions, which were preferred between linear, polynomial,
radial basis function (RBF), and sigmoid; and (3) the kernel parameters, in which the
optimal parameters of different kernel functions were determined by grid search and
particle swarm optimization algorithms.

The model performance was evaluated using accuracy, which is the ratio of correctly
classified samples, and its expression was as follows:

Accuracytotal =
VA + VB + VC
NA + NB + NC

(4)

AccuracyA =
VA
NA

, AccuracyB =
VB
NB

, AccuracyC =
VC
NC

(5)

where VA, VB, and VC are the number of correctly classified fresh milk (A), sub-fresh
milk (B), and spoiled milk (C) samples; NA, NB, and NC are the number of fresh milk (A),
sub-fresh milk (B), and spoiled milk (C) samples.
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4. Conclusions

Spectroscopy as a rapid non-destructive detection method has promising applications
in the analysis of dairy products. To effectively extract the useful information in spectra,
the 2D correlation spectroscopy technique was introduced for the freshness analysis of
milk, coupled with chemometric methods. Compared with Vis/NIR spectra, 2D-Vis/NIR
spectra had the improved differentiation in different freshness levels of milk. Compared
with the threshold-value-based models which could not completely identify the spoiled
milk, LDA-based and SVM-based models had good modeling performances, with the latter
being better. The SVM-based model using 2D-Vis/NIR spectra was proposed to identify the
freshness of milk, with an accuracy of >97%. Compared with the SVM-based models using
Vis/NIR data, the SVM-based models using 2D-Vis/NIR data had >15% higher prediction
accuracy. 2D-Vis/NIR spectroscopy can more comprehensively and reliably reflect the
variation of the internal quality of milk and achieve a rapid discrimination of milk freshness.
Compared with traditional laboratory analysis, this method has rapid, non-destructive,
and efficient advantages, and provides a technical support for the quality and safety tests
of dairy products. In addition, although the prediction performance of the proposed model
is good, the model needs to be updated with new samples, considering that milk quality is
susceptible to external factors, such as the environment and temperature. It is expected
that this technique will be transformed from laboratory research to commercial application
in the future.
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