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1 Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
orsy.gyorgy@szte.hu (G.O.); sayeh.s@pharm.u-szeged.hu (S.S.)

2 Stereochemistry Research Group, Eötvös Loránd Research Network, University of Szeged, Eötvös u. 6,
H-6720 Szeged, Hungary

* Correspondence: forro.eniko@szte.hu; Tel.: +36-62-544964

Abstract: A sustainable enzymatic strategy for the preparation of amides by using Candida antarctica
lipase B as the biocatalyst and cyclopentyl methyl ether as a green and safe solvent was devised. The
method is simple and efficient and it produces amides with excellent conversions and yields without
the need for intensive purification steps. The scope of the reaction was extended to the preparation
of 28 diverse amides using four different free carboxylic acids and seven primary and secondary
amines, including cyclic amines. This enzymatic methodology has the potential to become a green
and industrially reliable process for direct amide synthesis.

Keywords: sustainable enzymatic strategy; direct amide synthesis; green solvent; CALB; carboxylic
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1. Introduction

The amide bond is a fundamental linkage in nature. It is the main chemical bond
that links amino acid building blocks together to give peptides and proteins, which oc-
cur worldwide [1–3]. Furthermore, as an important moiety of pharmaceutically active
compounds, it can be found in a significant array of commercial drugs worldwide. For
example, Acetaminophen, a common pain reliever and an antipyretic agent, is used to treat
various conditions such as headache, muscle aches, and arthritis [4]. Amide-based local
anesthetics are applied to numb a specific area of the body, before a medical procedure or
surgery [5,6]. β-Lactam antibiotics are a group of antibiotics that are used to treat bacterial
infections, including pneumonia, bronchitis, and urinary tract infections [7–9]. Celecoxib is
a nonsteroidal anti-inflammatory drug (NSAID) utilized to treat pain and inflammation
associated with conditions, such as arthritis, menstrual cramps, and sport injuries [10,11].
These are just a few examples of amide drugs, and there are many others used in the
treatment of various medical conditions.

A large number of synthetic methods resulting in the formation of amide bonds
have been devised in the last decade [12–19]. However, there are only a limited num-
ber of strategies that are both efficient and environmentally benign [20–22]. The most
common processes utilize coupling reagents or activating agents with larger stoichiomet-
ric ratio to couple a free carboxylic acid with an amine. However, these are generally
hazardous/poisonous reagents and, consequently, they put a heavy burden on the en-
vironment. Furthermore, the purification of the crude products is problematic, since it
requires a large quantity of organic solvents, due to the formation of large quantities of
by-products [23,24]. Therefore, there is a great demand to develop simple amide-bond-
forming reactions to access amides from free carboxylic acids and amines in a green and
efficient way.

The green chemistry concept has 12 principles aimed at the design of chemical prod-
ucts and processes, that reduce or eliminate the application and generation of hazardous
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substances, which are harmful for human health or the environment [25,26]. Using enzymes
in synthetic chemistry has always been a hot topic due to the ability of enzymes to catalyze
chemical transformations with high catalytic efficiency and specificity [27–31]. For instance,
the reactions mentioned above carried out under harsh conditions can be induced to pro-
ceed faster under mild conditions (lower temperatures and pressures, neutral pH), with
fewer work-up steps and higher yields. All of these result in an improvement in efficiency
and save energy. Enzymes have emerged as preferred tools in green chemistry by replacing
hazardous/poisonous reagents, generating the formation of fewer by-products [32–35].

In the case of amide bond formation, enzymes, particularly the members of the
lipase family, are powerful and effective biocatalysts for esterification reactions [36–38].
Several lipases have been reported to exhibit high catalytic activity and stability in organic
solvents [39,40]. In particular, Candida antarctica lipase B (CALB; Novozyme 435) prefers
anhydrous conditions and it has been widely applied in esterification and hydrolysis
studies [41–46]. CALB could also catalyze amidation reactions [47–52] when the amine is
used as a nucleophile in anhydrous organic media. In these reactions, amine amidation
with a free carboxylic acid takes place, resulting in the amide product. A previous study
reported by the Manova group [53] showed that CALB could be a simple and convenient
biocatalyst for the efficient, direct amidation of free carboxylic acids with amines applied
for a wide range of substrates, including lipoic acid.

Thus, the CALB enzymatic approach could offer the possibility of accomplishing direct
amide coupling in an efficient and sustainable way without any additives in green organic
solvents, providing amides with high yields and excellent purity.

Herein, we report a sustainable amidation strategy through CALB-catalyzed coupling
of free acyclic carboxylic acids with different primary and secondary amines in a prominent
green solvent (Scheme 1). In order to follow the progress of the enzymatic reactions, we also
develop an adequate gas chromatography–mass spectrometry (GC-MS) analytic method.
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Scheme 1. CALB-catalyzed synthesis of amides.

2. Results and Discussion

In view of the results on the enzymatic amidation of free carboxylic acids with
amines [49], CALB-catalyzed amidation of octanoic acid (1) with benzylamine (5) in the
presence of a molecular sieve in toluene at 60 ◦C was performed (Figure 1a curve I). An
excellent conversion of >99% after 30 min was observed.

In order to increase the reaction rate, further preliminary experiments were performed
at different temperatures (Figure 1a curves II–IV). When the amidation was performed
at 25 ◦C, the desired product with 78% conversion was obtained after 30 min (curve
IV). By applying a higher temperature of 50 ◦C, the conversion of the reaction improved
remarkably, reaching a >99% conversion in 60 min (curve III). However, at temperatures
higher than 60 ◦C, the conversion decreased slightly, because of the thermal denaturation
process of CALB protein chains (curve II). The optimal temperature of 60 ◦C was chosen
for further reactions.

Next, we screened organic solvents with different types of polarity such as acetoni-
trile and N,N-dimethylformamide (DMF). In addition, we focused on the application of
greener alternative solvents, such as propylene carbonate (PC), 2-methyltetrahydrofuran
(2-MeTHF), diisopropyl ether (DIPE), and cyclopentyl methyl ether (CPME). While the
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reaction rate in acetonitrile was relatively low, CPME and PC were the most promising
green solvents with conversions reaching >99% in 30 min (Figure 1b).
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Figure 1. The effect of temperature (a) and solvents (b) on the reaction conversion catalyzed by CALB.

In an attempt to increase the efficiency of the present method, the initial concentration
of the substrate of 46 mM was increased to 92, 460, and 920 mM (Figure 2a,b). Reac-
tions were performed in CPME and PC solvents with a constant enzyme concentration
of 50 mg mL–1. Slightly lower reaction rates with 92 mM concentration (curves II(a) and
(b)) were observed. Despite the much lower reaction rates found at concentrations of 460
and 920 mM, the amide formation was still significant after 60 min (curves III(a) and (b)
and IV(a) and (b)). Such robust behavior of commercially available CALB might be an
important parameter not only for laboratory-scale but also industrial-scale reactions [54,55].
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Having in hand the optimal conditions (CALB, molecular sieve 3 Å, CPME solvent,
60 ◦C, substrate concentration 920 mM), we performed further amidation reactions and
obtained 28 different amides (12–39) with excellent conversions (>92%) and yields (>90%)
in 90 min (Table 1). The study involved the use of four different free carboxylic acids and
seven amines including primary, secondary, and secondary cyclic amines. According to
GC-MS analysis, all reactions were completed in 90 min. The product molecules might be
used as potential intermediates or building blocks in the synthesis of biologically active
compounds [56,57].

Table 1. Substrate scope of amide formation in CPME solvent with conversion data.
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3. Materials and Methods 
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Aspergillus niger, quality level 200, Catalogue no. L4777), cyclopentyl methyl ether 
(inhibitor-free, anhydrous, ≥99.9%), propylene carbonate (ReagentPlus®, 99%), toluene 
(anhydrous, 99.8%), 2-methyltetrahydrofuran (BioRenewable, anhydrous, ≥99%, 
inhibitor-free), acetonitrile (suitable for HPLC, gradient grade, ≥99.9%), 
N,N-dimethylformamide (suitable for HPLC, ≥99.9%), and 3 Å molecular sieve (beads, 8–
12 mesh) used in this study were purchased from Merck Life Science Kft., an affiliate of 
Merck KGaA, Darmstadt, Germany (Budapest, Hungary). All reactions were carried out 
in an Eppendorf™ Innova™ 40R Incubator Shaker. Melting points were determined on a 
Kofler apparatus. 1H NMR and 13C NMR spectra were recorded on a Bruker Avance NEO 
500.1 spectrometer, in CDCl3 as solvent, with tetramethylsilane as an internal standard at 
500.1 and 125 MHz, respectively. GC-MS analyses were performed on a Thermo Scientific 
Trace 1310 Gas Chromatograph coupled with a Thermo Scientific ISQ QD 
Single-Quadrupole Mass Spectrometer using a Thermo Scientific TG-SQC column (15 m 
× 0.25 mm ID × 0.25 µm film). Measurement parameters were as follows: column oven 
temperature: from 50 to 300 °C at 15 °C min−1; injection temperature: 240 °C; ion source 
temperature: 200 °C; electrospray ionization: 70 eV; carrier gas: He at 1.5 mL min−1; 
injection volume: 5 µL; split ratio: 1:50; and mass range: 25–500 m/z. 

3.2. General Procedure for CALB-Catalyzed Amidation 
In preliminary amidation experiments, the carboxylic acid and amine substrates (1:1 

equiv) were dissolved in an organic solvent (1 mL) to provide a solution with a given 
concentration (46, 92, 460, or 920 mM). CALB (50 mg), molecular sieve (50 mg 3 Å size) to 
avoid the reversible hydrolysis reaction, and n-heptadecane (2 µL) as an internal 
standard were added to the above solution. The mixture was shaken at a selected 
temperature (25, 50, 60 or 70 °C) in an incubator shaker. The progress of the reaction was 
followed by taking samples from the reaction mixture at intervals and analyzing them by 
GC-MS measurements. Conversion of the starting materials (moles of the converted 
molecules/moles of the initial starting materials × 100) was calculated by n-heptadecane 
as an internal standard, in percent yield of the desired amides (actual yield/theoretical 
yield × 100) (see Supplementary Information). In order to obtain reliable yields, we 
filtered the CPME samples through a silica gel plug followed by vacuum evaporation of 
the solvent. All samples were analyzed by 1H and 13C NMR spectroscopy without any 
prior purification. Amidations, to form amides 12–39, were performed with the above 
protocol under the optimized conditions (50 mg CALB, 920 mM substrate concentration, 
1 mL solvent CPME, 50 mg molecular sieve, 2 µL n-heptadecane, 60 °C). 
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13C NMR spectra were recorded on a Bruker Avance NEO 500.1 spectrometer, in CDCl3 as
solvent, with tetramethylsilane as an internal standard at 500.1 and 125 MHz, respectively.
GC-MS analyses were performed on a Thermo Scientific Trace 1310 Gas Chromatograph
coupled with a Thermo Scientific ISQ QD Single-Quadrupole Mass Spectrometer using a
Thermo Scientific TG-SQC column (15 m × 0.25 mm ID × 0.25 µm film). Measurement
parameters were as follows: column oven temperature: from 50 to 300 ◦C at 15 ◦C min−1;
injection temperature: 240 ◦C; ion source temperature: 200 ◦C; electrospray ionization:
70 eV; carrier gas: He at 1.5 mL min−1; injection volume: 5 µL; split ratio: 1:50; and mass
range: 25–500 m/z.

3.2. General Procedure for CALB-Catalyzed Amidation

In preliminary amidation experiments, the carboxylic acid and amine substrates
(1:1 equiv) were dissolved in an organic solvent (1 mL) to provide a solution with a
given concentration (46, 92, 460, or 920 mM). CALB (50 mg), molecular sieve (50 mg
3 Å size) to avoid the reversible hydrolysis reaction, and n-heptadecane (2 µL) as an
internal standard were added to the above solution. The mixture was shaken at a selected
temperature (25, 50, 60 or 70 ◦C) in an incubator shaker. The progress of the reaction was
followed by taking samples from the reaction mixture at intervals and analyzing them
by GC-MS measurements. Conversion of the starting materials (moles of the converted
molecules/moles of the initial starting materials × 100) was calculated by n-heptadecane
as an internal standard, in percent yield of the desired amides (actual yield/theoretical
yield × 100) (see Supplementary Information). In order to obtain reliable yields, we filtered
the CPME samples through a silica gel plug followed by vacuum evaporation of the solvent.
All samples were analyzed by 1H and 13C NMR spectroscopy without any prior purification.
Amidations, to form amides 12–39, were performed with the above protocol under the
optimized conditions (50 mg CALB, 920 mM substrate concentration, 1 mL solvent CPME,
50 mg molecular sieve, 2 µL n-heptadecane, 60 ◦C).

3.2.1. N-Benzyloctanamide (12)

CAS number: 70659-87-9, white solid, mp = 65.1–66.3 ◦C [58]. 1H-NMR (CDCl3,
500.1 MHz): δ = 7.25–7.34 (m, 5H, Ar), 5.69 (s, 1H, NH), 4.44 (d, J = 5.69 Hz, 2H, CH2), 2.20
(t, J = 7.86 Hz, 2H, CH2CO), 1.62–1.68 (m, 2H, CH2), 1.27–1.33 (m, 8H, CH2CH2CH2CH2),
0.87 (t, J = 7.16 Hz, 3H, CH3), 13C-NMR (CDCl3, 125 MHz): δ = 14.05, 22.59, 25.77, 28.99,
29.27, 29.69, 31.68, 36.84, 43.60, 127.50, 127.84, 128.71, 138.45, 172.93.

3.2.2. N-Benzylhexanamide (13)

CAS number: 6283-98-3, yellowish white solid, mp = 55.1–55.5 ◦C [59]. 1H-NMR
(CDCl3, 500.1 MHz): δ = 7.25–7.33 (m, 5H, Ar), 5.84 (s, 1H, NH), 4.42 (d, J = 5.73 Hz, 2H,
CH2), 2.19 (t, J = 7.87 Hz, 2H, CH2CO), 1.62–1.68 (m, 2H, CH2), 1.27–1.34 (m, 4H, CH2CH2),
0.88 (t, J = 7.04 Hz, 3H, CH3), 13C-NMR (CDCl3, 125 MHz): δ = 13.92, 22.39, 25.45, 29.69,
31.48, 36.75, 43.56, 53.42, 127.46, 127,80, 128.68, 138.47, 173.03.

3.2.3. N-Enzylbutyramide (14)

CAS number: 10264-14-9, yellowish solid, mp = 43.0–43.6 ◦C [60]. 1H-NMR (CDCl3,
500.1 MHz): δ = 7.23–7.31 (m, 5H, Ar), 6.14 (s, 1H, NH), 4.39 (d, J = 5.75 Hz, 2H, CH2),
2.16 (t, J = 7.64 Hz, 2H, CH2CO), 1.62–1.69 (m, 2H, CH2), 0.93 (t, J = 7.42 Hz, 3H, CH3),
13C-NMR (CDCl3, 125 MHz): δ = 13.78, 19.18, 29.69, 38.58, 43.46, 53.45, 127.38, 127.73,
128.63, 138.54, 173.00.

3.2.4. N-Benzyl-4-phenylbutanamide (15)

CAS number: 179923-27-4, yellowish solid, mp = 79.2–80.2 ◦C [61]. 1H-NMR (CDCl3,
500.1 MHz): δ = 7.13–7.32 (m, 10H, Ar), 5.84 (s, 1H, NH), 4.39 (d, J = 5.73 Hz, 2H, CH2),
2.63 (t, J = 7.54 Hz, 2H, CH2), 2.18 (t, J = 7.78 Hz, 2H, CH2CO), 1.94–2.00 (m, 2H, CH2),
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13C-NMR (CDCl3, 125 MHz): δ = 27.13, 29.72, 35.22, 35.85, 43.59, 46.42, 70.52, 72.51, 125.99,
127.51, 127.83, 128.41, 128.51, 128.71, 138.41, 141.48, 172, 57.

3.2.5. N-Allyloctanamide (16)

CAS number: 70659-85-7, yellow solid, mp = 27.6–28.3 ◦C [62]. 1H-NMR (CDCl3,
500.1 MHz): δ = 5.84 (ddt, J = 15.97 Hz, 10.29 Hz, 5.09 Hz, 1H, CH), 5.53 (s, 1H, NH),
5.11–5.19 (m, 2H, CH2), 3.88 (t, J = 5.73 Hz, 2H, CH2), 2.19 (t, J = 7.79 Hz, 2H, CH2CO),
1.61–1.66 (m, 2H, CH2), 1,25–1.31 (m, 8H, CH2CH2CH2CH2), 0.87 (t, J = 7.03 Hz, 3H, CH3),
13C-NMR (CDCl3, 125 MHz): δ = 14.04, 22.59, 25.77, 29.00, 29.27, 31.67, 36.81, 41.86, 116.27,
134.42, 172.94.

3.2.6. N-Allylhexanamide (17)

CAS number: 128007-44-3, yellowish oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 5.84 (ddt,
J = 15.96 Hz, 10.27 Hz, 5.04 Hz, 1H, CH), 5.55 (s, 1H, NH), 5.11–5.20 (m, 2H, CH2), 3.88 (t,
J = 5.74 Hz, 2H, CH2), 2.19 (t, J = 7.81 Hz, 2H, CH2CO), 1.61–1.67 (m, 2H, CH2), 1.29–1.35
(m, 4H, CH2CH2), 0.89 (t, J = 7.08 Hz, 3H, CH3), 13C-NMR (CDCl3, 125 MHz): δ = 13.91,
22.39, 25.45, 31.47, 36.77, 41.86, 116.29, 134.41, 172.97.

3.2.7. N-Allylbutyramide (18)

CAS number: 2978-29-2, yellowish oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 5.84 (ddt,
J = 16.00 Hz, 10.32 Hz, 5.06 Hz, 1H, CH), 5.46 (s, 1H, NH), 5.12–5.20 (m, 2H, CH2), 3.89 (t,
J = 5.74 Hz, 2H, CH2), 2.17 (t, J = 7.68 Hz, 2H, CH2CO), 1.64–1.71 (m, 2H, CH2), 0.96 (t,
J = 7.36 Hz, 3H, CH3), 13C-NMR (CDCl3, 125 MHz): δ = 13.77, 19.16, 29.69, 38.72, 41.86,
116.33, 134.40.

3.2.8. N-Allyl-4-phenylbutanamide (19)

CAS number: 430450-20-7, yellow oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 7.17–7.29 (m,
5H, Ar), 5.83 (ddt, J = 16.00 Hz, 10.28 Hz, 5.06 Hz, 1H, CH), 5.40 (s, 1H, NH), 5.11–5.19 (m,
2H, CH2), 3.87 (t, J = 5.77 Hz, 2H, CH2), 2.66 (t, J = 7.53 Hz, 2H, CH2), 2.19 (t, J = 7.84 Hz,
2H, CH2CO), 1.94–2.02 (m, 2H, CH2), 13C-NMR (CDCl3, 125 MHz): δ = 27.08, 29.70, 35.19,
35.86, 41.91, 116.44, 125.98, 128.40, 128.49, 134.30, 141.46, 172.42.

3.2.9. N-(Prop-2-yn-1-yl)octanamide (20)

CAS number: 422284-34-2, white solid, mp = 72.4–73.4 ◦C [63]. 1H-NMR (CDCl3,
500.1 MHz): δ = 5.60 (s, 1H, NH), 4.06 (dd, J = 5.18 Hz, J = 2.53 Hz 1H, CH2), 4.04 (dd,
J = 5.18 Hz, J = 2.53 Hz, 1H, CH2), 2.22 (t, J = 2.55 Hz, 1H, CH), 2.19 (t, J = 7.77 Hz, 2H,
CH2CO), 1.62–1.66 (m, 2H, CH2), 1.25–1.30 (m, 8H, CH2CH2CH2CH2), 0.87 (t, J = 7.05 Hz,
3H, CH3), 13C-NMR (CDCl3, 125 MHz): δ = 14.04, 22.58, 25.54, 28.97, 29.14, 29.20, 31.65,
36.49, 71.53, 79.67, 172.70.

3.2.10. N-(Prop-2-yn-1-yl)hexanamide (21)

CAS number: 62899-12-1, white solid, mp = 47.3–48.0 ◦C [64]. 1H-NMR (CDCl3,
500.1 MHz): δ = 5.74 (s, 1H, NH), 4.05 (dd, J = 5.21 Hz, J = 2.54 Hz 1H, CH2), 4.04 (dd,
J = 5.21 Hz, J = 2.54 Hz, 1H, CH2), 2.22 (t, J = 2.53 Hz, 1H, CH), 2.19 (t, J = 7.84 Hz, 2H,
CH2CO), 1.61–1.67 (m, 2H, CH2), 1.29–1.35 (m, 4H, CH2CH2), 0.89 (t, J = 6.98 Hz, 3H, CH3),
13C-NMR (CDCl3, 125 MHz): δ = 13.89, 22.36, 25.23, 29.13, 31.40, 36.42, 71.49, 79.68, 172.80.

3.2.11. N-(Prop-2-yn-1-yl)butyramide (22)

CAS number: 2978-28-1, yellowish solid, mp = 26.1–26.6 ◦C [65]. 1H-NMR (CDCl3,
500.1 MHz): δ = 5.56 (s, 1H, NH), 4.06 (dd, J = 5.21 Hz, J = 2.54 Hz 1H, CH2), 4.05 (dd,
J = 5.19 Hz, J = 2.52 Hz, 1H, CH2), 2.22 (t, J = 2.55 Hz, 1H, CH), 2.17 (t, J = 7.66 Hz,
2H, CH2CO), 1.64–1.71 (m, 2H, CH2), 0.95 (t, J = 7.42 Hz, 3H, CH3), 13C-NMR (CDCl3,
125 MHz): δ = 13.71, 18.97, 29.14, 29.69, 38.37, 71.55.
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3.2.12. 4-Phenyl-N-(prop-2-yn-1-yl)butanamide (23)

CAS number: 1250568-47-8, colorless oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 7.16–7.29
(m, 5H, Ar), 5.54 (s, 1H, NH), 4.04 (dd, J = 5.24 Hz, J = 2.56 Hz 1H, CH2), 4.03 (dd, J = 5.19 Hz,
J = 2.51 Hz, 1H, CH2), 2.66 (t, J = 7.53 Hz, 2H, CH2), 2.22 (t, J = 2.58 Hz, 1H, CH), 2.19 (t,
J = 7.83 Hz, 2H, CH2CO), 1.95–2.01 (m, 2H, CH2), 13C-NMR (CDCl3, 125 MHz): δ = 26.84,
29.15, 29.17, 35.08, 35.49, 71.59, 79.58, 126.02, 128.42, 128.50, 141.33, 172.22.

3.2.13. 1-(Piperidin-1-yl)octan-1-one (24)

CAS number: 20299-83-6, colorless oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 3.54
(t, J = 5.47 Hz, 2H, CH2N), 3.39 (t, J = 5.36 Hz, 2H, CH2N), 2.30 (t, J = 7.91 Hz, 2H,
CH2CO), 1.50–1.66 (m, 8H, CH2CH2CH2CH2), 1.25–1.32 (m, 8H, CH2CH2CH2CH2), 0.87
(t, J = 7.01 Hz, 3H, CH3), 13C-NMR (CDCl3, 125 MHz): δ = 14.05, 22.60, 24.60, 25.50, 25.59,
26.58, 29.10, 29.50, 31.72, 33.49, 42.58, 46.72, 171.52.

3.2.14. 1-(Piperidin-1-yl)hexan-1-one (25)

CAS number: 15770-38-4, yellowish oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 3.54 (t,
J = 5.47 Hz, 2H, CH2N), 3.39 (t, J = 5.47 Hz, 2H, CH2N), 2.30 (t, J = 7.77 Hz, 2H, CH2CO),
1.51–1.65 (m, 8H, CH2CH2CH2CH2), 1.30–1.35 (m, 4H, CH2CH2), 0.90 (t, J = 6.91 Hz, 3H,
CH3), 13C-NMR (CDCl3, 125 MHz): δ = 13.96, 22.49, 24.61, 25.18, 25.60, 26.59, 31.72, 33.45,
42.59, 46.72, 171.53.

3.2.15. 1-(Piperidin-1-yl)butan-1-one (26)

CAS number: 4637-70-1, yellow oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 3.54 (t,
J = 5.48 Hz, 2H, CH2N), 3.39 (t, J = 5.34 Hz, 2H, CH2N), 2.29 (t, J = 7.78 Hz, 2H, CH2CO),
1.50–1.69 (m, 8H, CH2CH2CH2CH2), 0.96 (t, J = 7.41 Hz, 3H, CH3), 13C-NMR (CDCl3,
125 MHz): δ = 14.04, 18.88, 24.61, 25.61, 26.58, 35.40, 42.58, 46.71, 171.34.

3.2.16. 4-Phenyl-1-(piperidin-1-yl)butan-1-one (27)

CAS number: 41208-51-9, white solid, mp = 153.9–154.4 ◦C [66]. 1H-NMR (CDCl3,
500.1 MHz): δ = 7.16–7.29 (m, 5H, Ar), 3.54 (t, J = 5.53 Hz, 2H, CH2N), 3.31 (t, J = 5.47 Hz,
2H, CH2N), 2.67 (t, J = 7.66 Hz, 2H, CH2), 2.32 (t, J = 7.84 Hz, 2H, CH2CO), 1.93–1.99 (m,
2H, CH2), 1.49–1.64 (m, 6H, CH2CH2CH2), 13C-NMR (CDCl3, 125 MHz): δ = 24.58, 25.60,
26.54, 26.84, 29.69, 33.54, 35.42, 42.63, 46.61, 125.86, 128.33, 128.49, 141.85, 171.01.

3.2.17. 1-Morpholinooctan-1-one (28)

CAS number: 5338-65-8, colorless oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 3.66 (t,
J = 5.14 Hz, 4H, CH2OCH2), 3.61 (t, J = 3.75 Hz, 2H, CH2N), 3.46 (t, J = 4.53 Hz, 2H,
CH2N), 2.30 (t, J = 7.83 Hz, 2H, CH2CO), 1.59–1.65 (m, 2H, CH2), 1.25–1.34 (m, 8H,
CH2CH2CH2CH2), 0.88 (t, J = 7.08 Hz, 3H, CH3), 13C-NMR (CDCl3, 125 MHz): δ = 14.03,
22.58, 25.25, 29.05, 29.40, 31.68, 33.11, 41.85, 46.06, 66.68, 66.95, 171.89.

3.2.18. 1-Morpholinohexan-1-one (29)

CAS number: 17598-10-6, yellowish oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 3.66 (t,
J = 5.18 Hz, 4H, CH2OCH2), 3.61 (t, J = 3.75 Hz, 2H, CH2N), 3.46 (t, J = 4.56 Hz, 2H, CH2N),
2.30 (t, J = 7.85 Hz, 2H, CH2CO), 1.60–1.66 (m, 2H, CH2), 1.30–1.36 (m, 4H, CH2CH2), 0.90
(t, J = 6.95 Hz, 3H, CH3), 13C-NMR (CDCl3, 125 MHz): δ = 13.92, 22.45, 24.93, 31.62, 33.07,
41.86, 46.06, 66.68, 66.96, 171.90.

3.2.19. 1-Morpholinobutan-1-one (30)

CAS number: 5327-51-5, colorless oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 3.66 (t,
J = 5.20 Hz, 4H, CH2OCH2), 3.61 (t, J = 4.56 Hz, 2H, CH2N), 3.46 (t, J = 4.56 Hz, 2H, CH2N),
2.29 (t, J = 7.70 Hz, 2H, CH2CO), 1.63–1.70 (m, 2H, CH2), 0.97 (t, J = 7.46 Hz, 3H, CH3),
13C-NMR (CDCl3, 125 MHz): δ = 13.96, 18.66, 35.02, 41.86, 46.05, 66.69, 66.97, 171.75.
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3.2.20. 1-Morpholino-4-phenylbutan-1-one (31)

CAS number: 61123-44-2, white solid, mp = 40.7–42.5 ◦C [67]. 1H-NMR (CDCl3,
500.1 MHz): δ = 7.17–7.29 (m, 5H, Ar), 3.59–3.66 (m, 6H, NCH2CH2OCH2), 3.37 (t,
J = 4.68 Hz, 2H, NCH2), 2.68 (t, J = 7.59 Hz, 2H, CH2), 2.30 (t, J = 7.71 Hz, 2H, CH2CO),
1.95–2.01 (m, 2H, CH2), 13C-NMR (CDCl3, 125 MHz): δ = 26.54, 29.70, 32.10, 35.26, 45.89,
45.92, 66.63, 66.95, 125.98, 128.40, 128.48, 141.57, 171.42.

3.2.21. N-(2-(Dimethylamino)ethyl)octanamide (32)

CAS number: 114011-26-6, colorless oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 6.14
(s, 1H, NH), 3.30–3.34 (m, 2H, CONHCH2), 2.41 (t, J = 5.90 Hz, 2H, CH2), 2.23 (s, 6H,
CH3CH3), 2.17 (t, J = 7.82 Hz, 2H, CH2CO), 1.59–1.65 (m, 2H, CH2), 1.27–1.30 (m, 8H,
CH2CH2CH2CH2), 0.87 (t, J = 7.09 Hz, 3H, CH3), 13C-NMR (CDCl3, 125 MHz): δ = 14.04,
22.58, 25.78, 29.00, 29.26, 29.68, 31.69, 36.64, 36.73, 45.07, 57.94, 173.37.

3.2.22. N-(2-(Dimethylamino)ethyl)hexanamide (33)

CAS number: 114011-25-5, colorless oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 6.07 (s, 1H,
NH), 3.31–3.34 (m, 2H, CONHCH2), 2.41 (t, J = 5.90 Hz, 2H, CH2), 2.23 (s, 6H, CH3CH3),
2.17 (t, J = 7.81 Hz, 2H, CH2CO), 1.60–1.66 (m, 2H, CH2), 1.28–1.36 (m, 4H, CH2CH2), 0.89
(t, J = 7.04 Hz, 3H, CH3), 13C-NMR (CDCl3, 125 MHz): δ = 13.94, 22.41, 25.46, 29.69, 31.49,
36.62, 36.72, 45.08, 57.91, 173.30.

3.2.23. N-(2-(Dimethylamino)ethyl)butyramide (34)

CAS number: 63224-16-8, yellowish oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 6.12 (s, 1H,
NH), 3.31–3.35 (m, 2H, CONHCH2), 2.42 (t, J = 5.88 Hz, 2H, CH2), 2.24 (s, 6H, CH3CH3),
2.15 (t, J = 7.69 Hz, 2H, CH2CO), 1.62–1.70 (m, 2H, CH2), 0.94 (t, J = 7.36 Hz, 3H, CH3),
13C-NMR (CDCl3, 125 MHz): δ = 13.77, 19.19, 29.69, 36.57, 38.65, 45.03, 57.19, 173.14.

3.2.24. N-(2-(Dimethylamino)ethyl)-4-phenylbutanamide (35)

CAS number: 63224-25-9, yellowish oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 7.17–7.28
(m, 5H, Ar), 3.30–3.33 (m, 2H, CONHCH2), 2.65 (t, J = 7.60 Hz, 2H, CH2), 2.40 (t, J = 5.88 Hz,
2H, CH2), 2.22 (s, 6H, CH3CH3), 2.18 (t, J = 7.79 Hz, 2H, CH2CO), 1.94–2.00 (m, 2H, CH2),
13C-NMR (CDCl3, 125 MHz): δ = 22.68, 27.13, 29.35, 29.69, 35.23, 25.84, 36.66, 45.07, 57.90,
125.91, 128.35, 128.51, 141.61, 172.85.

3.2.25. N-(3-(Dimethylamino)propyl)ctanamide (36)

CAS number: 22890-10-4, colorless oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 6.89
(s, 1H, NH), 3.30–3.34 (m, 2H, CONHCH2), 2.37 (t, J = 6.41 Hz, 2H, CH2), 2.23 (s, 6H,
CH3CH3), 2.14 (t, J = 7.80 Hz, 2H, CH2CO), 1.57–1.68 (m, 4H, CH2CH2), 1.25–1.30 (m, 8H,
CH2CH2CH2CH2), 0.87 (t, J = 7.04 Hz, 3H, CH3), 13C-NMR (CDCl3, 125 MHz): δ = 14.04,
22.59, 25.75, 26.14, 29.02, 29.26, 29.68, 31.68, 36.96, 39.15, 45.34, 58.50, 173.16.

3.2.26. N-(3-(Dimethylamino)propyl)hexanamide (37)

CAS number: 73603-23-3, yellowish oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 6.92 (s, 1H,
NH), 3.30–3.34 (m, 2H, CONHCH2), 2.37 (t, J = 6.45 Hz, 2H, CH2), 2.22 (s, 6H, CH3CH3),
2.14 (t, J = 7.77 Hz, 2H, CH2CO), 1.57–1.67 (m, 4H, CH2CH2), 1.28–1.34 (m, 4H, CH2CH2),
0.89 (t, J = 7.16 Hz, 3H, CH3), 13C-NMR (CDCl3, 125 MHz): δ = 13.90, 22.40, 25.42, 26.17,
29.67, 31.45, 36.89, 39.15, 45.35, 58.49, 173.18.

3.2.27. N-(3-(Dimethylamino)propyl)butyramide (38)

CAS number: 53201-67-5, colorless oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 6.89 (s, 1H,
NH), 3.32–3.35 (m, 2H, CONHCH2), 2.43 (t, J = 6.43 Hz, 2H, CH2), 2.27 (s, 6H, CH3CH3),
2.13 (t, J = 7.63 Hz, 2H, CH2CO), 1.60–1.70 (m, 4H, CH2CH2), 0.94 (t, J = 7.39 Hz, 3H, CH3),
13C-NMR (CDCl3, 125 MHz): δ = 13.80, 19.12, 26.01, 29.69, 38.87, 38.98, 45.16, 58.36, 172.97.
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3.2.28. N-(3-(Dimethylamino)propyl)-4-phenylbutanamide (39)

CAS number: 885912-19-6, yellowish oil. 1H-NMR (CDCl3, 500.1 MHz): δ = 7.16–7.28
(m, 5H, Ar), 6.88 (s, 1H, NH), 3.30–3.34 (m, 2H, CONHCH2), 2.64 (t, J = 7.64 Hz, 2H, CH2),
2.38 (t, J = 6.42 Hz, 2H, CH2), 2.22 (s, 6H, CH3CH3), 2.16 (t, J = 7.78 Hz, 2H, CH2CO),
1.92–1.98 (m, 2H, CH2), 1.62–1.67 (m, 2H, CH2), 13C-NMR (CDCl3, 125 MHz): δ = 14.11,
26.11, 27.19, 29.69, 35.25, 36.09, 39.17, 45.30, 53.42, 58.52, 125.89, 128.34, 128.46, 141.64, 172.61.

4. Conclusions

We successfully developed a sustainable and green enzymatic strategy for the synthesis
of amides from free carboxylic acids and amines by using Candida antarctica lipase B as a
biocatalyst, using GC-MS analysis to monitor the reaction progress. The green enzymatic
amidation is simple and efficient without any additives, with the application of cyclopentyl
methyl ether as the solvent, which is a greener and safer solvent alternative in comparison
with the usual organic solvents. The scope of the reaction was extended to the preparation
of 28 diverse amides, by using four different free carboxylic acids and seven amines,
including primary and secondary amines as well as cyclic amines. In every case, excellent
conversions and yields were achieved without the need of any intensive purification step.
This enzymatic methodology offers a way to synthetize pure amides. That is, this synthetic
approach is both eco-friendly and practical for large-scale production.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules28155706/s1, Figures S1–S62: 1H-NMR and 13C-NMR spectra of
12–39 amide products and GC-MS measurement.
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