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Abstract: The control of alumina morphology is crucial yet challenging for its various applications.
Unfortunately, traditional methods for preparing alumina particles suffer from several limitations
such as irregular morphology, poor dispersibility, and restricted application areas. In this study, we
develop a novel method for preparing spherical mesoporous alumina using chitin and Pluronic P123
as mixed templates. The effects of reaction temperature, time, and the addition of mixed templates
on the phase structure, micromorphology, and optical absorption properties of the samples were
investigated. The experimental results indicate that lower temperature and shorter reaction time
facilitated the formation of spherical mesoporous alumina with excellent CO2 adsorption capacity.
The periodic density functional theory (DFT) calculations demonstrate that both the (110) and (100)
surfaces of γ-Al2O3 can strongly adsorb CO2. The difference in the amount of CO2 adsorbed by
Al2O3 is mainly due to the different surface areas, which give different numbers of exposed active
sites. This approach introduces a novel strategy for utilizing biological compounds to synthesize
spherical alumina and greatly enhances mesoporous alumina’s application efficiency in adsorption
fields. Moreover, this study explored the electrochemical performance of the synthesized product
using cyclic voltammetry, and improved loading of electrocatalysts and enhanced electrocatalytic
activity were discovered.

Keywords: mesoporous alumina; chitin; P123; hydrothermal method

1. Introduction

In recent years, alumina has gained significant attention in high-value applications
such as adsorbent [1–3], ceramic [4,5], catalyst and catalyst carrier [6–9] applications, etc.
The application of alumina is not only dependent on particle size but also on particle shape.
Different shapes of alumina, such as rod-like [10], fibrous [11], plate-like [12], and spher-
ical [13] shapes, have been wildly used. Seyed [14] obtained massive γ-aluminum with
particle sizes between 0.5 µm and 0.9 µm, but the morphology was irregular. Dabbagh et al.
and Feng et al. [15,16] prepared rod-like, fibrous, and spherical alumina, but the process
was complex and hard to control, resulting in poor dispersibility. Lv et al. [17] synthe-
sized spherical alumina with a highly spherical shape and uniform particle size by using
the oil–ammonia drop method, but the particle size was large, which limited its applica-
tion area. Using aluminum isopropoxide as a precursor and Pluronic P123 (P123) as a
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template, Wu et al. [18] synthesized organized mesoporous alumina with a hierarchical
structure. However, these methods suffer from limitations such as irregular morphology,
poor dispersibility, and limited application areas.

Mesoporous materials are highly valued due to their higher specific surface area,
organized pore structure, narrow pore size distribution, and continuous pore size, which
make them important for adsorption and separation, as well as catalytic reactions [19–23].
Among various shapes of alumina, spherical alumina has high fluidity, making it less
prone to gathering and producing channeling during catalytic processes, which signifi-
cantly enhances catalyst activity. Therefore, the preparation of mesoporous alumina can
greatly improve the application efficiency of mesoporous alumina spheres in adsorption,
separation, and catalysis [24].

Chitin ((C8H13O5N)n) is a naturally occurring biopolymer that is highly organized
and abundant in the exoskeletons of crustaceans and insects. The primary chitin fibrils’
structural arrangement varies among arthropod species, with some having helical structures
called the Bouligand structure, which enhances photonic and mechanical properties. This
structure resembles cholesteric lyotropic liquid crystals. The hierarchical structure of chitin
fibrils makes them an excellent natural template for developing new materials. The use
of biomass as a porous material can achieve biodegradability, achieve biocompatibility,
and achieve green and sustainable development [25–29]. Pluronic P123 (P123) is a soft
template with a symmetric triblock copolymer comprising poly (ethylene oxide) (PEO)
alternating with poly (propylene oxide) (PPO), PEO-PPO-PEO. Its phases vary depending
on the concentration and combination of solvents [30–33] and it is often used as a crystal
structure modifier in the preparation of mesoporous materials [34].

In this study, mesoporous alumina spheres were successfully prepared using alumina
hydrate (AlOOH) as a precursor, (NH2)2CO as a precipitant, and chitin powder and
P123. The preparation process, which involved evaporation-induced self-assembly (EISA),
was green, low-cost, and pollution-free. This method significantly improved the catalyst
loading firmness and service life of mesoporous alumina spheres. The effects of synthesis
temperature, time, and the addition of mixed templates on the structure and morphology of
the products were investigated. The CO2 adsorption performance of spherical mesoporous
alumina and the electrochemical performance of supported SnO2 were also evaluated.

2. Results and Discussion

Synthesis of mesoporous alumina spheres. The synthesis of spherical macroporous
alumina materials was achieved through the hydrothermal method, using hydrated alu-
mina (AlOOH) as the precursor, along with chitin and P123 as the templates, and urea
as a precipitant, while adapting the evaporation-induced self-assembly (EISA) method,
as depicted in Figure 1. By systematically varying the reaction conditions, the impact of
reaction temperature and time, as well as the chitin/P123 weight ratio, on the morphology
and properties of the resulting spherical mesoporous alumina materials was investigated.
The detailed process parameters are shown in the following table. During the calcining
process at 700 ◦C, the organic components, including chitin and P123, underwent decom-
position and evaporation, creating voids within the alumina matrix. This decomposition
and evaporation of organic materials resulted in the formation of well-defined mesopores
within the macroporous alumina microspheres.

The effect of synthesis temperature and time on the morphology of spherical meso-
porous alumina. Figure 2a displays the X-ray diffraction (XRD) map of the precursor
synthesized under various temperatures and durations. The precursors of R2:1T120H3 and
R0:1T120H9 are primarily amorphous products. However, as the synthesis temperature
increases to 160 ◦C and 180 ◦C, the precursors of R0:4T160H3 and R3:1T180H3 start to crys-
tallize and become AlOOH (JCPDS 01-072-0359). This finding suggests that the synthesis
temperature has a significant impact on the crystallization of the precursor. At lower
hydrothermal temperatures, the system energy is insufficient to facilitate the formation and
transformation of crystals, leading to the amorphous state of the samples. In contrast, when
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the hydrothermal temperature increases, individual diffraction peaks emerge, and their
intensity and width grow, indicating the increased crystallinity of the particles. The precur-
sors of R3:1T140H9 and R1:1T140H15 are synthesized at 140 ◦C for 9 h and 15 h, respectively,
providing sufficient energy for crystallization. Nevertheless, the diffraction peak intensity
and width of the precursors of R3:1T140H9 and R1:1T140H15 are smaller compared with
those of the precursors of R0:4T160H3 and R3:1T180H3 synthesized at higher temperatures.
This difference implies that the crystallinity of particles in the precursors of R3:1T140H9
and R1:1T140H15 is weaker than that in the precursors of R0:4T160H3 and R3:1T180H3. By
controlling the growth rate of the crystal faces, the crystal orientation can be influenced,
enabling control over the morphology and crystal structure of products.
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Figure 1. Schematic diagram of the preparation of spherical mesoporous alumina materials.

γ-Al2O3 belongs to the transitional form of alumina, and the random distribution of
Al atoms results in a certain broadening of the XRD diffraction peak of γ-Al2O3. Figure 2b
shows the mesoporous alumina XRD image after calcination at 600 ◦C. The amorphous pre-
cursor of R2:1T120H3 and R0:1T120H9 prepared at a lower synthesis temperature transforms
into γ-Al2O3 under calcination at 700 ◦C; samples R0:4T160H3, R3:1T180H3, R3:1T140H9, and
R1:1T140H15 are γ-Al2O3 (JCDPS 10-0425). With the increase in hydrothermal temperature,
the position of each diffraction peak remains the same. However, the intensity and width
of the diffraction peak grow larger, indicating an increase in the crystallinity of particles.

Figure 2c,d illustrates the SEM images of the mesoporous alumina samples prepared
under different synthesis conditions. The images reveal that the temperature significantly
influences the sample morphology, and 140 ◦C promotes the formation of spherical particles.
When synthesized at 120 ◦C, the sample particles are massive and spherical (Figure 2c),
while at 140 ◦C, the particles are regularly spherical with a smooth surface and particle
sizes ranging between 50 nm and 200 nm (Figure 2d). As the synthesis temperature
increases, more particles begin to crystallize and form crystalline solids. While these
solids can completely transform into γ-Al2O3 at 700 ◦C, the amorphous precursor requires
more energy to undergo phase transformation at this temperature. Thus, crystallization is
relatively slow, which favors the preparation of spherical mesoporous alumina (Figure 2a,b).
However, at higher synthesis temperatures, the chitin powder used as a template tends
to carbonize and lose some of its templating function. As a result, the sample transforms
into irregular and flocculent particles that agglomerate (Figure S1a–d). Moreover, longer
synthesis times are also not conducive to the development of spherical alumina particles
(Figure S1c,d). Such conditions promote the development of flocculent, strip, and irregular
particles, which hinder the normal growth of spherical particles.
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Figure 2. The X-ray diffraction (XRD) patterns of (a) the precursor and (b) mesoporous alumina XRD
image under different synthesis conditions. The SEM images of mesoporous alumina under different
synthesis conditions: (c) 120 ◦C, (d) 140 ◦C.

The effect of chitin/P123 weight ratio on spherical morphology. During the syn-
thesis process, the amount of additive used has a significant impact on the morphol-
ogy and structure of the final product [35–38]. Figure 3 displays the test results of
spherical mesoporous alumina prepared using different chitin/P123 weight ratios (chitin
quality:P123 quality).

When the chitin/P123 weight ratio is 0 (R = 0:4), the predominant types of pores
observed in the samples are inkbottle-type pores with a large opening and small diameter,
as well as uneven crack-like pores, as shown in Figure 3a. The nitrogen adsorption isotherm
(see Figure 3f) exhibits a type IV curve with a hysteresis loop between H2 and H3 in the
middle to high voltage range of 0.5 p/p0 to 0.9 p/p0. The adsorption amount in this
range is limited to only 0.4 to 1 mmol/g. This is primarily due to the irregular stacking of
the strip-shaped samples, which results in a low number of mesoporous structures being
distributed. As shown in Figure 3g, the pore sizes are mainly distributed in the range of
approximately 7 nm.

As the weight ratio increases to 3, 4 (R = 3:1, 4:1), the particle size of the sample
becomes larger and the spherical shape becomes more regular (see Figure 3d,e). The
nitrogen adsorption isotherms show that in the middle–high pressure area, the nitrogen
adsorption capacity has further increased to about 7–8 mmol/g, as shown in Figure 3f,g.
The pore size has further increased to about 9.4 nm and the pore volume has increased to
0.7 cm3/g. The type IV curve of nitrogen adsorption isotherms shows a hysteresis loop
between types H1 and H2. The formation of inkbottle pores becomes more prominent, and
the mesoporous structure becomes more developed. However, with the further increase
in the weight ratio, the nitrogen adsorption capacity gradually decreases, indicating that
excessive chitin may hinder the formation of the mesoporous structure. Therefore, the
optimal weight ratio of chitin/P123 is 3, 4 (R= 3:1, 4:1).
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Figure 3. SEM images of (a) R0:4T140H15 , (b) R1:1T140H15, (c) R2:1T140H15, (d) R3:1T140H15, and
(e) R4:1T140H15, (f) nitrogen sorption isotherms curves, (g) corresponding pore size distributions
curves and (h) surface area histogram of as-prepared samples.

As shown in Figure 3d, at a weight ratio of 3 (R = 3:1), the sample formed regular,
uniform, and monodisperse microspheres and the predominant pore structure is a regular
cylindrical shape with uniform size and shape. The nitrogen adsorption isotherms for this
sample show a steep type IV curve and an H1 hysteresis loop (see Figure 3f), indicating
that the sample has a uniform mesoporous structure and pore sizes are mainly distributed
between 7 nm and 9 nm. Notably, the pore size has increased by 8.6 nm compared with the
previous weight ratio, and the pore volume has also increased by 0.3 cm3/g.

In summary, the chitin/P123 weight ratio has a significant effect on the morphology
and structure of the mesoporous alumina sample. When the weight ratio is 0 (R = 0:4),
the sample has irregular strips with few mesoporous structures. As the weight ratio
increases to 3 (R = 3:1), the sample forms regular and uniform microspheres with a uniform
mesoporous structure, which leads to increases in pore size, pore volume, and BET surface
area. However, when the weight ratio is further increased to 4 (R = 4:1), the sample exhibits
adhesion and aggregation, and the pore size, pore volume, and BET surface area decrease.
This is due to the increase in viscosity of the solution, which affects the template space
steric effect and weakens homogeneous nucleation.
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Using this method, this experiment involved successfully preparing spherical meso-
porous alumina with uniform pore size, good dispersion, and identical morphology, with a
chitin/P123 weight ratio of 3 (R = 3:1). The amorphous precursor was prepared at a lower
temperature of 140 ◦C and for a shorter time of 3 h. Upon calcination at 600 ◦C, inorganic
Al3+ interacted slowly with and connected to the organic micelle interface via electrostatic
interaction. This process allowed the aluminum ions to cover the entire particle surface
and achieve consistent growth rates for all surfaces, ultimately resulting in the formation of
spherical particles via homogeneous nucleation. The particle surface also formed a uniform
mesoporous layer, resulting in the complete transformation of the precursor into spherical
mesoporous Al2O3, as shown in Figure S2.

Figure S2 displays TEM images of spherical mesoporous alumina materials. The
images clearly show that the alumina has a uniform and regular spherical form, as well as
good dispersion. A 10 nm mesoporous layer uniformly covers the surface of the alumina
particles, and the mesopore size is consistent throughout. The nitrogen sorption isotherms
and corresponding pore size distributions of the spherical mesoporous alumina materials
are also presented in Figure S2.

CO2 adsorption on spherical mesoporous alumina. Figure 4a displays the CO2 gas
adsorption isotherm curves of spherical mesoporous alumina, which was synthesized with
varying mass ratios of chitin to P123 at a temperature of 273 K [39–42]. With its large specific
surface area and pore volume, spherical mesoporous alumina exhibits a high potential
for gas adsorption. In this study, we investigated the adsorption capacity of spherical
mesoporous alumina, synthesized with different ratios of template agents (chitin/P123),
for carbon dioxide at 273 K.
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Figure 4. (a) CO2-adsorption isotherms of mesoporous alumina spheres synthesized with differ-
ent templating agent ratios. Cyclic voltammograms of (b) different templating agent ratios and
(c) different scan rates.

The adsorption capacity of CO2 is highest (1.21 mmol/g) when the ratio of template
agents is 3, resulting in the preparation of spherical mesoporous alumina with excellent
dispersion and uniform pore size. Notably, the different mass ratios of template agents
used in the synthesis produced alumina with distinct shapes, which significantly impacted
their adsorption capacities.
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Electrochemical performance of porous alumina-supported SnO2. The electrochem-
ical performance of porous alumina-supported SnO2 was studied using spherical meso-
porous alumina-supported SnO2 particle electrodes [43,44]. The electrodes were pre-
pared using a dip-calcination method, with a loading amount of 4%. Cyclic voltammetry
tests were carried out using a three-electrode system with 5 mol/L KOH solution as the
electrolyte, a mercury/mercury oxide electrode as the reference electrode, and a plat-
inum electrode as the auxiliary electrode. The prepared electrode sheet was used as the
working electrode.

The CV curves of spherical mesoporous alumina-supported SnO2 prepared with
different ratios of template agents (chitin/P123) at a scan rate of 0.075 V/s are shown in
Figure 4b. The redox peak in Figure 4b indicates the pseudocapacitive properties of the
material. It was observed that when the ratio of the template agent increases, the area of
the cyclic voltammetry curve increases, and the specific capacitance increases significantly,
indicating that the spherical mesoporous alumina has a better energy storage performance.
However, when the ratio of the template agent is too large (R = 4:1), the viscosity of the
solution increases significantly. This increase in viscosity can affect the steric effect of the
template space and weaken the homogeneous nucleation, which can lead to poor dispersion
of particles. Poor particle dispersion can result in a poor carrier effect, which can negatively
impact the electrochemical performance of the material.

The CV curves at different scan rates when the ratio of the template agent (chitin/P123)
is 3 and the loading of SnO2 is 4% are shown in Figure 4c. The CV curves were observed to
be different with different scan rates, and with the increase in the test scan rate, the area of
the closed graph also increased. This can be attributed to the high surface area and porous
structure of the alumina support, which provides a large number of active sites for SnO2
deposition and enhances the catalytic activity of SnO2. Mesoporous alumina spheres can
be an excellent electrocatalyst support due to their special mesoporous structure.

Periodic density functional theory (DFT). To gain deep insight on CO2 adsorption,
we performed periodic density functional theory (DFT) calculations (see Supplemental
Information for computational details) [45–49]. The (110) and (100) surfaces of γ-Al2O3
were selected, as these two surfaces are predominant in γ-Al2O3, as proved with XRD in
Figure 2b. The optimized structures of Al2O3(110) and Al2O3(100) surfaces are shown in
Figure S3 [50–57]. The bare Al2O3(110) surface is terminated with two-coordinated O(II),
three-coordinated O(III), and four-coordinated Al(IV), while the Al2O3(100) surface is ex-
posed with three-coordinated O(III) and five-coordinated Al(V). Our results indicate that the
surface energy of Al2O3(110) is lower than that of Al2O3(100) (1.41 J·m−2 vs. 2.45 J·m−2),
indicating that the Al2O3(110) surface is more stable [58–60].

The adsorption energies and optimized structures of CO2 on Al2O3(110) and
Al2O3(100) surfaces are shown in Figure 5 and Figure S4 [61]. The DFT calculated re-
sults show that the formation of carbonate species is the most stable adsorption model,
where CO2 binds in an ambidentate configuration across the O-Al bridge sites with ad-
sorption energies of −0.93 eV and −0.75 eV on Al2O3(110) and Al2O3(100), respectively. To
obtain insight into the nature of molecular adsorption behavior, the differences in charge
density (∆ρ) of the most stable adsorption CO2 on Al2O3 surfaces were calculated. The
results are clearly plotted in Figure 5. It is evident that charges accumulate and deplete
around the O and C of CO2 on both surfaces, respectively. The net result is the transfer
of electrons from Al2O3 surfaces to the adsorbed CO2. The Bader charge analyses proved
that the electronic charges transferred from the Al2O3(110) and Al2O3(100) surfaces to CO2
are 0.28 a.u. and 0.29 a.u., respectively. These two surfaces achieve the purpose of CO2
activation by transferring their electrons to the antibonding molecular orbital of CO2. The
former is more stable, mainly because there are more electrons near the Fermi level on
the atoms of the surface active site of Al(IV)-O(II) on Al2O3(110) than that of Al(V)-O(III) on
Al2O3(100) (see projected density of states in Figure S5). The above results demonstrate
that both surfaces can strongly adsorb CO2, which explains the experimental results. The
difference in the amount of CO2 adsorbed by Al2O3 synthesized under different conditions
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is mainly due to the different surface areas, which give different numbers of exposed active
sites. The higher the crystallinity, the higher the surface content of Al2O3(110) [45].
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Figure 5. The adsorption energies and optimized structures of CO2 on (a) Al2O3(110) and
(b) Al2O3(100) surfaces. (c,d) are the charge differences in CO2 adsorption on Al2O3(110) and
Al2O3(100) surfaces, respectively. The values of the isosurfaces are ±0.003 e/Å3. Yellow and light
cyan isosurfaces indicate the accumulation and depletion of charge density.

3. Materials and Methods
3.1. Synthesis of Mesoporous Alumina Spheres

The typical synthesis process involves the following steps: Firstly, 6.6 g of hydrated
alumina is added to ultrapure water with a resistivity of 18 MΩ·cm, and dissolved in a
volumetric flask to prepare a 0.6 mol/L hydrated alumina solution. Subsequently, 3 g of
chitin and 1 g of P123 are dissolved in 40 mL of isopropanol, followed by the addition
of 2.4 g of urea, and stirred until fully dissolved. Next, 30 mL of the prepared hydrated
alumina solution is added and vigorously stirred at room temperature. After 30 min, the
solution is transferred into an autoclave with a PTFE liner, and reacted at 140 ◦C for 3 h.
Following this, the product is rapidly cooled to room temperature using a water bath. The
synthesized samples are purified via repeated redispersion in ultrapure water followed
by filtration to remove any unreacted reagents. The samples are washed with 500 mL of
ultrapure water and 200 mL of absolute ethanol, respectively, 3–5 times. The obtained
material is then dried under vacuum at 80 ◦C, and finally calcined at 700 ◦C for 2 h. The
resulting product is a white spherical mesoporous alumina powder.

The hydrothermal reaction temperatures are 120 ◦C, 140 ◦C, 160 ◦C, and 180 ◦C.
The hydrothermal reaction times are 3 h, 9 h, and 15 h. The chitin/P123 weight ratio is
maintained in the range of 0–4. Table 1 shows the process parameters for preparing alumina
and spherical mesoporous alumina, respectively. The resultant samples were denoted as
RmTnHs (m = chitin/P123 weight ratio, n (reaction temperature) = 120, 140, 160, or 180 ◦C,
respectively; s (reaction time) = 3, 9, or 15 h, respectively).
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Table 1. Detailed process parameters for preparing spherical mesoporous alumina.

Sample Weight Ratio
(Chitin/P123)

Reaction
Temperature (◦C) Reaction Time (h)

R2:1T120H3 2:1 120 3
R0:1T120H9 0:1 120 9
R4:1T120H15 4:1 120 15
R1:2T140H3 1:2 140 3
R3:1T140H9 3:1 140 9
R1:1T140H15 1:1 140 15
R0:4T160H3 0:4 160 3
R2:3T160H9 2:3 160 9
R3:1T160H15 3:1 160 15
R3:1T180H3 3:1 180 3
R1:2T180H9 1:2 180 9
R0:4T180H15 0:4 180 15

3.2. Physical Characterization

The physical properties of the synthesized spherical mesoporous alumina materials
were determined using various techniques. The X-ray diffraction (XRD) patterns were ob-
tained using a PANalytical X’Pert PRO diffractometer with Cu Kα radiation (λ = 1.54056 Å)
over the 2θ range of 10–80◦. The N2 adsorption–desorption isotherms were measured at
−196 ◦C using a Micromeritics Tristars 3000 analyzer. The CO2 adsorption isotherms of the
synthesized spherical mesoporous alumina materials were measured using a Micromeritics
Tristars 3000 analyzer instrument at 25 ◦C. Prior to the measurements, the samples were
degassed at 180 ◦C under vacuum for 6 h to remove any moisture and adsorbed gases. The
CO2-adsorption isotherms were obtained at various pressures ranging from 0 to 1 bar. The
CO2 uptake capacity of the materials was calculated from the amount of gas adsorbed at
equilibrium and the mass of the sample. The specific surface area (SSA) and pore volume
were calculated using the Brunauer–Emmett–Teller (BET) method and Barrett–Joyner–
Halenda (BJH) analysis, respectively. The scanning electron microscopy (SEM) images
were obtained using a KYKY-2800B microscope. Transmission electron microscopy (TEM)
measurements were carried out on Tecnai G2 F20 operated at 200 kV.

3.3. Electrochemistry Characterization

The electrochemical performance of the synthesized spherical mesoporous alumina
materials was evaluated using a three-electrode system with a platinum wire as the counter
electrode, a mercury/mercury oxide electrode as the reference electrode, and the synthe-
sized material as the working electrode. The electrochemical tests were carried out using a
CHI660D electrochemical workstation in a 5 mol/L KOH electrolyte solution. Cyclic voltam-
metry (CV) was carried out in the potential range of 0 to 0.7 V vs. Hg/HgO at a scan rate of
0.025–0.1 V/s to investigate the electrochemical stability of the
synthesized materials.

4. Conclusions

In summary, using P123 as a soft template, mesoporous alumina spheres with high
specific surface area, larger pore size, and larger pore volume were synthesized. The
synthesis conditions, such as temperature, time, and the weight ratio of additives, have
a significant impact on the morphology and properties of the material. By optimizing
these conditions, monodisperse spherical shape and uniform mesoporous structure can
be elicited, leading to better CO2 adsorption capacity and improved electrocatalytic effect.
This method provides a new way to control pore size and structure, and the material
has potential applications in various fields. The periodic density functional theory (DFT)
calculation results demonstrate that both the (110) and (100) surfaces of γ-Al2O3 can
strongly adsorb CO2, which explains the experimental results. The difference in the amount
of CO2 adsorbed by Al2O3 synthesized under different conditions is mainly due to the
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different surface areas, which give different numbers of exposed active sites. The higher
the crystallinity, the higher the surface content of Al2O3(110). This research contributes
to the development of mesoporous materials and enriches the diversity in solution phase
synthetic chemistry.

Supplementary Materials: The following supporting information can be downloaded
at: https://www.mdpi.com/article/10.3390/molecules28155622/s1, Table S1: Process parameters of
alumina prepared by different reaction temperature and reaction time; Table S2: Process parameters
of spherical alumina prepared by different addition of Chitin powder; Table S3: Textural properties
of mesoporous alumina with different Chitin:P123 weight ratio; Figure S1: Mesoporous alumina
samples SEM image prepared under different synthesis conditions: a: Al2O3-160-3; b: Al2O3-180-3;
c: Al2O3-140-6; d: Al2O3-140-9; Figure S2: TEM images of spherical mesoporous alumina mate-
rials; Figure S3: The top view and side view of the computational models. (a) Al2O3(110) and
(b) Al2O3(100) surfaces; Figure S4: The adsorption energies and optimized structures of CO2 on
(a)-(b) Al2O3(110) and (c) Al2O3(100) surfaces; Figure S5: Projected density of states (PDOS) of the
active sites of Al(IV)-O(II) or Al(V)-O(III) on Al2O3(110) and Al2O3(100), respectively. Reference
citations of [45–61].
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