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Abstract: A catalyst-free aza-Michael addition/C(sp3)-O bond formation tandem reaction of substi-
tuted amino ferrocenes with quinone esters was developed, which provided a green and efficient
strategy for the construction of a C(sp3)-O bond from C(sp3)-H, and a series of N-ferrocene-substituted
benzodihydrooxazoles were smoothly produced in moderate to excellent yields (up to >99% yield).
The mechanism experiments showed that quinone esters performed as both substrate and oxidant.
The salient features of this transformation include good functional group tolerance, broad substrate
scope and mild conditions.

Keywords: amino ferrocenes; benzodihydrooxazole; C(sp3)-O bond formation; aza-Michael addition;
catalyst-free

1. Introduction

Intramolecular C(sp3)-O bond formation, which is widely used in the synthesis of
natural products, drugs and other functional molecules, has emerged as one of the most
powerful strategies to access oxygen-containing heterocycles [1–3]. In this respect, much
attention has been paid to exploring refined strategies for the construction of the C(sp3)-O
bond, among which transition metal-catalyzed oxidation of C(sp3)-H is the main strategy
and has been well developed [4–7]. However, this method suffers from high costs, harsh
reaction conditions and transition metal residues. In view of the growing problems due to
climate and environmental change, chemists intend to explore metal-free protocols for the
construction of the C(sp3)-O bond from C(sp3)-H which are in line with green chemistry and
sustainable development concepts. However, this area is underdeveloped due to the lower
nucleophilicity of oxygen compared with nitrogen [8,9]. Until now only three approaches
are capable of performing such transformations. The first protocol is aerobic-initiated
C(sp3)-H bond oxidation (Scheme 1A, path A). In 2010, Troisi et al. reported the direct
C(sp3)-H bond oxidation of heating tetrahydrofuran in the presence of air and allyl or benzyl
chloride [10]. Another access is hypervalent iodine mediated C(sp3)-H bond oxidation
(Scheme 1A, path B). Hypervalent iodine reagents have been widely used as alternatives
to transition metals due to their high reactivity and environmentally friendly properties.
The Fan group, Du and Zhao group, Dominguez group and Martin group realized the
construction of the C(sp3)-O bond by direct oxidation of C(sp3)-H with phenyliodine
diacetate (PIDA), phenyliodine bis(trifluoroacetate) (PIFA) or iodobenzene peroxide as
oxidation systems [11–17]. The third method for the metal free construction of the C(sp3)-O
bond is photo-induced C(sp3)-H functionalization (Scheme 1A, path C). In 2019, Majee et al.
developed visible-light-promoted regioselective C(sp3)-H acyloxylation of aryl-2H-azirine
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with phenyliodine diacetate using Rose Bengal as organophotoredox catalyst [18]. Later in
2020, Ohmiya and coworkers reported a visible-light-mediated decarboxylative coupling
between aliphatic alcohol and alkyl carboxylic acid-derived redox active esters [19]. These
excellent works provide a variety of effective strategies for the construction of the C(sp3)-O
bond from direct oxidation of the C(sp3)-H bond, but additional oxidants, catalysts or free
radical initiators are required. Therefore, exploiting a simple and more efficient protocol
for the construction of the C(sp3)-O bond through direct oxidation of the C(sp3)-H bond
without catalyst participation is of great significance.
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(B) Synthetic design in this work.

Benzodihydrooxazoles are an important class of nitrogen and oxygen-containing
heterocycles which are prevalent in natural products, bioactive molecules and many other
functional molecules [20–25]. Considerable efforts have been devoted to the synthesis of this
unique skeleton, strategies such as cyclization of 2-aminophenol, transition-metal-catalyzed
intramolecular C-H amination reactions and coupling reactions of benzoxazoles have been
discussed [22,26–36]. However, the drawbacks of these methods are the requirement
of strong acids or bases, participation of transition metal catalysts, lengthy steps and
high reaction temperatures. Considering the wide application of benzodihydrooxazoles,
exploiting strategies with mild reaction conditions and simple and efficient reaction systems
are still in high demand.

Functional molecules containing ferrocene scaffolds are widely applied in medicinal
chemistry, materials science and asymmetric synthesis [37–44]. Ferrocene plays an im-
portant role and is recognized as the core scaffold of organocatalysts and chiral ligands,
especially in the field of asymmetric synthesis. Due to its unique sandwich structure and
electronic properties, the introduction of ferrocene into functional molecules is an attractive
approach for improving the properties of these molecules [45–50]. Combination of two
functional molecules is also a common strategy in the construction of novel dominant
skeletons. Therefore, a molecule containing both a ferrocene and benzodihydrooxazole
skeleton may be a new type of privileged functional molecule.

Tandem reactions, in which multiple transformations are combined in a single proce-
dural step, have been widely employed for the construction of complex molecules [51–58].
In view of the inherent advantages of tandem reactions, we decided to apply this strategy
to the synthesis of compounds bearing both ferrocene and benzodihydrooxazole moi-
eties. As part of our ongoing interest in the construction ferrocene-based compounds and
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heterocycles [59–63], we present herein a catalyst-free tandem reaction of quinone esters
with substituted amino ferrocene derivatives through an aza-Michael addition/C(sp3)-O
bond formation process without additional oxidants; a series of N-ferrocene-substituted
benzodihydrooxazoles were produced in moderate to excellent yields.

2. Results and Discussion
2.1. Optimization Studies

Initially, we investigated the reaction of quinone ester 1a and N-benzyl amino ferrocene
2a under the catalysis of DABCO in DCM at 35 ◦C for 17 h. Encouragingly, the desired
product was obtained in a 67% yield (Table 1, entry 1). When the reaction was performed
with DMAP as a catalyst, the expected product was isolated only in a 22% yield (Table 1,
entry 2). Brønsted acids, such as diphenyl phosphate, TsOH and benzoic acid, were also
employed as catalysts in pursuit of high yields, and diphenyl phosphate gave a better
result in an 85% yield (Table 1, entries 3–5). Surprisingly, the product was produced
with a quantitative yield in the absence of a catalyst (Table 1, entry 6). The effects of
different solvents was also investigated. When the reaction was conducted in acetonitrile,
ethyl acetate, tetrahydrofuran and toluene, relatively lower yields were obtained (Table 1,
entries 7–10). Reaction temperature and substrate ration were also investigated, lower or
higher temperature and substrate ration gave inferior results (see Supplementary Materials).
In consequence, we identified the following optimal conditions: 1a (0.10 mmol) and 2a
(0.05 mmol) in 0.5 mL of DCM were stirred at 35 ◦C for 17 h.

Table 1. Optimization of reaction conditions [a].
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Entry Solvent Cat. Yield (%) [b]

1 DCM DABCO 67
2 DCM DMAP 22
3 DCM (PhO)2PO2H 85
4 DCM TsOH 45
5 DCM PhCO2H 75
6 DCM - >99
7 CH3CN - 50
8 EtOAc - 67
9 THF - 35
10 toluene - 83

[a] Unless otherwise noted, the reaction was carried out with 1a (0.10 mmol), 2a (0.05 mmol), catalyst
(0.01 mmol), solvent (0.5 mL) at 35 ◦C for 17 h. [b] Isolated yield. DABCO = 1,4-diazabicyclo [2.2.2]octane;
DCM = dichloromethane; DMAP = N,N-4-dimethylaminopyridine.

2.2. Substrate Scope Studies

The reaction scope of this reaction was evaluated with respect to both the quinone
esters 1 and the substituted amino ferrocenes 2 with optimized reaction conditions. First,
the substituent R1 of quinone esters 1 was examined. The desired products were obtained in
yields of 81–97% when R1 is an ethyl, cyclopropylmethyl or but-2-yn-1-yl group (Scheme 2,
3b–3d). While isobutyl and benzyl groups gave obviously lower yields of 59% and 42%,
respectively (Scheme 2, 3e and 3f). Then the substituent R2 of amino ferrocenes 2 was also
evaluated. When R2 are substituted phenyl groups, the desired products were obtained
in 47–75% yields, and the electronic nature or position of the substituents on the phenyl
ring obviously affected the reaction. Both 4-Nitrophenyl and 4-bromophenyl groups gave
the expected products at yields of 50% and 47%, respectively (Scheme 2, 3g, 3i). The yield
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increased to 68% when Br was installed in the ortho-position of the phenyl ring (Scheme 2,
3h). The electronic nature, position and the number of electron-donating groups on the
phenyl ring also have noticeable influence on the reaction. The corresponding products
were produced in a 52% yield when R2 is a p-tolyl group (Scheme 2, 3j); dramatically
increased yields (65–75%) were produced when a methoxy group or multiple electro-
donating substituents were installed on the phenyl ring (Scheme 2, 3k–3n). A naphthyl
group is also well tolerated for this transformation. While the position of the substituent
significantly affected the yields, a 1-naphthyl group gave the expected product in a 92%
yield while only a 73% yield was obtained when R2 is a 2-naphthyl group (Scheme 2, 3o and
3p). An alkyl substituent was also tolerated for this reaction, despite relatively low yields
being obtained (Scheme 2, 3q). The structure of 3o was confirmed by X-ray crystallographic
diffraction analysis (CCDC 2268514) and those of other products were assigned by analogy.
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2.3. Proposed Mechanism for the Catalyst-Free Aza-Michael Addition/C(sp3)-O Bond Formation
Tandem Reaction

Based on the experimental results and previous reports [64], a possible reaction process
for this transformation was proposed as demonstrated in Scheme 3. Initiated by the
aza-Michael addition of quinone ester 1a and N-benzyl amino ferrocene 2a, the formed
intermediate I was oxidized to intermediate II by quinone ester 1a. Finally, the desired
product 3a was obtained from intermediate II through intramolecular C-O bond formation.
To shed light on the mechanism of this reaction, HRMS analysis of the crude reaction
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mixture of quinone ester 1a and N-benzyl amino ferrocene 2a was performed (Figure 1). All
the signal peaks of intermediate I, II, and methyl 2,5-dihydroxybenzoate (A) were detected.
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Figure 1. HRMS spectra of the crude reaction mixture between 1a and 2a.

3. Materials and Methods
3.1. General Information

Reagents were purchased from commercial sources and were used as received unless
mentioned otherwise. Reactions were monitored by thin layer chromatography (TLC). 1H
NMR (400 MHz) and 13C NMR (101 MHz) spectra were recorded on a Bruker 400 spec-
trometer. Chemical shifts reported in parts per million (ppm) referred to tetramethylsilane
(0.00 ppm) or residues of CDCl3 (7.26 ppm). Data are reported as follows: chemical shift,
multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling
constants (Hz) and integration. Mass spectra (HRMS) were collected on a quadrupole
time-of-flight mass spectrometer (Bruker Impact II, Bremen, Germany). Melting points
were obtained on a SGW X-4 melting point apparatus. All solvents used were distilled with
standard techniques. Single crystal was recorded on a Gemini E diffractometer.

3.2. Method for Crystal Growth of 3o

A total of 5.0 mg of compound 3o dissolved in 1 mL dichloromethane and 10 mL
petroleum ether was added to a 20 mL sample vial, and brown yellow crystals were
obtained after slow evaporation at 25 ◦C for several days.

3.3. General Experimental Procedure for the Catalyst-Free Aza-Michael Addition/C(sp3)-O Bond
Formation Tandem Reaction for the Synthesis of Products 3

Quinone ester 1 (0.10 mmol, 2.0 equiv.) and amino ferrocene 2 (0.05 mmol, 1.0 equiv.)
were dissolved in dichloromethane (0.5 mL) in a test tube. The mixture was stirred at 35 ◦C
in an oil bath and monitored by thin-layer chromatography (TLC). Upon completion of the
reaction, the mixture was charged onto a silica gel column directly, and the desired product
was purified by flash chromatography with petroleum ether/ethyl acetate (v/v = 15:1) as
an eluent.
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4. Conclusions

In conclusion, a catalyst-free aza-Michael addition/C(sp3)-O bond formation tandem
reaction of quinone esters with amino ferrocene derivatives was realized, which provided
a green and efficient strategy for the construction of the C(sp3)-O bond from C(sp3)-H, and
gave a series of N-ferrocene-substituted benzodihydrooxazoles in moderate to excellent
yields. The salient features of this transformation include good functional group tolerance,
broad substrate scope and mild conditions. The mechanism experiments showed that
quinone esters 1 performed as both substrate and oxidant in the reaction.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28145615/s1, Characterization data for obtained products;
copies of 1H and 13C NMR.
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