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Abstract: An unprecedented N-alkylation of 3-nitroindoles with para-quinone methides was devel-
oped for the first time. Using potassium carbonate as the base, a wide range of structurally diverse
N-diarylmethylindole derivatives were obtained with moderated to good yields via the protection
group migration/aza-1,6-Michael addition sequences. The reaction process was also demonstrated by
control experiments. Different from the previous advances where 3-nitrodoles served as electrophiles
trapping by various nucleophiles, the reaction herein is featured that 3-nitrodoles is defined with
latent N-centered nucleophiles to react with ortho-hydrophenyl p-QMs for construction of various
N-diarylmethylindoles.

Keywords: 3-nitroindoles; N-alkylation; para-quinone methides; aza-1,6-Michael addition; indole
derivatives

1. Introduction

Indole-based motifs are privileged structures for construction of various valuable
complex heteroaromatic units, which widely exist in numerous biologically active natural
products and pharmaceutically relevant compounds with potential pharmacological activi-
ties, such as against cancer, HIV, inflammation, tuberculosis, hypertension, diabetes, and
against microbial, viral, and fungal infections [1–6]. As a result, enormous efforts have been
devoted to exploring versatile techniques for the efficient synthesis of structurally diverse
indole derivatives, and thus the indole-based chemistry has become a hotspot in organic
synthesis [7–12]. In conventional indole alkylation reactions, the most common synthetic
modifications occurred at the C2 and C3-positions of indoles due to the innate nucleophilic
nature (Scheme 1a) [13,14]. In contrast, the N-alkylation of indoles is challenging, and only
a few reports have been disclosed to directly fabricate such compounds (Scheme 1b) [15,16].
Among the established N-alkylation of indoles, the studies mainly focused on modifica-
tion of N-H indole derivatives by taking advantage of the nucleophilicity of the nitrogen
atom [17–23]. However, the weak nucleophilicity of the nitrogen atom in indoles com-
monly resulted in the C2 or C3-positions alkylated by-products. In order to increase the
N-centered nucleophilicity, an alternative method is the introduction of a protecting group
at the N1-position of indoles made it latent nucleophiles [24–27], which are themselves not
nucleophilic but can produce a strong nucleophile in situ via deprotection. To the best of
our knowledge, it was only in 2019 that the Vilotijevic group reported that N-silyl indoles
were employed as latent N-centered nucleophiles in the substitution of allylic fluorides for
N-allyl indoles [28]. Therefore, the exploration of N-protected indoles as latent N-centered
nucleophiles in N-alkylation reaction is huge challenges.
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In recent years, there have an increasing number of reports on 3-nitroindoles as 
electrophiles in the reaction with various nucleophiles for the construction of diverse 
indolines via dearomative process [29–33]. Among these reactions, 3-nitroindoles are 
characterized by their readiness to be attacked by nucleophiles at the C2-position and 
sequentially trapped by electrophiles with the C3-position for the synthesis of indo-
line-containing polycyclic compounds (Scheme 2a). On the other hand, we have noticed 
that in the field of para-quinone methides (p-QMs) chemistry [34–37], ortho-hydrophenyl 
p-QMs have been used as donors to trigger some cycloaddition reactions with elec-
tron-deficient 2π-components, providing an access to chromans with structural diversity 
[38–44]. Along this line, as well as our continuing efforts on the dearomatization of ni-
troheteroarenes [45–48], we conceived that the dearomative [4 + 2] cycloaddition of elec-
tron-deficient 3-nitroindoles and ortho-hydrophenyl p-QMs might occur via the tandem 
oxy-Michael addition/1,6-addition under alkaline conditions (Scheme 2b) [49]. To our 
surprise, the reaction between 3-nitroindoles and ortho-hydrophenyl p-QMs did undergo 
smoothly but providing unanticipated N-alkylation products via protection group mi-
gration/aza-1,6-Michael addition pathway instead of the dearomative [4 + 2] cy-
clo-adducts (Scheme 2c). In this manuscript, the N-protected 3-nitroindoles served as la-
tent N-centered nucleophiles to couple with ortho-hydrophenyl p-QMs and the protect-
ing group was transferred from the N-center of indoles to the O-center of or-
tho-hydrophenyl p-QMs, leading to the N-diarylmethylindoles with good yields. Obvi-
ously, different from the previous advances where 3-nitroindoles serving as electro-
philes were attacked by various nucleophiles, the reaction herein is featured that 
3-nitrodoles is defined with latent N-centered nucleophiles to react with or-
tho-hydrophenyl p-QMs. Herein, we wish to reported the initial finds toward this protec-
tion group migration/aza-1,6-Michael addition sequences. 

Scheme 1. The strategies of direct alkylation of indoles. (a) C2 and C3-alkylation of indoles; (b) N-
alkylation of indoles.

In recent years, there have an increasing number of reports on 3-nitroindoles as elec-
trophiles in the reaction with various nucleophiles for the construction of diverse indolines
via dearomative process [29–33]. Among these reactions, 3-nitroindoles are characterized by
their readiness to be attacked by nucleophiles at the C2-position and sequentially trapped
by electrophiles with the C3-position for the synthesis of indoline-containing polycyclic com-
pounds (Scheme 2a). On the other hand, we have noticed that in the field of para-quinone
methides (p-QMs) chemistry [34–37], ortho-hydrophenyl p-QMs have been used as donors to
trigger some cycloaddition reactions with electron-deficient 2π-components, providing an
access to chromans with structural diversity [38–44]. Along this line, as well as our continuing
efforts on the dearomatization of nitroheteroarenes [45–48], we conceived that the dearoma-
tive [4 + 2] cycloaddition of electron-deficient 3-nitroindoles and ortho-hydrophenyl p-QMs
might occur via the tandem oxy-Michael addition/1,6-addition under alkaline conditions
(Scheme 2b) [49]. To our surprise, the reaction between 3-nitroindoles and ortho-hydrophenyl
p-QMs did undergo smoothly but providing unanticipated N-alkylation products via protec-
tion group migration/aza-1,6-Michael addition pathway instead of the dearomative [4 + 2]
cyclo-adducts (Scheme 2c). In this manuscript, the N-protected 3-nitroindoles served as latent
N-centered nucleophiles to couple with ortho-hydrophenyl p-QMs and the protecting group
was transferred from the N-center of indoles to the O-center of ortho-hydrophenyl p-QMs,
leading to the N-diarylmethylindoles with good yields. Obviously, different from the previous
advances where 3-nitroindoles serving as electrophiles were attacked by various nucleophiles,
the reaction herein is featured that 3-nitrodoles is defined with latent N-centered nucleophiles
to react with ortho-hydrophenyl p-QMs. Herein, we wish to reported the initial finds toward
this protection group migration/aza-1,6-Michael addition sequences.
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alkylation of 3-nitroindoles. (a) The reaction feature of 3-nitroindoles; (b) The expected dearoma-
tive [4 + 2] cycloaddition of 3-nitroindoles; (c) The unanticipated N-alkylation of 3-nitroindoles in
this work.

2. Results and Discussion
2.1. Optimization Studies

We started our research with the selection of N-Ts 3-nitroindole 1a and ortho-hydroxyp-
henyl-substituted para-quinone methide 2a as the model substrates for optimizing the
reaction conditions (Table 1). Using 1,4-diazabicyclo[2.2.2]octane (DABCO) as the base,
the desired N-alkylated product 3a was obtained in 44% yield in toluene at 50 ◦C for
7 days (entry 1). However, when DABCO was replaced with stronger organic base 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU), a reduced yield was observed (entry 2). We then
tested different inorganic bases such as Na2CO3 and K2CO3 (entries 3 and 4), and it was
found that K2CO3 was the best candidate, giving the product 3a with a yield of 60%
(entry 4). Afterward, various solvents including CH2Cl2, THF, EtOAc, CH3CN and MeOH
were examined, and it was found that CH3CN was the best choice to give the product 3a
in 67% yield (entry 8 vs. entries 5–7 and 9). By cooling the reaction temperature to room
temperature (rt), the yield of 3a could be increased to 71% (entry 10). A slightly lower yield
was obtained when the amount of K2CO3 was reduced to 1.0 equivalent (entry 11). Though
a series of detailed investigations, the reaction conditions were eventually optimized as
follows: 1.0 mmol of 1a and 1.0 mmol of 2a, 2.0 equiv. of K2CO3 as base in CH3CN as
solvent at room temperature.

Table 1. Optimization of reaction conditions [a].
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Entry Base Solvent T (◦C) Time (h) Yield [b]

1 DABCO toluene 50 168 44
2 DBU toluene 50 68 24
3 Na2CO3 toluene 50 145 trace
4 K2CO3 toluene 50 26 60
5 K2CO3 CH2Cl2 50 88 57
6 K2CO3 THF 50 63 58
7 K2CO3 EtOAc 50 136 63
8 K2CO3 CH3CN 50 23 67
9 K2CO3 MeOH 50 20 19

10 K2CO3 CH3CN rt 23 71
11 [c] K2CO3 CH3CN rt 48 64

[a] Unless otherwise noted, the reaction was carried out with 1a (0.05 mmol), 2a (0.05 mmol), and base (2.0 equiv.)
in 0.5 mL of solvent at indicated temperature for specified time. [b] Isolated yield. [c] 1.0 equiv K2CO3 was used.

2.2. Substrate Scope Studies

With the optimal reaction conditions in hand, we next surveyed the scope and gen-
erality for the N-alkylation of 3-nitroindoles with para-quinone methides. As shown
in Scheme 3, by installing a fluorine atom into the aromatic ring at the C5-, C6- or C7-
position of N-Ts-3-nitroindoles, these reactions proceeded well to provide the corresponding
products 3b–d in moderate yields. Moreover, 3-nitroindoles bearing different electron-
withdrawing group, such as Cl- and Br-, regardless of their position on the aromatic ring,
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could react smoothly with 2a to deliver products 3e–i in satisfactory results. Neverthe-
less, the 3-nitroindole bearing a methyl group on the aromatic ring was also viable under
the standard conditions, as demonstrated by the formation of product 3j in 49% yield.
Changing the N1-proceting group of 3-nitroindole from -Ts to -Bs, had little effect on the
reactivity, which could react smoothly with ortho-hydroxyphenyl-substituted para-quinone
methide 2a, providing the corresponding product 3k in 69% yield. In addition, the de-
veloped catalytic system was also compatible with the N-Ac and N-alkoxycarbonylated
protected 3-nitroindoles, generating the desired products 3l and 3m in acceptable yields
via tandem protection group migration/aza-1,6-Michael addition sequences. On the other
hand, various ortho-hydroxy p-QMs with either electron-withdrawing or -donating groups
in the phenyl ring irrespective of their position were well tolerated to provide the expected
products 3n–t in moderate to good yields.
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Scheme 3. Substrate scope of ortho-hydroxy p-QMs and 3-nitroindoles. Reaction conditions: the
reactions were carried out with 1 (0.1 mmol), 2 (0.1 mmol) and K2CO3 (2.0 equiv) in 1.0 mL of CH3CN
at room temperature. The yield refers to the isolated yield.

2.3. Scale-Up Experiment

To demonstrate the synthetic potential of this unprecedented N-alkylation of 3-nitroindoles
and para-quinone methides, a scale-up experiment was performed between 1a and 2a,
which is 27 times larger than the scale of the model reaction in Scheme 3. As shown
in Scheme 4, the gram-scale reaction proceeded well under the standard conditions and
afforded the desired product 3a in 64% yield, suggesting that the developed protocol has
good scalability in organic synthesis.
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2.4. Control Experiments

In order to clarify the possible reaction mechanism, some control experiments were
carried out (Scheme 5). The reaction of 1a and 2a provided the desired N-alkylated product
3a in 69% yield under the standard reaction conditions (Scheme 5a). Changing the nitro
group of 1a to methyl resulted in the substrate 4 being formed, which failed to react with
2a (Scheme 5b). When the N-Ts indole-3-carboxylate 5 was reacted with 2a, the reaction
gave the corresponding product 6 in 40% yield (Scheme 5c). These experimental results
show that the installation of an electron-withdrawing group at the C3-posion of indole is
crucial for this aza-1,6-Michael addition. Furthermore, the effect of the N1-protecting group
of 3-nitroindole on the reactivity was also investigated (Scheme 5d,e). With the electron-
donating group N-Me 3-nitroindole 7 or N-H 3-nitroindole 8 as the substrate, no desired
N-alkylated product was detected (Scheme 5d,e). Comparing the results with Scheme 5a, it
can be concluded that the N1-electron-withdrawing group of indoles plays an important
role in assisting migration of N-electron-withdrawing group of 3-nitroindoles to O-center
of ortho-hydrophenyl p-QMs and forming the N-centered nucleophiles. In addition, it was
found that the one-pot reaction of N-H 3-nitroindole 8, 2a and TsCl could give product 3a in
53% yield (Scheme 5f), and the reaction of N-H 3-nitroindole 8 and ortho-oTs p-QM 9 could
also afford 3a in 63% yield (Scheme 5g). From these two reactions, it can be confirmed that
the sulfonylation of ortho-hydroxy p-QMs could enhance the electrophilicity and facilitate
subsequent aza-1,6-Michael addition. Moreover, the reaction of N-Ts-3-nitroindole 1a and
ortho-OTs p-QM 9 could not happen under the standard reaction conditions (Scheme 5h).
However, by adding 1.0 equivalent PhOH into the reaction system, the reaction was able
to give 3a in 60% yield, together with the formation of PhOTs (Scheme 5i). Meanwhile,
the three-component reaction of 1a, ortho-OMe p-QM 10 and PhOH also proceeded to give
product 11 and PhOTs (Scheme 5j). These control experiments show that the N-EWG of 1a
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is first transferred to O-EWG of 2a to form 9 under alkaline condition, and then the aza-1,6-
Michel addition to para-quinone methides takes place to give the N-alkylated products.
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2.5. Plausible Reaction Mechanism

Based on our experimental results and the above control experiments, a plausible
reaction mechanism was proposed for this base-mediated N-alkylation of 3-nitroindoles
with para-quinone methides. As shown in Scheme 6, the initially K2CO3-promoted deproto-
nation of ortho-hydroxy phenyl p-QMs 2 affords intermediate A. Then the protecting group
was transferred from the N-center of indoles to the O-center of ortho-hydrophenyl p-QMs
to give ortho-OEWG phenyl p-QMs and the 3-nitroindole anion intermediates B, which
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undergoes an aza-1,6-Michael addition to give the intermediate C. Finally, the protonation
of intermediate C gives rise to the formation of the N-alkylated products 3.
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3. Materials and Methods
3.1. General Information

Reagents were purchased from commercial sources and were used as received unless
mentioned otherwise. Reactions were monitored by thin layer chromatography (TLC).
1H NMR and 13C NMR spectra were recorded in CDCl3 and DMSO-d6. 1H NMR chemical
shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance
employed as the internal standard (CDCl3 at 7.26 ppm, DMSO-d6 at 2.50 ppm). Data
are reported as follows: chemical shift, multiplicity (s = singlet, br s = broad singlet,
d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), and integration.
13C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the
solvent resonance as the internal standard (CDCl3 at 77.20 ppm, DMSO-d6 at 39.52 ppm).
Melting points products were recorded on a Büchi Melting Point B-545. The HRMS were
recorded by The HRMS were recorded by Agilent 6545 LC/Q-TOF mass spectrometer.

3.2. General Experimental Procedure for the N-Alkylation of 3-Nitroindoles with para-Quinone
Methides for the Synthesis of N-Diarylmethylindole Derivatives 3 (Scheme 3)

In a reaction tube equipped with a magnetic stirring bar, the 3-nitroindoles 1 (0.1 mmol,
1 equiv), ortho-hydroxyphenyl-substituted para-quinone methide 2 (0.1 mmol, 1.0 equiv), K2CO3
(0.2 mmol, 2.0 equiv) and acetonitrile (1.0 mL) were added. Then, the mixture was stirred
at room temperature. After completion, the mixture was concentrated and purified by flash
chromatography on silica gel to give the corresponding products 3.

3a, white solid, 41.8 mg, 69% yield; m.p. 199.5–200.8 ◦C; 1H NMR (400 MHz, Chloroform-
d) δ 8.34–8.27 (m, 1 H), 7.70 (s, 1 H), 7.69–7.64 (m, 2 H), 7.43–7.26 (m, 4 H), 7.26–7.17 (m,
4 H), 7.07 (s, 1H), 6.80 (s, 2 H), 6.71 (dd, J = 7.8, 1.7 Hz, 1 H), 5.33 (s, 1 H), 2.42 (s, 3H),
1.33 (s, 18H). 13C NMR (101 MHz, Chloroform-d) δ 154.3, 147.2, 145.9, 136.7, 135.6, 132.7,
132.0, 130.0, 129.9, 129.9, 128.8, 128.5, 128.1, 127.4, 126.2, 125.4, 124.7, 124.5, 122.4, 121.4,
120.7, 112.2, 60.0, 34.4, 30.1, 21.7. HRMS (ESI-TOF) calcd. for C36H38N2O6SNa [M + Na]+

649.2343; found: 649.2357.
3b, white solid, 30.9 mg, 48% yield; m.p. 194.4–195.1 ◦C; 1H NMR (400 MHz,

Chloroform-d) δ 7.96 (dd, J = 9.1, 2.5 Hz, 1H), 7.76–7.62 (m, 3H), 7.38–7.15 (m, 6H),
7.10–6.94 (m, 2H), 6.81 (s, 2H), 6.69 (dd, J = 7.8, 1.7 Hz, 1H), 5.35 (s, 1H), 2.44 (s, 3H),
1.33 (s, 18H). 13C NMR (101 MHz, Chloroform-d) δ 160.6 (d, J = 241.4 Hz), 154.4, 147.2, 146.0,
136.8, 132.6, 132.0, 131.9, 131.0, 130.0, 130.0, 128.4, 128.1, 127.5, 125.9, 125.3, 122.5, 122.2,
122.1, 113.6, 113.5 (d, J = 6.8 Hz), 113.2, 106.4 (d, J = 26.4 Hz), 60.4, 34.4, 30.1, 21.7. HRMS
(ESI-TOF) calcd. for C36H37FN2O6SNa [M + Na]+ 667.2249; found: 667.2261.

3c, white solid, 32.2 mg, 50% yield; m.p. 190.1–191.4 ◦C; 1H NMR (400 MHz, Chloroform-
d) δ 8.24 (dd, J = 8.8, 5.3 Hz, 1H), 7.73–7.66 (m, 3H), 7.43–7.10 (m, 6H), 7.03 (dd, J = 9.3,
2.3 Hz, 1H), 6.94 (s, 1H), 6.80 (s, 2H), 6.69 (dd, J = 7.7, 1.7 Hz, 1H), 5.35 (s, 1H), 2.44 (s, 3H),
1.34 (s, 18H). 13C NMR (101 MHz, Chloroform-d) δ 160.7 (d, J = 243.2 Hz), 154.4, 147.3,
146.0, 136.8, 135.7, 135.3, 132.6, 131.7, 130.3 (d, J = 2.7 Hz), 130.0, 128.8, 128.4, 128.2, 127.5,
125.8, 125.3, 122.6, 122.0 (d, J = 9.8 Hz), 117.8, 113.2 (d, J = 24.4 Hz), 99.0 (d, J = 27.1 Hz),
60.3, 34.4, 30.1, 21.7. HRMS (ESI-TOF) calcd. for C36H37FN2O6SNa [M + Na]+ 667.2249;
found: 667.2257.

3d, white solid, 42.5 mg, 69% yield; m.p. 192.7–193.7 ◦C; 1H NMR (400 MHz,
Chloroform-d) δ 8.06 (dd, J = 8.1, 1.0 Hz, 1H), 7.65 (s, 1H), 7.58–7.51 (m, 2H), 7.49 (dd,
J = 8.2, 1.3 Hz, 1H), 7.39 (td, J = 8.3, 7.9, 1.7 Hz, 1H), 7.28 (s, 1H), 7.28 (td, J = 8.1, 4.5 Hz, 1 H),
7.22 (td, J = 7.6, 1.3 Hz, 1H), 7.18–7.11 (m, 2H), 7.00–6.91 (m, 1H), 6.74 (dd, J = 7.8, 1.7 Hz,
1H), 6.72 (s, 2H), 5.31 (s, 1H), 2.37 (s, 3H), 1.32 (s, 18H). 13C NMR (101 MHz, Chloroform-d)
δ 154.2, 146.7 (d, J = 225.5 Hz), 136.5, 132.8, 131.2, 130.6, 130.2, 129.8, 129.3, 128.9, 127.9,
126.9, 125.0, 124.9, 124.6, 123.8, 121.7, 116.6, 116.6, 110.7, 110.6, 61.7 (d, J = 7.0 Hz), 34.3, 30.1,
21.7. HRMS (ESI-TOF) calcd. for C36H37FN2O6SNa [M + Na]+ 667.2249; found: 667.2258.

3e, white solid, 45.5 mg, 69% yield; m.p. 174.9–175.4 ◦C; 1H NMR (400 MHz, Chloroform-
d) δ 8.29 (d, J = 2.0 Hz, 1H), 7.72–7.64 (m, 3H), 7.38–7.15 (m, 8H), 7.04 (s, 1H), 6.80 (s, 2H),
6.68 (dd, J = 7.8, 1.7 Hz, 1H), 5.36 (s, 1H), 2.44 (s, 3H), 1.33 (s, 18H). 13C NMR (101 MHz,
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Chloroform-d) δ 154.5, 147.1, 146.0, 136.8, 133.9, 132.6, 131.8, 130.8, 130.7, 130.1, 130.0, 128.4,
128.2, 128.1, 127.5, 125.8, 125.3, 125.3, 122.5, 122.3, 120.3, 113.4, 60.4, 34.4, 30.1, 21.8. HRMS
(ESI-TOF) calcd. for C36H37ClN2O6SNa [M + Na]+ 683.1953; found: 683.1972.

3f, white solid, 436.4 mg, 55% yield; m.p. 234.8–236.0 ◦C; 1H NMR (400 MHz,
Chloroform-d) δ 8.21 (d, J = 8.6 Hz, 1H), 7.75–7.65 (m, 3H), 7.44–7.13 (m, 8H), 6.97 (s, 1H),
6.78 (s, 2H), 6.69 (dd, J = 7.8, 1.7 Hz, 1H), 5.36 (s, 1H), 2.44 (s, 3H), 1.34 (s, 18H). 13C NMR
(101 MHz, Chloroform-d) δ 154.5, 147.2, 146.0, 136.8, 135.9, 132.6, 131.6, 130.8, 130.4, 130.2,
130.0, 128.8, 128.5, 128.2, 127.5, 125.8, 125.2, 125.2, 122.7, 121.6, 119.8, 112.2, 60.2, 34.4, 30.1,
21.8. HRMS (ESI-TOF) calcd. for C36H37ClN2O6SNa [M + Na]+ 683.1953; found: 683.1965.

3g, white solid, 47.9 mg, 68% yield; m.p. 238.4–239.7 ◦C; 1H NMR (400 MHz, Chloroform-
d) δ 8.46 (d, J = 1.9 Hz, 1H), 7.67 (d, J = 9.0 Hz, 3H), 7.42–7.30 (m, 2H), 7.30–7.13 (m, 6H),
7.04 (s, 1H), 6.80 (s, 2H), 6.68 (dd, J = 7.7, 1.6 Hz, 1H), 5.36 (s, 1H), 2.44 (s, 3H), 1.33 (s, 18H).
13C NMR (101 MHz, Chloroform-d) δ 154.5, 147.1, 146.0, 136.8, 134.2, 132.6, 131.7, 130.6,
130.1, 130.0, 128.4, 128.1, 128.0, 127.9, 127.5, 125.8, 125.3, 123.4, 122.7, 122.5, 118.4, 113.7, 60.4,
34.4, 30.1, 21.8. HRMS (ESI-TOF) calcd. for C36H37BrN2O6SNa [M + Na]+ 729.1434; found:
729.1445.

3h, white solid, 40.1 mg, 57% yield; m.p. 202.6–203.9 ◦C; 1H NMR (400 MHz,
Chloroform-d) δ 8.16 (d, J = 8.6 Hz, 1H), 7.74–7.65 (m, 3H), 7.58 (d, J = 1.6 Hz, 1H), 7.50 (dd,
J = 8.6, 1.6 Hz, 1H), 7.35 (td, J = 7.8, 1.7 Hz, 1H), 7.28 (d, J = 8.2 Hz, 2H), 7.26–7.16 (m, 2H),
6.98 (s, 1H), 6.78 (s, 2H), 6.70 (dd, J = 7.8, 1.7 Hz, 1H), 5.36 (s, 1H), 2.44 (s, 3H), 1.34 (s, 18H).
13C NMR (101 MHz, Chloroform-d) δ 154.5, 147.2, 146.0, 136.8, 136.2, 132.6, 131.6, 130.3,
130.2, 130.0, 128.8, 128.5, 128.2, 127.8, 127.5, 125.8, 125.2, 122.7, 122.0, 120.1, 118.4, 115.2, 60.2,
34.4, 30.1, 21.8. HRMS (ESI-TOF) calcd. for C36H37BrN2O6SNa [M + Na]+ 729.1434; found:
729.1442.

3i, white solid, 38.0 mg, 54% yield; m.p. 230.2–231.1 ◦C; 1H NMR (400 MHz, Chloroform-
d) δ 8.03 (d, J = 8.1 Hz, 2H), 7.75–7.68 (m, 2H), 7.43–7.32 (m, 3H), 7.17–7.08 (m, 3H),
7.08–6.92 (m, 3H), 6.87 (td, J = 7.4, 1.3 Hz, 1H), 5.22 (s, 1H), 4.97 (s, 1H), 2.46 (s, 3H), 1.39
(s, 18H). 13C NMR (101 MHz, Chloroform-d) δ 153.9, 151.7, 143.9, 142.5, 138.7, 137.3, 136.2,
131.7, 129.3, 129.2, 127.5, 127.2, 126.7, 125.9, 125.4, 125.3, 124.8, 124.1, 117.9, 110.2, 96.6, 92.6,
51.6, 34.4, 30.2, 21.7. HRMS (ESI-TOF) calcd. for C36H37BrN2O6SNa [M + Na]+ 729.1434;
found: 729.1439.

3j, white solid, 31.3 mg, 49% yield; m.p. 193.8–194.9 ◦C; 1H NMR (400 MHz, Chloroform-
d) δ 8.16 (d, J = 8.2 Hz, 1H), 7.69–7.62 (m, 3H), 7.37–7.29 (m, 1H), 7.29–7.15 (m, 6H), 7.04
(s, 1H), 6.79 (s, 2H), 6.72 (dd, J = 7.8, 1.7 Hz, 1H), 5.32 (s, 1H), 2.44 (s, 3H), 2.42 (s, 3H),
1.33 (s, 18H). 13C NMR (101 MHz, Chloroform-d) δ 154.3, 147.2, 145.8, 136.6, 136.0, 135.0,
132.7, 132.1, 129.9, 129.8, 129.5, 128.9, 128.5, 128.1, 127.4, 126.3, 126.3, 125.4, 122.3, 120.4,
119.2, 111.9, 59.8, 34.4, 30.1, 21.9, 21.7. HRMS (ESI-TOF) calcd. for C37H41N2O6S [M + H]+

641.2680; found: 641.2690.
3k, white solid, 41.8 mg, 69% yield; m.p. 178.6–179.4 ◦C; 1H NMR (400 MHz,

Chloroform-d) δ 8.30 (d, J = 8.0 Hz, 1H), 7.83–7.76 (m, 2H), 7.71 (s, 1H), 7.69–7.60 (m, 1H),
7.50–7.27 (m, 6H), 7.24–7.16 (m, 2H), 7.07 (s, 1H), 6.82 (s, 2H), 6.70 (dd, J = 8.2, 1.6 Hz,
1H), 5.35 (s, 1H), 1.33 (s, 18H). 13C NMR (101 MHz, Chloroform-d) δ 154.4, 147.1, 136.7,
135.6, 135.5, 134.5, 132.0, 130.1, 129.9, 129.3, 128.8, 128.5, 128.1, 127.5, 126.1, 125.4, 124.8,
124.6, 122.5, 121.4, 120.8, 112.1, 60.0, 34.4, 30.2. HRMS (ESI-TOF) calcd. for C35H36N2O6SNa
[M + Na]+ 635.2186; found: 635.2197.

3l, white solid, 33.9 mg, 66% yield; m.p. 168.4–169.1 ◦C; 1H NMR (400 MHz, Chloroform-
d) δ 8.33 (d, J = 8.1 Hz, 1H), 7.82 (s, 1H), 7.45–7.33 (m, 2H), 7.36–7.25 (m, 2H), 7.20–7.11 (m, 2H),
6.90 (s, 2H), 6.85 (s, 1H), 6.60 (dd, J = 7.8, 1.6 Hz, 1H), 5.38 (s, 1H), 1.89 (s, 3H), 1.36 (s, 18H).
13C NMR (101 MHz, Chloroform-d) δ 168.2, 154.5, 148.1, 136.9, 135.5, 130.7, 130.3, 129.5,
128.9, 127.4, 126.4, 126.2, 125.6, 124.7, 124.5, 123.6, 121.3, 121.0, 111.6, 60.6, 34.4, 30.1, 20.3.
HRMS (ESI-TOF) calcd. for C31H34N2O5Na [M + Na]+ 537.2360; found: 537.2369.

3m, white solid, 19.5 mg, 34% yield; m.p. 167.4–168.1 ◦C; 1H NMR (400 MHz,
Chloroform-d) δ 8.31 (dt, J = 8.1, 1.0 Hz, 1H), 7.77 (s, 1H), 7.42–7.27 (m, 4H), 7.24 (dd,
J = 8.1, 1.2 Hz, 1H), 7.16 (td, J = 7.6, 1.3 Hz, 1H), 7.02 (s, 1H), 6.89 (s, 2H), 6.63 (dd, J = 7.8,
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1.6 Hz, 1H), 5.34 (s, 1H), 1.35 (s, 19H), 1.26 (s, 9H). 13C NMR (101 MHz, Chloroform-d) δ
154.5, 150.8, 148.4, 136.6, 135.5, 130.8, 130.4, 129.6, 128.8, 127.5, 126.5, 126.1, 125.7, 124.6,
124.5, 123.3, 121.4, 120.9, 111.7, 83.7, 59.9, 34.4, 30.1, 29.7, 27.4. HRMS (ESI-TOF) calcd. for
C34H40N2O6Na [M + Na]+ 595.2779; found: 595.2790.

3n, white solid, 41.2 mg, 64% yield; m.p. 209.4–210.0 ◦C; 1H NMR (400 MHz,
Chloroform-d) δ 8.24 (d, J = 8.0 Hz, 1H), 7.66–7.57 (m, 3H), 7.39–7.17 (m, 5H), 7.09 (dd,
J = 9.1, 4.6 Hz, 1H), 6.95 (d, J = 9.3 Hz, 2H), 6.74 (s, 2H), 6.31 (dd, J = 8.7, 3.0 Hz, 1H),
5.30 (s, 1H), 2.36 (s, 3H), 1.27 (s, 18H). 13C NMR (101 MHz, Chloroform-d) δ 160.9 (d,
J = 248.9 Hz), 154.6, 146.2, 142.8 (d, J = 3.1 Hz), 136.8, 135.4, 134.7 (d, J = 7.1 Hz), 132.3, 130.1,
129.7, 129.0, 128.2, 125.5, 124.9, 124.7, 124.3 (d, J = 8.7 Hz), 121.3, 120.9, 116.6 (d, J = 23.5 Hz),
115.4 (d, J = 25.1 Hz), 112.0, 60.1, 34.4, 30.1, 21.8. HRMS (ESI-TOF) calcd. for C36H38FN2O6S
[M + H]+ 645.2429; found: 645.2437.

3o, white solid, 36.9 mg, 56% yield; m.p. 182.4–183.6 ◦C; 1H NMR (400 MHz, Chloroform-
d) δ 8.32 (d, J = 8.0 Hz, 1H), 7.73–7.63 (m, 3H), 7.48–7.21 (m, 5H), 7.17 (d, J = 8.7 Hz, 1H),
7.01 (s, 1H), 6.81 (s, 2H), 6.67 (d, J = 2.6 Hz, 1H), 5.39 (s, 1H), 2.44 (s, 3H), 1.35 (s, 18H).
13C NMR (101 MHz, Chloroform-d) δ 154.6, 146.3, 145.6, 136.8, 135.4, 134.0, 133.2, 132.2,
130.1, 130.0, 129.7, 129.0, 128.3, 128.2, 125.4, 125.3, 124.9, 124.7, 123.8, 121.3, 120.9, 111.9, 59.9,
34.4, 30.1, 21.8. HRMS (ESI-TOF) calcd. for C36H37ClN2O6SNa [M + Na]+ 683.1953; found:
683.1961.

3p, white solid, 42.2 mg, 60% yield; m.p. 193.8–195.9 ◦C; 1H NMR (400 MHz,
Chloroform-d) δ 8.32 (d, J = 8.0 Hz, 1H), 7.72–7.62 (m, 3H), 7.49–7.23 (m, 6H), 7.10 (d,
J = 8.7 Hz, 1H), 7.00 (s, 1H), 6.82 (d, J = 2.3 Hz, 1H), 6.80 (s, 2H), 5.38 (s, 1H), 2.43 (s, 3H),
1.34 (s, 18H). 13C NMR (101 MHz, Chloroform-d) δ 154.6, 146.3, 146.2, 136.8, 135.4, 134.3,
133.0, 132.2, 131.2, 130.1, 129.7, 129.1, 128.2, 125.4, 125.4, 124.9, 124.7, 124.1, 121.3, 120.9,
111.9, 59.8, 3.4, 30.1, 21.8. HRMS (ESI-TOF) calcd. for C36H37BrN2O6SNa [M + Na]+

729.1434; found: 729.1448.
3q, white solid, 38.0 mg, 54% yield; m.p. 259.8–260.4 ◦C; 1H NMR (400 MHz,

Chloroform-d) δ 8.30 (d, J = 8.0 Hz, 1H), 7.70–7.63 (m, 3H), 7.45–7.37 (m, 2H), 7.37–7.21 (m, 6H),
6.96 (s, 1H), 6.79 (s, 2H), 6.55 (d, J = 8.3 Hz, 1H), 5.37 (s, 1H), 2.44 (s, 3H), 1.33 (s, 18H).
13C NMR (101 MHz, Chloroform-d) δ 154.5, 147.2, 146.3, 136.8, 135.4, 132.1, 131.2, 130.6,
130.1, 129.8, 129.5, 128.9, 128.2, 125.8, 125.5, 125.3, 124.9, 124.7, 122.7, 121.3, 120.8, 112.0, 59.8,
34.4, 30.1, 21.8. HRMS (ESI-TOF) calcd. for C36H37BrN2O6SNa [M + Na]+ 729.1434; found:
729.1439.

3r, white solid, 45.4 mg, 71% yield; m.p. 196.3–197.4 ◦C; 1H NMR (400 MHz, Chloroform-
d) δ 8.34–8.27 (m, 1H), 7.72 (s, 1H), 7.69–7.62 (m, 2H), 7.45–7.36 (m, 2H), 7.36–7.20 (m, 4H),
7.11 (dd, J = 8.4, 1.9 Hz, 1H), 7.06 (d, J = 17.7 Hz, 2H), 6.80 (s, 2H), 6.49 (d, J = 1.9 Hz,
1H), 5.33 (s, 1H), 2.42 (s, 3H), 2.21 (s, 3H), 1.33 (s, 18H). 13C NMR (101 MHz, Chloroform-
d) δ 154.3, 145.8, 145.0, 137.5, 136.6, 135.6, 132.7, 131.5, 130.4, 130.2, 129.9, 128.8, 128.7,
128.2, 126.3, 125.4, 124.7, 124.5, 122.2, 121.3, 120.7, 112.2, 59.9, 34.4, 30.2, 21.8, 21.2. HRMS
(ESI-TOF) calcd. for C37H40N2O6SNa [M + Na]+ 663.2499; found: 663.2508.

3s, white solid, 28.9 mg, 44% yield; m.p. 203.5–204.6 ◦C; 1H NMR (400 MHz, Chloroform-
d) δ 8.29 (d, J = 8.0 Hz, 1H), 7.67 (s, 1H), 7.61 (d, J = 8.0 Hz, 2H), 7.44–7.36 (m, 1H), 7.29
(dd, J = 16.3, 9.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 6.96 (s, 1H), 6.86 (d, J = 2.5 Hz, 1H),
6.76 (s, 2H), 6.73 (d, J = 2.5 Hz, 1H), 6.65 (d, J = 8.7 Hz, 1H), 5.31 (s, 1H), 3.76 (s, 3H), 2.40
(s, 3H), 1.32 (s, 18H). 13C NMR (101 MHz, Chloroform-d) δ 160.5, 154.1, 148.0, 145.9, 136.5,
135.5, 132.4, 130.0, 129.9, 129.6, 128.6, 128.1, 126.7, 124.9, 124.7, 124.5, 123.3, 121.3, 120.7,
112.9, 112.2, 108.3, 59.4, 55.7, 34.4, 30.2, 21.8. HRMS (ESI-TOF) calcd. for C37H40N2O7SNa
[M + Na]+ 679.2448; found: 679.2458.

3t, white solid, 48.5 mg, 74% yield; m.p. 216.9–217.6 ◦C; 1H NMR (400 MHz, Chloroform-
d) δ 8.30 (d, J = 8.1 Hz, 1H), 7.87–7.80 (m, 3H), 7.54 (d, J = 8.3 Hz, 1H), 7.43–7.35 (m, 1H),
7.35–7.27 (m, 3H), 7.21 (s, 1H), 7.18–7.08 (m, 1H), 6.90 (s, 3H), 6.31 (dd, J = 8.0, 1.4 Hz,
1H), 5.34 (s, 1H), 3.59 (s, 3H), 2.44 (s, 3H), 1.35 (s, 18H). 13C NMR (101 MHz, Chloroform-
d) δ 154.4, 152.6, 145.2, 136.7, 136.5, 135.7, 134.6, 134.2, 130.3, 129.5, 128.7, 128.2, 127.9,
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126.1, 125.8, 124.7, 124.5, 121.4, 120.7, 119.2, 112.7, 112.5, 60.5, 55.6, 34.4, 30.2, 21.7. HRMS
(ESI-TOF) calcd. for C37H40N2O7SNa [M + Na]+ 679.2448; found: 679.2455.

3.3. The Experimental Procedure for Synthesis of Compound 6 (Scheme 5)

In a reaction tube equipped with a magnetic stirring bar, the indole-3-carboxylate
5 (0.1 mmol, 1 equiv), ortho-tosylaminophenyl p-QMs 2 (0.1 mmol, 1.0 equiv), K2CO3
(0.2 mmol, 2.0 equiv) and acetonitrile (1.0 mL) were added. Then, the mixture was stirred
at room temperature. After completion, the mixture was concentrated and purified by
flash chromatography on silica gel (petroleum ether/ethyl acetate = 15/1) to afford 6 in
40% yield.

6, 25.5 mg, 40% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.19–8.14 (m, 1H), 7.68–7.62
(m, 2H), 7.48 (s, 1H), 7.31–7.26 (m, 2H), 7.26–7.24 (m, 2H), 7.23–7.21 (m, 1H), 7.21–7.17 (m, 2H),
7.17–7.13 (m, 1H), 6.99 (s, 1H), 6.78 (s, 2H), 6.65 (dd, J = 7.8, 1.6 Hz, 1H), 5.27 (s, 1H), 3.88
(s, 3H), 2.41 (s, 3H), 1.32 (s, 18H). 13C NMR (101 MHz, Chloroform-d) δ 165.7, 153.9, 147.2,
145.6, 136.9, 136.2, 133.6, 132.9, 132.8, 129.9, 129.4, 128.7, 128.1, 127.3, 127.2, 126.9, 125.5,
122.9, 122.2, 122.1, 121.5, 111.4, 107.1, 59.3, 51.0, 34.3, 30.2, 21.7. HRMS (ESI-TOF) calcd. for
C38H41NO6SNa [M + Na]+ 662.2547; found: 662.2553.

3.4. The Experimental Procedure for Synthesis of Compound 11 (Scheme 5)

In a reaction tube equipped with a magnetic stirring bar, the 3-nitroindoles 1 (0.1 mmol,
1 equiv), ortho-OMe phenyl p-QM 10 (0.1 mmol, 1.0 equiv), K2CO3 (0.2 mmol, 2.0 equiv),
PhOH (1.0 mmol, 1.0 equiv) and acetonitrile (1.0 mL) were added. Then, the mixture was
stirred at room temperature. After completion, the mixture was concentrated and purified
by flash chromatography on silica gel to give the corresponding product 11.

11, white solid, 9.7 mg, 20% yield; m.p. 227.4–228.2 ◦C; 1H NMR (400 MHz, Chloroform-
d) δ 8.30 (d, J = 8.1 Hz, 1H), 7.83 (s, 1H), 7.43–7.22 (m, 4H), 7.10 (s, 1H), 6.99–6.89 (m, 4H),
6.78 (dd, J = 7.7, 1.7 Hz, 1H), 5.30 (s, 1H), 3.77 (s, 3H), 1.35 (s, 18H). 13C NMR (101 MHz,
Chloroform-d) δ 156.7, 154.0, 136.4, 135.7, 130.4, 130.0, 128.6, 128.4, 127.1, 126.4, 125.1, 124.3,
124.3, 121.4, 120.9, 120.8, 111.9, 111.0, 59.2, 55.7, 34.4, 30.2. HRMS (ESI-TOF) calcd. for
C30H34N2O4Na [M + Na]+ 509.2411; found: 509.2419.

4. Conclusions

In conclusion, we have described an unprecedented N-alkylation of 3-nitroindoles and
para-quinone methides by using K2CO3 was the base via a protection group migration/aza-
1,6-Michael addition sequences. With the developed protocol, a series of structurally
diverse N-diarylmethylindole derivatives were obtained in moderate to good yields under
mild conditions. According to the control experiments, a reasonable reaction mechanism
was proposed. Importantly, the reaction herein is featured that 3-nitrodoles is defined
with latent N-centered nucleophiles to react with ortho-hydrophenyl p-QMs, which is
different from the previous reports where 3-nitrodoles was served as electrophiles trapped
by various nucleophiles.
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