Synthesis and Applications of Supramolecular Flame Retardants: A Review
Abstract
:1. Introduction
2. Synthesis of Supramolecular Flame Retardants
2.1. One-Dimensional Supramolecular Flame Retardants
2.2. Two-Dimensional Supramolecular Flame Retardants
2.3. Three-Dimensional Supramolecular Flame Retardants
3. Applications of Supramolecular Flame Retardants
3.1. Flame Retardancy
3.1.1. EP
3.1.2. Rigid Polyurethane Foam
3.1.3. PP
3.1.4. PVA
3.1.5. TPU
3.1.6. PA6
3.1.7. PLA
3.1.8. Cotton Fabrics
3.2. Mechanical Properties
3.3. Other Properties
3.3.1. Thermal Insulation Performance
3.3.2. Self-Healing Property
3.3.3. UV-Blocking Performance
4. Conclusions and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Babu, R.P.; O’Connor, K.; Seeram, R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2013, 2, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Ghoul, Y.; Alminderej, F.M.; Alsubaie, F.M.; Alrasheed, R.; Almousa, N.H. Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers 2021, 13, 4327. [Google Scholar] [CrossRef]
- Vahabi, H.; Laoutid, F.; Formela, K.; Saeb, M.R.; Dubois, P. Flame-Retardant Polymer Materials Developed by Reactive Extrusion: Present Status and Future Perspectives. Polym. Rev. 2022, 62, 919–949. [Google Scholar] [CrossRef]
- Vahabi, H.; Laoutid, F.; Mehrpouya, M.; Saeb, M.R.; Dubois, P. Flame retardant polymer materials: An update and the future for 3D printing developments. Mater. Sci. Eng. R-Rep. 2021, 144, 100604. [Google Scholar] [CrossRef]
- Gupta, P.; Toksha, B.; Patel, B.; Rushiya, Y.; Das, P.; Rahaman, M. Recent Developments and Research Avenues for Polymers in Electric Vehicles. Chem. Rec. 2022, 22, e202200186. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.; Zeng, Q.; Wang, D.; Liu, Z.; Wang, G.; Qiu, Z.; Zhang, Y.; Xiao, M.; Meng, Y. Nonflammable organic electrolytes for high-safety lithium-ion batteries. Energy Storage Mater. 2020, 32, 425–447. [Google Scholar] [CrossRef]
- He, L.; Shi, Y.; Wang, Q.; Chen, D.; Shen, J.; Guo, S. Strategy for constructing electromagnetic interference shielding and flame retarding synergistic network in poly (butylene succinate) and thermoplastic polyurethane multilayered composites. Compos. Sci. Technol. 2020, 199, 108324. [Google Scholar] [CrossRef]
- Li, J.; Zhu, C.; Zhao, Z.; Khalili, P.; Clement, M.; Tong, J.; Liu, X.; Yi, X. Fire properties of carbon fiber reinforced polymer improved by coating nonwoven flame retardant mat for aerospace application. J. Appl. Polym. Sci. 2019, 136, 47801. [Google Scholar] [CrossRef]
- Liu, B.-W.; Zhao, H.-B.; Wang, Y.-Z. Advanced Flame-Retardant Methods for Polymeric Materials. Adv. Mater. 2022, 34, 2107905. [Google Scholar] [CrossRef]
- Yasin, S.; Behary, N.; Curti, M.; Rovero, G. Global Consumption of Flame Retardants and Related Environmental Concerns: A Study on Possible Mechanical Recycling of Flame Retardant Textiles. Fibers 2016, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Inthavong, C.; Hommet, F.; Bordet, F.; Rigourd, V.; Guerin, T.; Dragacci, S. Simultaneous liquid chromatography-tandem mass spectrometry analysis of brominated flame retardants (tetrabromobisphenol A and hexabromocyclododecane diastereoisomers) in French breast milk. Chemosphere 2017, 186, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, M.; Harrad, S.; Abdallah, M.A.-E.; Drage, D.S.; Berresheim, H. Phasing-out of legacy brominated flame retardants: The UNEP Stockholm Convention and other legislative action worldwide. Environ. Int. 2020, 144, 106041. [Google Scholar] [CrossRef] [PubMed]
- The New York State Senate, Senate Bill S7737. Available online: https://www.nysenate.gov/legislation/bills/2021/S773 (accessed on 5 July 2023).
- Hobbs, C.E. Recent Advances in Bio-Based Flame Retardant Additives for Synthetic Polymeric Materials. Polymers 2019, 11, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Gao, Y.; Wang, Q.; Lin, W. The synergistic effect of layered double hydroxides with other flame retardant additives for polymer nanocomposites: A critical review. Dalton Trans. 2018, 47, 14827–14840. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Meng, D.; Gu, X.; Sun, J.; Hu, Y.; Bourbigot, S.; Zhang, S. A Review on Flame-Retardant Polyvinyl Alcohol: Additives and Technologies. Polym. Rev. 2022, 63, 324–364. [Google Scholar] [CrossRef]
- Grand View Research, Flame Retardant Market Size, Share & Trends Analysis Report by Product (Halogenated, Non-halogenated), by Application (Polyolefin, Epoxy Resins), by End Use (Electrical & Electronics, Construction), and Segment Forecasts, 2021–2028. Available online: https://www.grandviewresearch.com/industry-analysis/flame-retardant-market (accessed on 5 July 2023).
- Huo, S.; Song, P.; Yu, B.; Ran, S.; Chevali, V.S.; Liu, L.; Fang, Z.; Wang, H. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives. Prog. Polym. Sci. 2021, 114, 101366. [Google Scholar] [CrossRef]
- Naiker, V.E.; Mestry, S.; Nirgude, T.; Gadgeel, A.; Mhaske, S.T. Recent developments in phosphorous-containing bio-based flame-retardant (FR) materials for coatings: An attentive review. J. Coat. Technol. Res. 2022, 20, 113–139. [Google Scholar] [CrossRef]
- Liu, X.-D.; Zheng, X.-T.; Dong, Y.-Q.; He, L.-X.; Chen, F.; Bai, W.-B.; Lin, Y.-C.; Jian, R.-K. A novel nitrogen-rich phosphinic amide towards flame-retardant, smoke suppression and mechanically strengthened epoxy resins. Polym. Degrad. Stab. 2022, 196, 109840. [Google Scholar] [CrossRef]
- Liang, S.; Wang, F.; Liang, J.; Chen, S.; Jiang, M. Synergistic effect between flame retardant viscose and nitrogen-containing intrinsic flame-retardant fibers. Cellulose 2020, 27, 6083–6092. [Google Scholar] [CrossRef]
- Liu, N.; Wang, H.; Xu, B.; Qu, L.; Fang, D. Cross-linkable phosphorus/nitrogen-containing aromatic ethylenediamine endowing epoxy resin with excellent flame retardancy and mechanical properties. Compos. Part A-Appl. Sci. Manuf. 2022, 162, 107145. [Google Scholar] [CrossRef]
- Wang, W.; Wang, F.; Li, H.; Liu, Y. Synthesis of phosphorus-nitrogen hybrid flame retardant and investigation of its efficient flame-retardant behavior in PA6/PA66. J. Appl. Polym. Sci. 2023, 140, e53536. [Google Scholar] [CrossRef]
- Yi, C.; Xu, C.; Sun, N.; Xu, J.; Ma, M.; Shi, Y.; He, H.; Chen, S.; Wang, X. Flame-Retardant and Transparent Poly(methyl methacrylate) Composites Based on Phosphorus-Nitrogen Flame Retardants. Acs Appl. Polym. Mater. 2022, 5, 846–855. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, M.; Kan, Y.; Chen, J.; Hu, Y.; Xing, W. Synthesis and flame retardant efficiency study of two phosphorus-nitrogen type flame retardants containing triazole units. Polym. Degrad. Stab. 2023, 208, 110236. [Google Scholar] [CrossRef]
- Dalal, A.; Bagotia, N.; Sharma, K.K.; Chatterjee, K.N.; Bansal, P.; Kumar, S. One Pot Facile Synthesis of Self-extinguishable Metal Based Flame Retardant for Cotton Fabric. J. Nat. Fibers 2022, 19, 10475–10489. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, W.; Yang, P.; Hu, J.; Duan, G.; Liu, X.; Gu, Z.; Li, Y. Metal-phenolic network green flame retardants. Polymer 2021, 221, 123627. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, W.; Yao, M.; Wu, Z.; Jiao, Y.; Qu, H. Novel triazine-based metal-organic frameworks: Synthesis and mulifunctional application of flame retardant, smoke suppression and toxic attenuation on EP. Mater. Des. 2023, 226, 111664. [Google Scholar] [CrossRef]
- Liang, B.; Hong, X.; Zhu, M.; Gao, C.; Wang, C.; Tsubaki, N. Synthesis of novel intumescent flame retardant containing phosphorus, nitrogen and boron and its application in polyethylene. Polym. Bull. 2015, 72, 2967–2978. [Google Scholar] [CrossRef]
- Qu, H.; Fan, R.; Yuan, J.; Liu, B.; Sun, L.; Tian, R. Preparation and Performance of a P-N Containing Intumescent Flame Retardant Based on Hydrolyzed Starch. Polym.-Plast. Technol. Eng. 2017, 56, 1760–1771. [Google Scholar] [CrossRef]
- Wang, S.; Du, Z.; Cheng, X.; Liu, Y.; Wang, H. Synthesis of a phosphorus- and nitrogen-containing flame retardant and evaluation of its application in waterborne polyurethane. J. Appl. Polym. Sci. 2018, 135, 46093. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Y.; Di, Y.; Xu, M.; Pan, Y.; Li, B. Simultaneously enhancing the fire retardancy and crystallization rate of biodegradable polylactic acid with piperazine-1,4-diylbis (diphenylphosphine oxide). Compos. Part B-Eng. 2020, 202, 108407. [Google Scholar] [CrossRef]
- Ollerton, K.; Greenaway, R.L.; Slater, A.G. Enabling Technology for Supramolecular Chemistry. Front. Chem. 2021, 9, 774987. [Google Scholar] [CrossRef] [PubMed]
- Uhlenheuer, D.A.; Petkau, K.; Brunsveld, L. Combining supramolecular chemistry with biology. Chem. Soc. Rev. 2010, 39, 2817–2826. [Google Scholar] [CrossRef] [PubMed]
- Cieslak, A.M.; Janecek, E.-R.; Sokolowski, K.; Ratajczyk, T.; Leszczynski, M.K.; Scherman, O.A.; Lewinski, J. Photo-induced interfacial electron transfer of ZnO nanocrystals to control supramolecular assembly in waterd. Nanoscale 2017, 9, 16128–16132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, R.; Li, G.; Zhang, Y.; Li, M.; Zhou, G.; Chai, X. Self-Healing Polymers Materials Based on Dynamic Supramolecular Motifs. Prog. Chem. 2019, 31, 690–698. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Zheng, P.; Wang, Y.; Ng, S.-W.; Chen, Y.; Deng, Y.; Zheng, Z.; Wang, C. Water-based phytic acid-crosslinked supramolecular binders for lithium-sulfur batteries. Chem. Eng. J. 2020, 395, 124981. [Google Scholar] [CrossRef]
- Kumar, S.; Shukla, S.K. Synergistic evolution of flame-retardant hybrid structure of poly vinyl alcohol, starch and kaolin for coating on wooden substrate. J. Polym. Res. 2023, 30, 71. [Google Scholar] [CrossRef]
- Ou, H.; Xu, J.; Liu, B.; Xue, H.; Weng, Y.; Jiang, J.; Xu, G. Study on synergistic expansion and flame retardancy of modified kaolin to low density polyethylene. Polymer 2021, 221, 123586. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, M.; Yuan, D.; Li, C.; Ma, Y.; Wang, S.; Wang, S. Fire hazards of PMMA-based composites combined with expandable graphite and multi-walled carbon nanotubes: A comprehensive study. Fire Saf. J. 2023, 135, 103727. [Google Scholar] [CrossRef]
- Li, N.; Li, Z.; Liu, Z.; Yang, Y.; Jia, Y.; Li, J.; Wei, M.; Li, L.; Wang, D.-Y. Magnesium hydroxide micro-whiskers as super-reinforcer to improve fire retardancy and mechanical property of epoxy resin. Polym. Compos. 2022, 43, 1996–2009. [Google Scholar] [CrossRef]
- Yang, H.-C.; Tsai, T.-P.; Hsieh, C.-T. Enhancement on fireproof performance of construction coatings using calcium sulfate whiskers prepared from wastewater. Chem. Pap. 2017, 71, 1343–1350. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Zhu, Y.-J.; Chen, Y.-Q.; Yu, H.-P.; Xiong, Z.-C. Flexible nanocomposite paper with superior fire retardance, mechanical properties and electrical insulation by engineering ultralong hydroxyapatite nanowires and aramid nanofibers. Chem. Eng. J. 2022, 444, 136470. [Google Scholar] [CrossRef]
- Chen, T.; Wang, X.; Peng, C.; Chen, G.; Yuan, C.; Xu, Y.; Zeng, B.; Luo, W.; Balaji, K.; Petri, D.F.S.; et al. Efficient Flame Retardancy, Smoke Suppression, and Mechanical Enhancement of beta-FeOOH@Metallo-Supramolecular Polymer Core-Shell Nanorod Modified Epoxy Resin. Macromol. Mater. Eng. 2020, 305, 202000137. [Google Scholar] [CrossRef]
- Shang, S.; Ma, X.; Yuan, B.; Chen, G.; Sun, Y.; Huang, C.; He, S.; Dai, H.; Chen, X. Modification of halloysite nanotubes with supramolecular self-assembly aggregates for reducing smoke release and fire hazard of polypropylene. Compos. Part B-Eng. 2019, 177, 107371. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Xue, B.; Wang, S.; Qi, P.; Sun, J.; Li, H.; Gu, X.; Zhang, S. Enhancing the flame retardancy and UV resistance of polyamide 6 by introducing ternary supramolecular aggregates. Chemosphere 2022, 287, 132100. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.-L.; Ding, H.-L.; Wang, X.; Song, L.; Hu, Y. Fabrication of zirconium phenylphosphonate/epoxy composites with simultaneously enhanced mechanical strength, anti-flammability and smoke suppression. Compos. Part A-Appl. Sci. Manuf. 2022, 155, 106837. [Google Scholar] [CrossRef]
- Gong, K.; Yin, L.; Zhou, K.; Qian, X.; Shi, C.; Gui, Z.; Yu, B.; Qian, L. Construction of interface-engineered two-dimensional nanohybrids towards superb fire resistance of epoxy composites. Compos. Part A-Appl. Sci. Manuf. 2022, 152, 106707. [Google Scholar] [CrossRef]
- Wang, D.; Peng, H.; Yu, B.; Zhou, K.; Pan, H.; Zhang, L.; Li, M.; Liu, M.; Tian, A.; Fu, S. Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties. Chem. Eng. J. 2020, 389, 124449. [Google Scholar] [CrossRef]
- Xu, L.; Tan, X.; Xu, R.; Xie, J.; Lei, C. Influence of functionalized molybdenum disulfide (MoS2) with triazine derivatives on the thermal stability and flame retardancy of intumescent Poly(lactic acid) system. Polym. Compos. 2019, 40, 2244–2257. [Google Scholar] [CrossRef]
- Mokhena, T.C.; Sadiku, E.R.; Ray, S.S.; Mochane, M.J.; Matabola, K.P.; Motloung, M. Flame retardancy efficacy of phytic acid: An overview. J. Appl. Polym. Sci. 2022, 139, e52495. [Google Scholar] [CrossRef]
- Liu, S.-H.; Xu, Z.-L.; Zhang, L. Effect of cyano ionic liquid on flame retardancy of melamine. J. Therm. Anal. Calorim. 2021, 144, 305–314. [Google Scholar] [CrossRef]
- Pan, M.; Chen, W.; Dai, J.; Shu, Z.; Xue, H.; Xu, J.; Ou, H. Research on preparation and flame retardancy of melamine-modified flame retardant loofah composites. J. Ind. Text. 2022, 52, 15280837221113361. [Google Scholar] [CrossRef]
- Shang, S.; Yuan, B.; Sun, Y.; Chen, G.; Huang, C.; Yu, B.; He, S.; Dai, H.; Chen, X. Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology. J. Colloid Interface Sci. 2019, 553, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-J.; Liao, D.-J.; Hu, X.-P.; Pan, N.; Li, W.-X.; Wang, D.-Y.; Yao, Y. Facile fabrication of biobased P-N-C-containing nano-layered hybrid: Preparation, growth mechanism and its efficient fire retardancy in epoxy. Polym. Degrad. Stab. 2019, 159, 153–162. [Google Scholar] [CrossRef]
- Li, W.-X.; Zhang, H.-J.; Hu, X.-P.; Yang, W.-X.; Cheng, Z.; Xie, C.-Q. Highly efficient replacement of traditional intumescent flame retardants in polypropylene by manganese ions doped melamine phytate nanosheets. J. Hazard. Mater. 2020, 398, 123001. [Google Scholar] [CrossRef]
- Qian, X.; Shi, C.; Wan, M.; Jing, J.; Che, H.; Ren, F.; Li, J.; Yu, B. Novel transition metal modified layered phosphate for reducing the fire hazards of PA6. Compos. Commun. 2023, 37, 101442. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, X.; Zhu, G.; Gu, X.; Li, H.; Zhang, S.; Sun, J.; Jin, X. Preparation of a novel supramolecular intumescent flame retardants containing P/N/S/Fe/Zn and its application in polylactic acid. Fire Saf. J. 2022, 128, 103536. [Google Scholar] [CrossRef]
- Sun, Y.; Yuan, B.; Shang, S.; Zhang, H.; Shi, Y.; Yu, B.; Qi, C.; Dong, H.; Chen, X.; Yang, X. Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene. Compos. Part B-Eng. 2020, 181, 107588. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, D.; Li, T.; Jiang, J.; Bai, H.; Wang, S.; Wang, Y.; Dong, W. Multifunctional Flame-Retardant, Thermal Insulation, and Antimicrobial Wood-Based Composites. Biomacromolecules 2023, 24, 957–966. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Yuan, B.; Zhao, Q.; Huang, C.; Liu, L. Synthesis of a novel prolonged action inhibitor with lotus leaf-like appearance and its suppression on methane/hydrogen/air explosion. Fuel 2022, 329, 125401. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Zhang, X.; Li, T.; Du, M.; Chen, M.; Dong, W. Preferred zinc-modified melamine phytate for the flame retardant polylactide with limited smoke release. New J. Chem. 2021, 45, 13329–13339. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Y.; Qiu, S.; Song, L. Ethanol inducing self-assembly of poly-(thioctic acid)/graphene supramolecular ionomers for healable, flame-retardant, shape-memory electronic devices. J. Colloid Interface Sci. 2023, 629, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Malkappa, K.; Ray, S.S. Thermal Stability, Pyrolysis Behavior, and Fire-Retardant Performance of Melamine Cyanurate@Poly(cyclotriphosphazene-co-4,4′-sulfonyl diphenol) Hybrid Nanosheet-Containing Polyamide 6 Composites. Acs Omega 2019, 4, 9615–9628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, P.; Yi, D.; Hao, J.; Ye, X.; Gao, M.; Song, T. Fabrication of melamine trimetaphosphate 2D supermolecule and its superior performance on flame retardancy, mechanical and dielectric properties of epoxy resin. Compos. Part B-Eng. 2021, 225, 109269. [Google Scholar] [CrossRef]
- Cao, C.-F.; Yu, B.; Huang, J.; Feng, X.-L.; Lv, L.-Y.; Sun, F.-N.; Tang, L.-C.; Feng, J.; Song, P.; Wang, H. Biomimetic, Mechanically Strong Supramolecular Nanosystem Enabling Solvent Resistance, Reliable Fire Protection and Ultralong Fire Warning. Acs Nano 2022, 16, 20865–20876. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Xu, Z.; An, R.; Zheng, H.; Hu, W.; Zhou, K. Recent progress in black phosphorus nanosheets for improving the fire safety of polymer nanocomposites. Compos. Part B-Eng. 2023, 249, 110404. [Google Scholar] [CrossRef]
- Deng, C.; Liu, Y.; Jian, H.; Liang, Y.; Wen, M.; Shi, J.; Park, H. Study on the preparation of flame retardant plywood by intercalation of phosphorus and nitrogen flame retardants modified with Mg/Al-LDH. Constr. Build. Mater. 2023, 374, 130939. [Google Scholar] [CrossRef]
- Sang, B.; Li, Z.-W.; Li, X.-H.; Yu, L.-G.; Zhang, Z.-J. Graphene-based flame retardants: A review. J. Mater. Sci. 2016, 51, 8271–8295. [Google Scholar] [CrossRef]
- Zhou, K.; Gao, R.; Qian, X. Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): Towards reducing fire hazards of epoxy. J. Hazard. Mater. 2017, 338, 343–355. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, J.; Qiu, S.; Wang, J.; Zhou, Y.; Han, L.; Zou, B.; Xu, Z.; Hu, Y.; Ma, C. Supramolecular wrapped sandwich like SW-Si3N4 hybrid sheets as advanced filler toward reducing fire risks and enhancing thermal conductivity of thermoplastic polyurethanes. J. Colloid Interface Sci. 2021, 603, 844–855. [Google Scholar] [CrossRef]
- Sun, W.; Sun, Y. Growth of biobased flakes on the surface and within interlayer of metakaolinite to enhance the fire safety and mechanical properties of intumescent flame-retardant polyurea composites. Chem. Eng. J. 2022, 450, 138350. [Google Scholar] [CrossRef]
- Feng, X.; Wang, X.; Cai, W.; Hong, N.; Hu, Y.; Liew, K.M. Integrated effect of supramolecular self-assembled sandwich-like melamine cyanurate/MoS2 hybrid sheets on reducing fire hazards of polyamide 6 composites. J. Hazard. Mater. 2016, 320, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Zhou, Y.; Xing, W.; Ren, X.; Zou, B.; Hu, Y. Conceptually Novel Few-Layer Black Phosphorus/Supramolecular Coalition: Noncovalent Functionalization Toward Fire Safety Enhancement. Ind. Eng. Chem. Res. 2021, 60, 12579–12591. [Google Scholar] [CrossRef]
- Sui, Y.; Qu, L.; Dai, X.; Li, P.; Zhang, J.; Luo, S.; Zhang, C. A green self-assembled organic supermolecule as an effective flame retardant for epoxy resin. Rsc Adv. 2020, 10, 12492–12503. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Qi, J.; Qi, P.; Xu, R.; Wu, T.; Zhang, B.; Huang, J.; Yan, Y. Unprecedented Nonflammable Organic Adhesives Leading to Fireproof Wood Products. Acs Appl. Mater. Interfaces 2023, 15, 8609–8616. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-P.; Pan, L.-L.; Yuan, Y.-X.; Shi, X.-X.; Yuan, L.-J. A Novel Supramolecular Resin Based On an Organic Acid-Base Compound. Cryst. Growth Des. 2009, 9, 2668–2673. [Google Scholar] [CrossRef]
- Yu, S.-L.; Xiang, H.-X.; Zhou, J.-L.; Qiu, T.; Hu, Z.-X.; Zhu, M.-F. Typical Polymer Fiber Materials: An Overview and Outlook. Acta Polym. Sin. 2020, 51, 39–54. [Google Scholar] [CrossRef]
- Wu, Q.; Xiao, L.; Chen, J.; Peng, Z. Facile fabrication of high-performance epoxy systems with superior mechanical properties, flame retardancy, and smoke suppression. J. Appl. Polym. Sci. 2023, 140, e53480. [Google Scholar] [CrossRef]
- Zhi, M.; Yang, X.; Fan, R.; Yue, S.; Zheng, L.; Liu, Q.; He, Y. A comprehensive review of reactive flame-retardant epoxy resin: Fundamentals, recent developments, and perspectives. Polym. Degrad. Stab. 2022, 201, 109976. [Google Scholar] [CrossRef]
- Wan, M.; Shi, C.; Qian, X.; Qin, Y.; Jing, J.; Che, H. Metal-organic Framework ZIF-67 Functionalized MXene for Enhancing the Fire Safety of Thermoplastic Polyurethanes. Nanomaterials 2022, 12, 1142. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, J.; Sun, P.; Zhang, L.; Qian, X.; Jiang, S.; Shi, C. Green, tough and highly efficient flame-retardant rigid polyurethane foam enabled by double network hydrogel coatings. Soft Matter 2021, 17, 10555–10565. [Google Scholar] [CrossRef]
- Wang, N.; Chen, S.; Li, L.; Bai, Z.; Guo, J.; Qin, J.; Chen, X.; Zhao, R.; Zhang, K.; Wu, H. An Environmentally Friendly Nanohybrid Flame Retardant with Outstanding Flame-Retardant Efficiency for Polypropylene. J. Phys. Chem. C 2021, 125, 5185–5196. [Google Scholar] [CrossRef]
- Yan, X.; Fang, J.; Gu, J.; Zhu, C.; Qi, D. Flame Retardancy, Thermal and Mechanical Properties of Novel Intumescent Flame Retardant/MXene/Poly(Vinyl Alcohol) Nanocomposites. Nanomaterials 2022, 12, 477. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Sun, Q.; Zhang, K.; Bai, X.; Liu, P.; Li, A.; LYu, Z.; Li, Q. Flame-retardant thermoplastic polyurethane based on reactive phosphonate polyol. Fire Mater. 2022, 46, 130–137. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Wu, D.; Wang, X.; Yu, J.; Yuan, R.; Li, F. A phosphorus-containing flame retardant with thermal feature suitable for polyamide 6 and its filaments with enhanced anti-dripping performance. Polym. Degrad. Stab. 2022, 200, 109936. [Google Scholar] [CrossRef]
- Zuluaga-Parra, J.D.; Ramos-deValle, L.F.; Sánchez-Valdes, S.; Torres-Lubian, R.; Pérez-Mora, R.; Ramírez-Vargas, E.; Martínez-Colunga, J.G.; da Silva, L.; Vazquez-Rodriguez, S.; Lozano-Ramírez, T.; et al. Grafting of ammonium polyphosphate onto poly(lactic acid) and its effect on flame retardancy and mechanical properties. Iran. Polym. J. 2023, 32, 225–238. [Google Scholar] [CrossRef]
- Xu, J.; Niu, Y.; Xie, Z.; Liang, F.; Guo, F.; Wu, J. Synergistic flame retardant effect of carbon nanohorns and ammonium polyphosphate as a novel flame retardant system for cotton fabrics. Chem. Eng. J. 2023, 451, 138566. [Google Scholar] [CrossRef]
- Mochane, M.J.; Mokhothu, T.H.; Mokhena, T.C. Synthesis, mechanical, and flammability properties of metal hydroxide reinforced polymer composites: A review. Polym. Eng. Sci. 2022, 62, 44–65. [Google Scholar] [CrossRef]
- Attia, N.F.; Elashery, S.E.A.; Zakria, A.M.; Eltaweil, A.S.; Oh, H. Recent advances in graphene sheets as new generation of flame retardant materials. Mater. Sci. Eng. B 2021, 274, 115460. [Google Scholar] [CrossRef]
- Yasin, S.; Curti, M.; Behary, N.; Perwuelz, A.; Giraud, S.; Rovero, G.; Guan, J.; Chen, G. Process optimization of eco-friendly flame retardant finish for cotton fabric: A response surface methodology approach. Surf. Rev. Lett. 2017, 24, 1750114. [Google Scholar] [CrossRef]
- Burgaz, E.; Kendirlioglu, C. Thermomechanical behavior and thermal stability of polyurethane rigid nanocomposite foams containing binary nanoparticle mixtures. Polym. Test. 2019, 77, 105930. [Google Scholar] [CrossRef]
- Qi, C.; Yuan, B.; Dong, H.; Li, K.; Shang, S.; Sun, Y.; Chen, G.; Zhan, Y. Supramolecular self-assembly modification of ammonium polyphosphate and its flame retardant application in polypropylene. Polym. Adv. Technol. 2020, 31, 1099–1109. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, M.; Ma, Z.; Xu, X.; Dai, J.; Yu, Y.; Seraji, S.M.; Wang, H.; Song, P. Small multiamine molecule enabled fire-retardant polymeric materials with enhanced strength, toughness, and self-healing properties. Chem. Eng. J. 2022, 440, 135645. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, W.; Liu, L.; Cheng, W.; Wang, W.; Liew, K.M.; Wang, B.; Hu, Y. Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings. Chem. Eng. J. 2019, 372, 1077–1090. [Google Scholar] [CrossRef]
- Chen, H.-Q.; Xu, Y.-J.; Jiang, Z.-M.; Jin, X.; Liu, Y.; Zhang, L.; Zhang, C.-J.; Yan, C. The thermal degradation property and flame-retardant mechanism of coated knitted cotton fabric with chitosan and APP by LBL assembly. J. Therm. Anal. Calorim. 2020, 140, 591–602. [Google Scholar] [CrossRef]
- Islam, M.S.; van de Ven, T.G.M. Cotton-Based Flame-Retardant Textiles: A Review. Bioresources 2021, 16, 4354–4381. [Google Scholar] [CrossRef]
- Sohail, Y.; Parag, B.; Nemeshwaree, B.; Giorgio, R. Optimizing Organophosphorus Fire Resistant Finish for Cotton Fabric Using Box-Behnken Design. Int. J. Environ. Res. 2016, 10, 313–320. [Google Scholar]
- Liu, L.; Huang, Z.; Pan, Y.; Wang, X.; Song, L.; Hu, Y. Finishing of cotton fabrics by multi-layered coatings to improve their flame retardancy and water repellency. Cellulose 2018, 25, 4791–4803. [Google Scholar] [CrossRef]
- Li, Y.-C.; Schulz, J.; Mannen, S.; Delhom, C.; Condon, B.; Chang, S.; Zammarano, M.; Grunlan, J.C. Flame Retardant Behavior of Polyelectrolyte−Clay Thin Film Assemblies on Cotton Fabric. ACS Nano 2010, 4, 3325–3337. [Google Scholar] [CrossRef]
- An, W.; Ma, J.; Xu, Q.; Fan, Q. Flame retardant, antistatic cotton fabrics crafted by layer-by-layer assembly. Cellulose 2020, 27, 8457–8469. [Google Scholar] [CrossRef]
- Li, S.; Ding, F.; Lin, X.; Li, Z.; Ren, X. Layer-by-Layer Self-assembly of Organic-inorganic Hybrid Intumescent Flame Retardant on Cotton Fabrics. Fibers Polym. 2019, 20, 538–544. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, X.; Li, M.; Qian, L.; Zhou, H. Construction of crosslinking network structures by adding ZnO and ADR in intumescent flame retardant PLA composites. Polym. Adv. Technol. 2022, 33, 198–211. [Google Scholar] [CrossRef]
- Xue, Y.; Ma, Z.; Xu, X.; Shen, M.; Huang, G.; Bourbigot, S.; Liu, X.; Song, P. Mechanically robust and flame-retardant polylactide composites based on molecularly-engineered polyphosphoramides. Compos. Part A Appl. Sci. Manuf. 2021, 144, 106317. [Google Scholar] [CrossRef]
- Ren, X.; Song, M.; Jiang, J.; Yu, Z.; Zhang, Y.; Zhu, Y.; Liu, X.; Li, C.; Oguzlu-Baldelli, H.; Jiang, F. Fire-Retardant and Thermal-Insulating Cellulose Nanofibril Aerogel Modified by In Situ Supramolecular Assembly of Melamine and Phytic Acid. Adv. Eng. Mater. 2022, 24, 2101534. [Google Scholar] [CrossRef]
- Han, S.; Yang, F.; Li, Q.; Sui, G.; Kalimuldina, G.; Araby, S. Synergetic Effect of α-ZrP Nanosheets and Nitrogen-Based Flame Retardants on Thermoplastic Polyurethane. ACS Appl. Mater. Interfaces 2023, 15, 17054–17069. [Google Scholar] [CrossRef]
- Li, K.; Jin, S.; Zhou, Y.; Luo, J.; Li, J.; Li, X.; Shi, S.Q.; Li, J. Bioinspired interface design of multifunctional soy protein-based biomaterials with excellent mechanical strength and UV-blocking performance. Compos. Part B Eng. 2021, 224, 109187. [Google Scholar] [CrossRef]
- Anna, S.; Karolina, M.; Sylwia, C. Buckwheat Hulls/Perlite as an Environmentally Friendly Flame-Retardant System for Rigid Polyurethane Foams. Polymers 2023, 15, 1913. [Google Scholar] [CrossRef]
- Lazar, S.T.; Kolibaba, T.J.; Grunlan, J.C. Flame-retardant surface treatments. Nat. Rev. Mater. 2020, 5, 259–275. [Google Scholar] [CrossRef]
- Han, C.; Xing, W.; Zhou, K.; Lu, Y.; Zhang, H.; Nie, Z.; Xu, F.; Sun, Z.; Du, Y.; Yu, H.; et al. Self-assembly of two-dimensional supramolecular as flame-retardant electrode for lithium-ion battery. Chem. Eng. J. 2022, 430, 132873. [Google Scholar] [CrossRef]
- Qiu, J.; Wu, S.; Yang, Y.; Xiao, H.; Wei, X.; Zhang, B.; Hui, K.N.; Lin, Z. Aqueous Supramolecular Binder for a Lithium-Sulfur Battery with Flame-Retardant Property. Acs Appl. Mater. Interfaces 2021, 13, 55092–55101. [Google Scholar] [CrossRef]
- Chen, X.; Yan, S.; Tan, T.; Zhou, P.; Hou, J.; Feng, X.; Dong, H.; Wang, P.; Wang, D.; Wang, B.; et al. Supramolecular "flame-retardant" electrolyte enables safe and stable cycling of lithium-ion batteries. Energy Storage Mater. 2022, 45, 182–190. [Google Scholar] [CrossRef]
- Malkappa, K.; Salehiyan, R.; Ray, S.S. Supramolecular Poly(cyclotriphosphazene) Functionalized Graphene Oxide/Polypropylene Composites with Simultaneously Improved Thermal Stability, Flame Retardancy, and Viscoelastic Properties. Macromol. Mater. Eng. 2020, 305, 2000207. [Google Scholar] [CrossRef]
- Xie, L.; Liu, B.; Liu, X.; Lu, Y. Preparation of flame retardant viscose fibers by supramolecular self-assembly. J. Appl. Polym. Sci. 2022, 139, e52792. [Google Scholar] [CrossRef]
- Wang, H.; Xia, B.; Song, R.; Huang, W.; Zhang, M.; Liu, C.; Ke, Y.; Yin, J.-F.; Chen, K.; Yin, P. Metal oxide cluster-assisted assembly of anisotropic cellulose nanocrystal aerogels for balanced mechanical and thermal insulation properties. Nanoscale 2023, 15, 5469–5475. [Google Scholar] [CrossRef]
- Aguirresarobe, R.H.; Nevejans, S.; Reck, B.; Irusta, L.; Sardon, H.; Asua, J.M.; Ballard, N. Healable and self-healing polyurethanes using dynamic chemistry. Prog. Polym. Sci. 2021, 114, 101362. [Google Scholar] [CrossRef]
- Lugger, S.J.D.; Houben, S.J.A.; Foelen, Y.; Debije, M.G.; Schenning, A.P.H.J.; Mulder, D.J. Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials with Stimuli-Responsive, Self-Healing, and Recyclable Properties. Chem. Rev. 2022, 122, 4946–4975. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Yang, M.; Zuo, C.; Chen, G.; He, D.; Zhou, X.; Liu, C.; Xie, X.; Xue, Z. Flexible, Self-Healing, and Fire-Resistant Polymer Electrolytes Fabricated via Photopolymerization for All-Solid-State Lithium Metal Batteries. ACS Macro Lett. 2020, 9, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Rabani, I.; Lee, S.-H.; Kim, H.-S.; Yoo, J.; Hussain, S.; Maqbool, T.; Seo, Y.-S. Engineering-safer-by design ZnO nanoparticles incorporated cellulose nanofiber hybrid for high UV protection and low photocatalytic activity with mechanism. J. Environ. Chem. Eng. 2021, 9, 105845. [Google Scholar] [CrossRef]
- Liang, X.-Y.; Wang, L.; Wang, Y.-M.; Ding, L.-S.; Li, B.-J.; Zhang, S. UV-Blocking Coating with Self-Healing Capacity. Macromol. Chem. Phys. 2017, 218, 1700213. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, S.; Feng, J.; Yang, H.; Feng, X. Synthesis and Applications of Supramolecular Flame Retardants: A Review. Molecules 2023, 28, 5518. https://doi.org/10.3390/molecules28145518
Xiang S, Feng J, Yang H, Feng X. Synthesis and Applications of Supramolecular Flame Retardants: A Review. Molecules. 2023; 28(14):5518. https://doi.org/10.3390/molecules28145518
Chicago/Turabian StyleXiang, Simeng, Jiao Feng, Hongyu Yang, and Xiaming Feng. 2023. "Synthesis and Applications of Supramolecular Flame Retardants: A Review" Molecules 28, no. 14: 5518. https://doi.org/10.3390/molecules28145518
APA StyleXiang, S., Feng, J., Yang, H., & Feng, X. (2023). Synthesis and Applications of Supramolecular Flame Retardants: A Review. Molecules, 28(14), 5518. https://doi.org/10.3390/molecules28145518