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Abstract: In this study, propolis additives provide antibacterial and antifungal effects that prolong
the product’s shelf life. The aim of the study is to obtain homogeneous fiber membranes of polyvinyl
alcohol and propolis by the electrospinning method and to evaluate their suitability for food pack-
aging. Three propolis extracts are used in the study—water, ethyl alcohol, and glycerin-based. The
membranes’ morphology and fiber diameter distribution, tensile deformation, air permeability, ther-
mogravimetric analysis, differential scanning calorimetry, Fourier-transform infrared spectroscopy,
and microbiological tests (Listeria monocytogenes, Salmonella enteritidis, Escherichia coli) were analyzed
for electrospun samples. The results of the study show that propolis extracts are incorporated into
membranes and the additive provides an antimicrobial effect with the contact surface. The obtained
membranes are breathable: gas exchange can be controlled by using a material of appropriate thick-
ness (air permeability coefficient is 0.046 and 0.276 mm/s). The mechanical properties of membranes
are affected by moisture, but tensile strength can be improved with thermal post-processing at 100 ◦C.
The propolis-containing fibers’ diameters are from 293 ± 8 to 664 ± 11 nm. Depending on membranes’
demonstrated properties, it can be concluded that the composites have the potential to increase the
shelf life of fresh fruits and berries.

Keywords: electrospinning; nano and micro fibers; propolis; polyvinyl alcohol; food packaging

1. Introduction

The long-term environmental impact of plastic packaging waste is an increasing
global problem. Fibrous plastic membranes with incorporated and immobilized substances
(like nanoparticles, essential oils, and organic acids) with functional properties are needed
to improve the properties and functionality of food packaging [1]. Waste can be reduced
if the packaging can be rinsed off the food or eaten with it [2]. Preserving the freshness
and flavor of food products and reduction of food waste from spoilage is an important
goal that can be reached by electrospun propolis containing fibrous packaging materials.
Electrospun fiber membranes can be used for food packaging directly or as a mixed
electrospun packaging membrane layers, or coating with additional organic or inorganic
fillers, or by using post-treatments.

Electrospun membranes could be layers to a gas barrier, and even as an emerging
technology to design bioactive packaging with antimicrobial protection or delivery of
supplements to foods. The main advantages of fibrous membranes are very large surface
areas to volume ratios of nanofibers and high porosity [1]. Lower amounts of required
active compound and good distribution are useful advantages of electrospun packaging
materials, as well [3].
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Recent development in active and smart food packaging focuses on biobased and
biodegradable polymers with various additives (nanoparticles, plant extracts and more [4–7]).
Edible food packaging can be considered a thin layer on the surface of the food product, so
that pollution and waste do not occur when eaten with food, usually applied on product
by spraying, dipping or wrapping [5]. Edible electrospun packaging materials are usually
made of polysaccharides, proteins, lipids or combinations of them [1,8]. In this research
on fibrous membrane production biodegradable polymer—Polyvinyl alcohol (PVA) also
known as food additive E1203 (glazing agent, thickener)—is chosen as the fiber base mate-
rial. PVA is easily electrospinnable, and widely used in food packaging, for example, as an
active food packaging material layered with green tea polyphenols (with good antibacterial
properties) and glycerol (as a plasticizer) [9]. PVA is water-soluble and highly impermeable
to gases; therefore, it is usually used as a barrier layer for paper or packaging films [10].
Various organic acids (malic acid, tartaric acid, and lactic acid) have been added to PVA [11]
to control pH, which plays an important role in achieving antibacterial properties. Essen-
tial oils are often added to electrospinning solutions as antibacterial biological additive
(peppermint and chamomile essential oils) [12]. Because of cross-linking of PVA with
different multi-carboxylic acid’s mechanical stability, wettability and phase morphology of
PVA were enhanced [11,13]. In addition, propolis can be used as a bioactive component.
The composition of propolis can vary greatly depending on where it is harvested. More
than 300 compounds can be identified—aromatic acids, amino acids, phenolic compounds,
essential oils, waxes and more [14]. Propolis is effective against microorganisms due to its
high polyphenol content [15]. Various flavonoids are reported as effective against bacteria
(Staphylococcus aureus, Enterococcus faecalis and others) and fungus (Candida and others) [16].
Electrospun material packaging ghas mainly been used with strawberries, grapes, tomatoes,
and mushrooms, and promising results have been obtained [4].

Moreover, fresh fruits and berries are prone to fungi at all stages of their life cycle—from
cultivation to the customer. Some molds can grow and produce mycotoxins on them, while
some yeasts and molds can cause infections or allergies. The most common molds isolated
from berries were Botrytis cinerea, Rhizopus, Alternaria, Penicillium, Cladosporium and Fusarium
followed by yeasts, Trichoderma and Aureobasidium. The most common fungi on citrus fruits
were Alternaria, Cladosporium, Penicillium, Fusarium and yeasts [17]. Similar microscopic
fungi—Penicillium expansum, Monilia fructigena and Neofabraea alba—have been isolated
from damaged apples stored under different conditions [18]. The E. coli, Salmonella spp. and
Listeria monocytogenes microorganisms have also been reported on freshly cut apples [19].
Apple storage (2–4 ◦C, humidity 85%) and trading conditions (18 ◦C, humidity 65%) signif-
icantly affect the taste, hardness, pectin and phenol content and shelf life in general [18].
Packaging could play an important role in prolonging the marketing period, where fluctua-
tions in humidity and temperature can lead to a rapid decline in fruit quality. Packaging
material also requires controlled gas exchange to prevent product damage. Nanofiber-
based food packaging’s air permeability characteristics allow them, especially for fruits and
vegetables, to properly inhale/exhale oxygen and carbon dioxide, thus prolonging the time
for which the product is fresh. Nanofiber mat pore size is small enough to retain bacteria,
viruses, and other harmful pathogens, but does not completely block the airflow [20,21].

Experiments have also been performed where the air permeability properties of
electrospun nanofiber materials (using PVA as one of the electrospun solution matrix) are
evaluated by emphasizing the material usage as vegetable and fruit packaging material [21].

The recent developments about wrappers, bags, films and active sachets obtained
through electrospinning have shown their potential application for active food packaging.
There are not many packages that can prevent food spoilage while reducing microbial
damage, are breathable, environmentally friendly and can be eaten with the product. There-
fore, the objective of this study is to obtain homogeneous fiber membranes of polyvinyl
alcohol and propolis by the electrospinning method and to evaluate their suitability for
food packaging. Moreover, the suitability and effect of various propolis extracts on the
properties of edible fiber membranes were evaluated.
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2. Results and Discussion
2.1. Fiber Content Characterization

Depending on the propolis extract added, the fibers contain the maximum content of
propolis to reach good-quality fiber membranes, shown in the Table 1. The predicted and
actual amount of flavonoids analyzed in the previous study were very close [22], and the
highest content of flavonoids is seen in the fibers with propolis alcohol extract which also
make it possible to predict the highest efficacy against some microorganisms [16]. As can
be seen in Table 1, the higher content of propolis in the fibers does not guarantee a higher
content of flavonoids; this is mainly influenced by the solvent of propolis and places of
propolis-harvesting origin.

Table 1. Data on propolis and total flavonoids content in fibers.

Fiber Sample Calculated Propolis Content, % Total Flavonoids Content mg/g

10PVA130(PW/LT) 73.5 4.85 ± 0.11 [22]
10PVA130(PHGEx/BRA) 12.28 5.13 ± 0.21 [22]

10PVA130(PEx/LV) 29.58 74.51 ± 0.42 *
* Calculated Flavonoids Content mg/g.

2.2. Fourier-Transform Infrared Spectroscopy (FTIR-ATR)

Analysis of FTIR-ATR spectra of the investigated electrospun membranes is chal-
lenging due to complex chemical composition of propolis, which depends upon the
diversity of plants which bees have visited for gathering. It has been generally recog-
nized that the chemical composition of propolis consists of balsam compounds (40–70%),
mostly comprising numerous phenolics, and non-balsam content containing of beeswax
(20–35%), essential oils (3–5%; mono and sesquiterpenes) and other organic and inor-
ganic compounds (ca. 5%), such as polysaccharides (proteins, amino acids), mechanical
impurities, etc. [23]. In the FTIR spectra of the propolis additives containing electrospun
membranes (Figure 1) phenol compounds may be represented by absorption bands of
O-H stretching (ca 3000–3700 cm−1), as well as interaction of O–H deformation and C–O
stretching vibrations between 1150–1400 cm−1. Phenols may be also represented by vibra-
tions at 1640–1660 cm−1 and 1110 cm−1, which have been assigned to aromatic ring C=C
stretching and aromatic C–H deformation vibration respectively [23]. The absorption at
1700–1750 cm−1 is characteristic of the carbonyl group (C=O) stretching vibrations of the
ester bond, which has been attributed to the monoesters from beeswax in propolis [24].
Absorption bands in between 1610–1699 cm−1 have been attributed to asymmetric bending
vibrations of lipids, flavonoids and amino acids, whereas absorption bands in between
1560–1505 cm−1, 1450–1415 cm−1, 1399–1310 cm−1, 1198–1000 cm−1 were attributed to elon-
gation, bending and stretching (C-C), bending alone (C-OH), and vibrations of flavonoids
and aromatic rings, respectively [25]. Thus, vibrations centered around 1650 cm−1,
1370 cm−1, 1240 cm−1, 1080 cm−1 and 1020 cm−1 may be attributed to phenolics and
flavonoids content in PW/LT and PHGEx/BRA. By comparing both spectra it may be
concluded that flavonoids content in both propolis types is similar.
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The membrane of 10PVA130 (Figure 2a) has shown the fiber average diameters of 286 
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olis extracts (Figure 2d) to 293 ± 8 nm. Average fiber diameters of 10PVA145 are 551± 26 
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mPa·s) [26]. 

Considering that defective regions are observed in the micrographs for samples 
10PVA145 and 10PVA130(PEx/LV), these samples were not further tested for tensile de-
formation and other tests. The results show that it is necessary to improve the spinning 
solution containing ethyl alcohol propolis extract and the spinning parameters may also 
need to be adjusted to avoid holes (Figure 2d) in the fiber membrane. 

 

 

 

Figure 1. FTIR- ATR spectra of electrospun membranes of the PVA and its composites with PW/LT
and PHGEx/BRA.

2.3. Fibrous Membranes Morphology

All prepared solutions for electrospinning are spun into fibrous membranes. The defec-
tive sample 10PVA145 is obtained using a molecular weight of PVA 145 kDa; the sample is
not homogeneous: areas of film are visible (Figure 2e). The distribution of fiber diameters
of two samples without propolis is shifted to the left (Figure 2 histograms a and e), but
the propolis additive makes the diameter size distribution more centered (histograms
Figure 2b,c), which means under the influence of propolis additive, both fiber diameters
and the variety of diameter sizes increase.

The membrane of 10PVA130 (Figure 2a) has shown the fiber average diameters of
286 ± 10 nm. The addition of propolis water (Figure 2b) increased the diameter sizes to
664 ± 11 nm, hydroglyceric propolis extracts (Figure 2c) to 606 ± 11 nm [22], ethyl alcohol
propolis extracts (Figure 2d) to 293 ± 8 nm. Average fiber diameters of 10PVA145 are
551± 26 nm (Figure 2e), and similar were obtained in another study—505 ± 23 nm (viscosity
1728 mPa·s) [26].

Considering that defective regions are observed in the micrographs for samples
10PVA145 and 10PVA130(PEx/LV), these samples were not further tested for tensile de-
formation and other tests. The results show that it is necessary to improve the spinning
solution containing ethyl alcohol propolis extract and the spinning parameters may also
need to be adjusted to avoid holes (Figure 2d) in the fiber membrane.
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Figure 2. Micrographs of electrospun membranes: (a) 10PVA130; (b) 10PVA130(PW/LT);
(c) 10PVA130(PHGEx/BRA); (d) 10PVA130(PEx/LV); (e) 10PVA145.

2.4. Differential Scanning Calorimetry

Due to the greatly different chemical composition of the propolis, its thermal behavior
profile is complex. It has been previously demonstrated that the beeswax component
of propolis undergoes various polymorphic phase transitions during melting within the
temperature range ca 30–70 ◦C [27]. Moreover, for some propolis types melting of some
natural resin components as well as removal of trapped water may occur even above
100 ◦C [28]. PVA melts well above 100 ◦C, i.e., close to 200 ◦C. Consequently, from DSC
thermograms of electrospun PVA-propolis membranes (Figure 3) it may be concluded
that within the temperature range ca 0–90 ◦C for 10PVA(PW/LT) and ca 35–115 ◦C for
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10PVA130(PHGEx/BRA), the melting of propolis occurs. Concomitantly, during melting
the release of water occurs. A higher melting temperature range of PHGEx/BRA most
probably is connected with higher natural resin content. Endothermic peaks above 140 ◦C
denote the beginning of thermal decomposition of active compounds, such as monosaccha-
rides and proteins, as well as evaporation of essential oil compounds present in PW/LT
and PHGEx/BRA.
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2.5. Thermogravimetric Analysis (TGA)

The complex chemical composition of propolis greatly influences its thermogravi-
metric profile, as it is demonstrated in Figure 4. Consequently, thermal degradation
of the electrospun membranes may be divided into five stages. It has been previously
demonstrated that in a nitrogen environment, propolis degrades via four stages: the first
(90–97 ◦C) is attributed to release of water and unidentified low-molecular compounds; the
second (100–176 ◦C)is attributed to decomposition of carbohydrates (mainly monosaccha-
rides), to some extent amino acids, and aromatic and essential oil compounds, as well as
some amount of trapped water; the third (200–310 ◦C) is attributed to the complete degra-
dation of carbohydrates and amino acids; and the fourth (465–468 ◦C) major degradation
stage (53–73%) is attributed mainly to the lipids [28]. Similarly, in the current case, during
the first stage, at temperatures below 100 ◦C evaporation of water and other low-molecular
compounds occurs. DTA peak maxima of 10PVA130(PHGEx/BRA) electrospun membrane
is somewhat delayed, most probably due to the lower content of low molecular compounds
and greater content of entrapped water in comparison to the 10PVA130(PW/LT) electro-
spun membrane. The second degradation stage, peaking at ca 212 ◦C for 10PVA130(PW/LT)
and at ca 244 ◦C for 10PVA130(PHGEx/BRA), may be related to the degradation of car-
bohydrates and amino acids. The third degradation stage, peaking at 285 ◦C and 338 ◦C
for 10PVA130(PW/LT) and 10PVA130(PHGEx/BRA), respectively, may be also related to
the decomposition of carbohydrates and amino acids as well as their oxidation products.
Peaks of DTA curves at 429 ◦C and 485 ◦C (10PVA130(PW/LT)) as well as 446 ◦C and
509 ◦C (10PVA130(PHGEx/BRA)) may be attributed to the thermooxidative degradation of
amino acids and lipids, as well as their oxidation products. However, it is more plausible
that the major contributant to degradation in the temperature region above ca 230 ◦C is
PVA due to its higher thermal stability. By comparing the thermooxidative behaviour
of 10PVA130(PHGEx/BRA) and 10PVA130(PW/LT) electrospun membranes, it may be
concluded that the former contains larger amounts of thermally resistant constituents.
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2.6. Microbiology Analysis of Electrospun Membranes

As expected, PVA fibers do not show antimicrobial activity against any of the microor-
ganisms tested (Table 2). Fiber samples 10PVA130(PHGEx/BRA) and 10PVA130(PEx/LV)
have a very weak effect (reduced size of microorganisms under the sample) on all microor-
ganisms tested but sample 10PVA130(PW/LT) shows efficacy against all three microorgan-
isms tested. The sample 10PVA130(PW/LT) shows weak growth of Listeria monocytogenes
and Escherichia coli under the disk in diameter of 13 mm, but under the disc a clean zone
(diameter of 13 mm) was observed against Salmonella enteritidis (Table 2). It can be seen
that the propolis water additive has an effect against all three microorganisms: if there is
contact with the surface, the microorganisms grow more slowly or not at all.

Table 2. Antimicrobial activity of electrospun fibrous membranes.

Sample
Value of Inhibition Zone (mm)

Listeria monocytogenes
ATCC 13932

Salmonella enteritidis
ATCC 13076

Escherichia coli
ATCC 25922

10PVA130
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2.7. Tensile Stress-Strain Characteristics

By considering the hydrophilicity of PVA, tensile tests of the electrospun membranes
have been performed at different relative humidity values (RH = 8% (dry state) and
RH = 54% (moist state)). By considering great variation in the morphology (see Section 2.3),
and the random fiber orientation, as well as varying of the fiber thicknesses in the obtained
electrospun membranes, it has been determined that their tensile properties vary greatly.
Consequently, thermal treatment/cross-linking was applied to improve the overall proper-
ties of the obtained PVA-propolis composite membranes. Thermal treatment temperature
was selected to be 100 ◦C, at which no considerable weight loss of 10PVA130(PHGEx/BRA)
and 10PVA130(PW/LT) is observed according to TGA results (Section 2.5). The results of
tensile properties of untreated and thermally treated electrospun membranes of PVA and
PVA with PW/LT and PHGEx/BRA are depicted in Figures 5 and 6. As one can see from
representative σ–ε curves of the obtained electrospun membranes, after thermal treatment
the tensile strength of all the investigated electrospun membranes is increased, whereas
ultimate strain is changed insignificantly or reduced to certain extent. With respect to the
influence of propolis additive on the mechanical properties of electrospun membranes, it is
interesting to note that after the introduction of PHGEx/BRA in the PVA matrix, the tensile
strength of electrospun membranes has decreased and ultimate elongation has increased,
which is opposite to the effect of introduction of PW/LT. However, this may be explained
by the fact that PHGEx/BRA contains glycerine, which may act as plasticizer by reducing
strength and increasing deformability of the composition. With respect to the influence of
relative air moisture on the mechanical properties of the obtained electrospun membranes,
it should be mentioned that in most cases ultimate elongation values of the samples tested
in a moist environment are higher than those for the samples tested in dry environment.
Consequently, because of the better reinforcing effect, in some cases (untreated PVA and
10PVA130(PHGEx/BRA)) tensile strength values obtained under moist environment are
even higher than those obtained under dry environment.
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propolis, tested at RH = 8%.
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2.8. Air Permeability Analysis of Electrospun Membranes

The results show that the air permeability is influenced by the following factors:
additives added to the electrospun solution, fiber diameters, surface density and thick-
ness. The air permeability of 1 µm-thick electrospun fibrous nanomembrane samples is
shown in Table 3. Average results for each sample are as follows: 10PVA130—0.160 mm/s,
10PVA130(PW/LT)—0.276 mm/s, 10PVA130(PHGEx/BRA)—0.046 mm/s. Air permeabil-
ity of 10PVA130(PW/LT) increases by 73%, but for sample 10PVA130(PHGEx/BRA) it
decreases by 71%.

Table 3. Air permeability of 1 µm thick electrospun fibrous membrane samples.

Sample Air Permeability, L/min Air permeability Coefficient, mm/s

10PVA130 0.005 ± 0.0022 0.160

10PVA130(PW/LT) 0.008 ± 0.0023 0.276

10PVA130(PHGEx/BRA) 0.001 ± 0.0003 0.046

All samples show the air permeability properties, which are important for food pack-
aging, especially for storing berries and vegetables, allowing the product to “breathe”.
But it should be noted that samples with propolis water 10PVA130(PW/LT) show an-
tibacterial activity against microorganisms, which makes this compound more suitable for
food packaging.

3. Materials and Methods
3.1. Materials

PVA polymer matrix used in this research was obtained from Sigma-Aldrich Chemical
Company (Darmstadt, Germany). The series of samples using PVA with different molec-
ular weights—130 KDa (Polyvinyl alcohol 18–88, melting point is 200 ◦C) and 145 KDa
(Mowiol 28–99, melting point is 230 ◦C)—were prepared. In the study, two different molec-
ular weights of PVA were used to select the most suitable molecular weight for integrating
propolis into solutions. Various types of propolis extracts were used (Table 4) as additives.

The solutions required 2–13 h of stirring at 1000 rpm on a magnetic stirrer MSH-300
(BioSan, Riga, Latvia) to prepare 60 mL of spinning solution, Table 5. In the basic mixing
scheme of PVA solution, distilled water was replaced with propolis additive (6 g of PVA and
54 g of PW/LT) to prepare solution with 90 wt% propolis water (PW/LT) content according
to previous research [22]. The solution with (6 g of PVA, 54 g of distilled water and
4.2 g of PHGEx/BRA) 7 wt% propolis hydroglyceric extract (PHGEx/BRA) and solution
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(6 g of PVA, 54 g of distilled water and 8.4 g of PEx/LV) with 14 wt% ethyl alcohol propolis
extract (PEx/LV) were obtained.

Table 4. Data on propolis and its extracts [20].

Propolis Extract PW/LT PHGEx/BRA PEx/LV

Manufacturer UAB Medicata (Vilnius, Lithuania) B Natural SRL (Corbetta, Italy) Laboratory-made
Propolis content 30.8% 20–25% 30%
Propolis origin Lithuania Brazil Latvia

Conductivity, µS/cm 1526 3 9
pH 3.6 4.5 4.9

Total Flavonoids, mg/g 0.087 ± 0.005 1.15 ± 0.08 8.87 ± 0.05

Table 5. Electrospinning solutions parameters.

Sample
Molar

Weight,
KDa

PVA
Content in
Solution,

wt%

Mixing
Temp., ◦C

Propolis ex.
Content,

wt%

Stirring
Time, h

Viscosity,
mPa∗s

Conductivity,
µS/cm pH

10PVA145 145 10 90–110 0 13 782 280 5.9
10PVA130 130 10 75–90 0 2 492 [22] 366 [22] 5.8 [22]

10PVA130(PW/LT) 130 10 75–90 90 2 1004 [22] 1274 [22] 4.6 [22]
10PVA130(PHGEx/BRA) 130 10 75–90 7 3 276 [22] 290 [22] 4.8 [22]

10PVA130(PEx/LV) 130 10 75–90 14 3 170 160 5.6

3.2. Fabrications of Fiber Membranes

The cylinder-type electrode was used to obtain membranes by using electrospinning
equipment Nanospider Lab 200 (Elmarco Company, Liberec, Czech Republic). The elec-
trospinning voltage was 55–62 kV, the distance between the electrodes was 18 cm and the
electrode rotation speed 4 rpm was adjusted according to the molecular weight of each
polymer and the concentration of PVA in the solution. Electrospinning took place at 21.5 ◦C
and relative air humidity ranged from 18–20%. Polypropylene nonwoven support material
(30 g/m2) was used for fiber collection.

3.3. Characterizations of Fiber Membranes and Solutions

Fiber quality and diameters were analyzed from micrographs obtained by scanning elec-
tron microscope SEM Mira Tescan (Tescan Orsay Holding a.s., Bern, Czech Republic). Before
microscopic investigations, test specimens were covered with a gold layer (5–20 nm). The
image analysis program “ImageJ” was used for diameters measurements (100 measurements
were obtained at 5 different locations for each sample).

Infrared spectra in ATR mode were recorded using Thermo Fischer Scientific Fourier
transform infrared spectrometer Nicolet 6700 (Thermo Fisher Scientific, Waltham, MA,
USA) within the spectral range 650–4000 cm−1 and resolution of 4 cm−1.

Differential scanning calorimetry (DSC) was performed using Mettler/Toledo DSC 3
(Mettler-Toledo, LLC, Columbus, OH, USA) differential scanning calorimeter. The test was
performed from room temperature to 200 ◦C under airflow to evaluate behavior of the developed
materials during preparation and processing. Average mass of the test specimen was 10 mg.

Thermogravimetric analysis (TGA) was performed using Mettler/Toledo TGA 3+
(Mettler-Toledo, LLC, Columbus, OH, USA) thermogravimetric analyzer. The test was
performed from 28 ◦C to 800 ◦C under airflow, according to ISO 11358-1:2022 [29]. Average
mass of the test specimen was 10 mg.

The following cultures Listeria monocytogenes ATCC 13932, Salmonella enteritidis
ATCC 13076, Escherichia coli ATCC 25922 were used for testing the antimicrobial effect.
A suspension with an optical density of 0.5 McFarland (Mueller-Hinton agar or/with
blood) was prepared from the microbial cultures. Then inoculation was performed on
the media and the test sample (diameter 15 mm) was placed on it. After incubation
(36 ◦C ± 1 ◦C, without turning with the lid up), inhibition of growth around the test
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material was evaluated. For quality control, standard antibiotic discs containing Ampicillin
10 µg (diameter 6 mm) were used.

Tensile properties were determined at room temperature using “Tinus Olsen TMC”
universal testing machine “ST25” equipped (Tinius Olsen TMC, Horsham, PA, USA)
with 1 kN load cell, according ISO 13934-1:2013 [30]. Specimens with lateral dimen-
sions 10 × 50 mm were cut from the electrospun fibers mats and were fixed into the
C-shaped paper frames. During the tensile test, prepared paper frame with test spec-
imen was fixed in the tensile grips of the testing machine, ensuring that the distance
between the grips is 20 mm, lateral border of the paper frame was cut and the test was
performed at the test speed—1 mm/min. Tensile tests were performed at 2 different rel-
ative humidity levels—8% (dry state) and 54% (moist state). Part of the test specimens
(20 for each sample) were tested as delivered, while others were tested after thermal
treatment at 100 ◦C for 1 h.

Air permeability was tested using SDL Atlas Air Permeability tester (SDL Atlas Ltd.,
Hong Kong, China) according to LVS EN ISO 9237:2001 [31] standard. Used sample test
area was 5 cm2 selected air pressure difference on both sides of material was 100 Pa. For
each sample, 10 measurements were made in different places, and sample thickness was
measured according to measured permeability area by “SDL Atlas Schrader VA-353454”.
Average air permeability is expressed dm3/min or L/min. Coefficient of air permeability
(R) is expressed in mm/s and can be converted to dm3/min or L/min to mm/s, with an
Equation (1), where qv—average air permeability, dm3/min or L/min, A—sample area
through which air flow is directed, cm2 and 167—numerical value for conversion of air
permeability from dm3/min or L/min to mm/s.

R =
qv

A
× 167 (1)

4. Conclusions

The results of this study demonstrated that by incorporating the propolis additives
into PVA, the antimicrobial and tensile strength properties of electrospun membranes
were improved. Propolis water seemed to be a more favorable additive than others for
the integration of electrospun membranes due to improved tensile strength, air perme-
ability, membrane uniformity, and antimicrobial properties. The evaluated PVA/propolis
nanofibers’ tensile deformation properties change significantly under different environmen-
tal humidity conditions. To conclude, edible propolis containing PVA nano and microfiber
membranes with improved functionality has the potential to be used in food-packaging ap-
plications. Further research is needed to investigate membranes’ suitability for preserving
fruits and berries to obtain evidence for their potential industrial application.
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2022; p. 79949. [CrossRef]

4. Patiño Vidal, C.; López de Dicastillo, C.; Rodríguez-Mercado, F.; Guarda, A.; Galotto, M.J.; Muñoz-Shugulí, C. Electrospinning
and cyclodextrin inclusion complexes: An emerging technological combination for developing novel active food packaging
materials. Crit. Rev. Food Sci. Nutr. 2022, 62, 5495–5510. [CrossRef] [PubMed]

5. Horská, E.; Šedík, P.; Mušinská, K.; Savitskaya, T.; Grinshpan, D.; Kačániová, M. Acceptability of Edible Food Packaging in
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