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Abstract: Bergenin (BER), a natural component of polyphenols, has a variety of pharmacological
activities, especially in improving drug metabolism, reducing cholestasis, anti-oxidative stress and
inhibiting inflammatory responses. The aim of this study was to investigate the effects of BER on liver
injury induced by isonicotinic acid hydrazide (INH) and rifampicin (RIF) in mice. The mice model of
liver injury was established with INH (100 mg/kg)+RIF (100 mg/kg), and then different doses of
BER were used to intervene. The pathological morphology and biochemical indicators of mice were
detected. Meanwhile, RNA sequencing was performed to screen the differentially expressed genes
and signaling pathways. Finally, critical differentially expressed genes were verified by qRT-PCR
and Western blot. RNA sequencing results showed that 707 genes were significantly changed in the
INH+RIF group compared with the Control group, and 496 genes were significantly changed after the
BER intervention. These differentially expressed genes were mainly enriched in the drug metabolism,
bile acid metabolism, Nrf2 pathway and TLR4 pathway. The validation results of qRT-PCR and
Western blot were consistent with the RNA sequencing. Therefore, BER alleviated INH+RIF-induced
liver injury in mice. The mechanism of BER improving INH+RIF-induced liver injury was related to
regulating drug metabolism enzymes, bile acid metabolism, Nrf2 pathway and TLR4 pathway.

Keywords: bergenin; isonicotinic acid hydrazide; rifampicin; liver injury; RNA sequencing

1. Introduction

Isonicotinic acid hydrazide (INH) and rifampicin (RIF) are clinical first-line drugs for
tuberculosis treatment [1], and they are the main drugs that cause drug-induced liver injury
(DILI). The incidence of DILI ranges from 2.0% to 28% in the world [2]. DILI is a major
cause of acute hepatitis, which leads to liver fibrosis and eventually liver cancer [3]. Under
the action of N-acetyltransferase and amide hydrolase, INH metabolizes into hydrazine and
acetyl hydrazine. Hydrazine has a direct toxic effect on hepatocytes. Concurrently, acetyl
hydrazine is oxidized in the presence of CytochromeP450 (Cyp450) to produce reactive
oxygen species (ROS) and other active intermediate products [4,5]. The combination of
INH and RIF is more hepatotoxic than INH or RIF alone. The RIF is deacetylated, which
provides acetyl for the acetylation of INH and accelerates the metabolism of INH. In
addition, RIF can also increase drug-metabolizing enzyme activities and the metabolically
active intermediate of acetyl hydrazine, which results in liver cell necrosis or apoptosis [6].
Although INH and RIF are so harmful to the liver, their use in patients is inevitable clinically.
Consequently, it is of great significance to find effective drugs to alleviate INH+RIF-induced
liver injury.
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Although it has been shown that some drugs (such as Naringenin, Phloridzin) have a
therapeutic effect on INH+RIF-induced liver injury [7,8], clinically, the treatment of liver
injury caused by INH+RIF is still inconclusive. Many compounds in natural plants have
been found to be effective in treating various diseases [9,10]. Bergenin (BER), a natural
component of polyphenols, has good antitussive, expectorant, anti-inflammatory, antiviral
and neuroprotective effects. Nowadays, BER is mainly used in the clinical treatment of
chronic bronchitis [11]. BER has been shown to improve acute liver injury and liver fibro-
sis [12,13]. It has been reported that BER inhibited nuclear factor kappa B (NF-κB), and thus
down-regulated tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), myeloperoxidase
(MPO) and cyclooxygenase-2 (COX-2) to attenuate hepatocyte death [14]. Our previous
studies have also shown that BER improves oxidative stress caused by liver injury. This
is due to the regulation of the p-JNK/JNK and P-AMPK/AMPK signaling pathways [15].
These studies suggest that BER plays a role in protecting the liver by improving oxidative
stress and the inflammatory response. It has been shown that oxidative stress, inflammatory
reactions and cholestasis are important inducements of liver injury [16]. However, whether
BER can improve INH+RIF-induced liver injury and its mechanism remain unclear.

RNA sequencing is the transcriptome with a low background noise and no upper
quantitative limit. It is characterized by a high degree of technical and biological repeata-
bility. Furthermore, by comparing the gene sequences of all the transcriptional products
with the known gene pool, RNA sequencing can find out the differentially expressed
genes and the related signaling pathways. RNA sequencing plays an important role in
revealing the potential targets of diseases and clarifying the mechanism of drug action [17].
Therefore, RNA sequencing was used to investigate the mechanism of BER alleviating
INH+RIF-induced liver injury.

2. Results
2.1. Effects of BER on Liver Function

Compared with the Control group, the activities or contents of ALT, AST, AKP, TBA,
DBIL and TBIL in the INH+RIF group were significantly up-regulated. Compared with
the INH+RIF group, they were significantly down-regulated after the BER intervention
(Figure 1A,B).

Compared with the Control group, the activities of SOD and GSH-Px were signifi-
cantly down-regulated, while the contents of MDA were significantly up-regulated in the
INH+RIF group. Compared with the INH+RIF group, the activities of SOD and GSH-Px
in the liver were significantly up-regulated, and the contents of MDA were significantly
down-regulated after BER treatment (Figure 1C,D). Meanwhile, TNF-α, IL-6 and IL-1β
levels were significantly up-regulated in the INH+RIF group. Compared with the INH+RIF
group, they were significantly down-regulated after the BER intervention (Figure 1E).

HE staining showed normal hepatocyte structure without necrosis or inflammation in
the Control group. However, massive focal necrosis and inflammatory cell infiltration was
shown in the INH+RIF group (Figure 1F). After the BER intervention, the above symptoms
were improved. Furthermore, the HE staining results of the BER (80 mg/kg) group showed
no significant pathological differences in heart, liver, spleen, lung, kidney and brain tissues
compared with the Control group (Figure 1G). This indicated that BER (80 mg/kg) had no
significant toxic effects.

2.2. RNA Sequencing Analysis Results
2.2.1. Overview of RNA Sequencing Analysis

Compared with the Control group, 707 genes with significant changes were screened
in the INH+RIF group, of which 328 were up-regulated and 379 were down-regulated
(Figure 2A). Compared with the INH+RIF group, 496 genes were significantly changed
after the BER intervention, of which 254 were up-regulated and 242 were down-regulated
(Figure 2B).
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Figure 1. Effects of BER on liver function. (A) ALT, AST and AKP activities in serum. (B) TBA, TBIL 

and DBIL contents in serum. (C) SOD and GSH-Px activities in liver tissue. (D) MDA content in liver 

tissue. (E) TNF-α, IL-6 and IL-1β contents in liver tissue. (F) HE staining. (G) HE staining of the 

heart, liver, spleen, lung, kidney and brain in the Control group and BER (80 mg/kg) group. All data 

were presented as the means ± SEM (n = 10; * p < 0.05, ** p < 0.01). Bar = 100 μm, yellow arrow: focal 
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Figure 1. Effects of BER on liver function. (A) ALT, AST and AKP activities in serum. (B) TBA, TBIL
and DBIL contents in serum. (C) SOD and GSH-Px activities in liver tissue. (D) MDA content in liver
tissue. (E) TNF-α, IL-6 and IL-1β contents in liver tissue. (F) HE staining. (G) HE staining of the
heart, liver, spleen, lung, kidney and brain in the Control group and BER (80 mg/kg) group. All data
were presented as the means ± SEM (n = 10; * p < 0.05, ** p < 0.01). Bar = 100 µm, yellow arrow: focal
necrosis and inflammatory cell infiltration.

2.2.2. Effects of BER on Drug Metabolism Genes

Compared with the Control group, the expressions of drug-phase I genes flavin-
containing monooxygenase 1 (Fmo1), flavin-containing monooxygenase 2 (Fmo2) and
monoamine oxidase b (Maob) were significantly up-regulated in the INH+RIF group.
Compared with the INH+RIF group, they were significantly down-regulated by the
BER intervention. Compared with the Control group, the expressions of phase II genes
N-acetyltransferase 1 (Nat1) and N-acetyltransferase 2 (Nat2) were significantly down-
regulated in the INH+RIF group. Compared with the INH+RIF group, they were sig-
nificantly up-regulated after the BER intervention. Compared with the Control group,
the gene expressions of glutathione S-transferase m2 (Gstm2), glutathione S-transferase
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m3 (Gstm3), glutathione S-transferase m7 (Gstm7), glutathione S-transferase α 1 (Gsta1),
glutathione S-transferase α 2 (Gsta2), UDP glucuronosyltransferase family 1 member A9
(Utg1a9) and UDP glucuronosyltransferase family 1 member A10 (Utg1a10) were signifi-
cantly up-regulated in the INH+RIF group. Compared with the INH+RIF group, they were
significantly down-regulated after the BER intervention (Figure 3A,B).

2.2.3. Effects of BER on Bile Acid Metabolism Genes

Compared with the Control group, the expressions of the bile acidproduction-related
genes sulfotransferase 2a7 (Sult2a7) and acetyl-CoA acetyltransferase 2 (Acat2) were sig-
nificantly up-regulated in the INH+RIF group. Compared with the INH+RIF group, they
were significantly down-regulated after the BER intervention. Compared with the Control
group, the expressions of bile acid transport-related genes ATP binding cassette subfamily
C member 3 (Abcc3), ATP binding cassette subfamily C member 4 (Abcc4), solute carrier
organic anion transporter family 1 member a1 (Slco1a1), solute carrier family 10 member a2
(Slc10a2) and aquaporin 8 (Aqp8) were significantly up-regulated in the INH+RIF group.
Compared with the INH+RIF group, they were significantly down-regulated after the BER
intervention (Figure 4A,B).

Molecules 2023, 28, x FOR PEER REVIEW 4 of 17 
 

 

 

Figure 2. The hierarchical cluster analysis and scatter plot of all differentially expressed genes. (A) 

The Control group vs. the INH+RIF group. (B) The INH+RIF group vs. the INH+RIF+BER (80 mg/kg) 

group. 

2.2.2. Effects of BER on Drug Metabolism Genes 

Compared with the Control group, the expressions of drug-phase I genes flavin-

containing monooxygenase 1 (Fmo1), flavin-containing monooxygenase 2 (Fmo2) and 

monoamine oxidase b (Maob) were significantly up-regulated in the INH+RIF group. 

Compared with the INH+RIF group, they were significantly down-regulated by the BER 

intervention. Compared with the Control group, the expressions of phase II genes N-

acetyltransferase 1 (Nat1) and N-acetyltransferase 2 (Nat2) were significantly down-

regulated in the INH+RIF group. Compared with the INH+RIF group, they were 

significantly up-regulated after the BER intervention. Compared with the Control group, 

the gene expressions of glutathione S-transferase m2 (Gstm2), glutathione S-transferase 

m3 (Gstm3), glutathione S-transferase m7 (Gstm7), glutathione S-transferase α 1 (Gsta1), 

glutathione S-transferase α 2 (Gsta2), UDP glucuronosyltransferase family 1 member A9 

(Utg1a9) and UDP glucuronosyltransferase family 1 member A10 (Utg1a10) were 

significantly up-regulated in the INH+RIF group. Compared with the INH+RIF group, 

they were significantly down-regulated after the BER intervention (Figure 3A,B). 
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(A) The Control group vs. the INH+RIF group. (B) The INH+RIF group vs. the INH+RIF+BER
(80 mg/kg) group.
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2.2.4. Effects of BER on Nrf2 Pathway Genes

Compared with the Control group, the gene expressions of cytochrome p450 2e1
(Cyp2e1) and Kelch-like ECH-associated protein-1 (Keap1) were significantly up-regulated,
while hepatocyte growth factor (Hgf), nuclear factor erythroid 2-related factor 2 (Nfe2l2,
Nrf2), heme oxygenase-1 (Hmox1) and quinone oxidoreductase 1 (Nqo1) were significantly
down-regulated in the INH+RIF group. Compared with the INH+RIF group, Cyp2e1
and Keap1 were significantly down-regulated, while Hgf, Nrf2, Hmox1 and Nqo1 were
up-regulated after the BER intervention (Figure 5A,B).
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(A) Heat map of Nrf2 pathway. (B) Histograms of Nrf2 pathway. All data were presented as the
means ± SEM (n = 3; fold change ≥ 1.5 and * p < 0.05, ** p < 0.01).

2.2.5. Effects of BER on TLR4 Pathway Genes

Compared with the Control group, the gene expressions of Toll-like receptor 4 (TLR4),
myeloid differentiation primary response 88 (MyD88), toll-interleukin 1 receptor domain-
containing adaptor protein (Tirap), nuclear receptor subfamily 2 group C member 2 (Nr2c2,
TAK1), B cell leukemia/lymphoma 2 (Bcl2), growth arrest and DNA-damage-inducible 45 β

(Gadd45b) were significantly up-regulated, while human nuclear factor κB inhibitor protein
α (Nfkbia, IKB-α) and human nuclear factor κB inhibitor protein β (Nfkbib, IKB-β) were
significantly down-regulated in the INH+RIF group. Compared with the INH+RIF group,
TLR4, MyD88, Tirap, Nr2c2 (TAK1), Bcl2 and Gadd45b were significantly down-regulated,
while Nfkbia (IKB-α) and Nfkbib (IKB-β) were significantly up-regulated after the BER
intervention. There was no significant difference in the expression of nuclear factor-κB p65
(NF-κB p65, Rela) among all groups (Figure 6A,B).
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2.3. Verification Experiment
2.3.1. The mRNA Expressions in Key Pathways Were Verified by qRT-PCR

To validate the results of RNA sequencing, qRT-PCR was used to detect the mRNA ex-
pressions of several important genes in the above pathway. Compared with the Control group,
mRNA expressions of drug-metabolizing-related genes Maob and Gstm3 were significantly
up-regulated in the INH+RIF group (increased by 235% and 96%, respectively). Compared
with the INH+RIF group, they were significantly down-regulated after the BER intervention
(reduced by 54.6% and 41.4%, respectively) (Figure 7A). Compared with the Control group,
mRNA expressions of Nat1 and Nat2 were down-regulated in the INH+RIF group (reduced
by 50% and 30%, respectively). Compared with the INH+RIF group, they were significantly
up-regulated after the BER intervention (increased by 94% and 166%, respectively) (Figure 7A).
The mRNA expressions of bile acid metabolizing-related genes Abcc3 and Abcc4 were sig-
nificantly up-regulated in the INH+RIF group (increased by 123% and 96%, respectively).
Compared with the INH+RIF group, they were significantly down-regulated after the BER
intervention (reduced by 52.9% and 45.9%, respectively) (Figure 7B). Compared with the
Control group, mRNA expressions of Nrf2 pathway-related genes Cyp2e1 and Keap1 were
significantly up-regulated in the INH+RIF group (increased by 116% and 100%, respectively).
Compared with the INH+RIF group, they were significantly down-regulated after the BER
intervention (were reduced by 51.4% and 27%, respectively). The mRNA expressions of Nfe2l2
(Nrf2), Hmox1 (HO-1) and Nqo1 were significantly down-regulated in the INH+RIF group
(reduced by 53%, 60% and 52%, respectively). Compared with the INH+RIF group, they were
significantly up-regulated after the BER intervention (increased by 89.4% and 140% and 70.8%,
respectively). (Figure 7C). Compared with the Control group, the mRNA expressions of
TLR4 and Myd88 were significantly up-regulated (increased by 132% and 62%, respectively).
Compared with the INH+RIF group, they were significantly down-regulated after the BER
intervention (reduced by 44.4% and 33.3%, respectively). (Figure 7D). There was no significant
difference in mRNA expression of Rela (NF-κB p65) (Figure 7D). The above results were
consistent with those of the RNA sequencing.
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Figure 7. Hepatic mRNA expressions of selected differentially expressed genes. (A) Relative mRNA
expressions of Maob, Nat1, Nat2 and Gstm3. (B) Relative mRNA expressions of Abcc3 and Abcc4.
(C) Relative mRNA expressions of Cyp2e1, Keap1, Nfe2l2 (Nrf2), Hmox1 and Nqo1. (D) Relative
mRNA expressions of TLR4, Myd88 and Rela (NF-κB p65). The relative expressions of mRNA were
normalized against the Control group, with GAPDH as the internal reference. All data were presented
as the mean ± SEM (n = 3; ** p < 0.01).
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2.3.2. The Protein Expressions of the Nrf2 Pathway Were Verified by Western Blot

Compared with the Control group, the protein expressions of Cyp2e1 and Keap1 were
significantly up-regulated (increased by 55% and 100.3%, respectively), and the protein
expressions of nuclear Nrf2, total Nrf2 and HO-1 were significantly down-regulated in the
INH+RIF group (reduced by 44% and 50% and 56%, respectively). Compared with the
INH+RIF group, the protein expressions of Cyp2e1 and Keap1 were significantly down-
regulated (reduced by 40.6% and 42.8%, respectively), while the protein expressions of
nuclear Nrf2, total Nrf2 and HO-1 were significantly up-regulated after the BER interven-
tion (increased by 53.6%, 66% and 104.5%, respectively) (Figure 8A–D). The above results
were consistent with those of the RNA sequencing.
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as the mean ± SEM (n = 3; * p < 0.05, ** p < 0.01).

2.3.3. The Protein Expressions of the TLR4 Pathway Were Verified by Western Blot

Compared with the Control group, the protein expressions of TLR4, MyD88, phospho-
rylated IκB kinase α/β (p-IKKα/β), and phosphorylated nuclear factor-κB p65 (p-NF-κB
p65) were significantly up-regulated (increased by 79%, 113%, 153% and 83%, respectively)
and IKB-α, IKB-β were significantly down-regulated in the INH+RIF group (reduced by
39% and 27%, respectively). Compared with the INH+RIF group, TLR4, MyD88 and
p-IKKα/β were significantly down-regulated (reduced by 29%, 55.4%, 56.1% and 43.2%,
respectively), while IKB-α and IKB-β were significantly up-regulated after the BER inter-
vention (increased by 75.4% and 50.7%, respectively) (Figure 9A,B). The above results were
consistent with those of RNA sequencing.
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3. Discussion

INH and RIF are considered to be potentially hepatotoxic and can induce liver damage.
A perennial application of INH and RIF can cause hepatocellular damage and cholesta-
sis [18]. In this study, the INH+RIF-induced liver injury was constructed according to
other studies [19]. After the BER intervention, the pathological changes of mouse liver
tissue were significantly improved. In addition, RNA sequencing was performed to in-
vestigate the mechanism of action. The results of RNA sequencing showed that the mech-
anism of BER alleviating INH+RIF-induced liver injury was related to the regulation
of drug-metabolizing enzymes, cholestasis, oxidative stress and inflammation. Further-
more, we verified the results of RNA sequencing by qRT-PCR and Western blot, and
further elucidated the mechanism of liver protection of BER in terms of Nrf2 pathway and
TLR4 pathway.

HE staining showed that INH+RIF induced focal necrosis and inflammatory infil-
tration in mouse liver tissue, indicating successful model construction (Figure 1F). When
cell-membrane permeability is increased, ALT and AST from the hepatocytes are released
into the blood, resulting in increased serum activity [20]. Therefore, ALT and AST are
important and sensitive biochemical indicators in liver function. In this study, ALT and
AST activities were significantly down-regulated after the BER intervention (Figure 1A).
This confirmed the protective effects of BER on INH+RIF-induced liver injury. Clinically,
cholestasis is the most common type of liver injury caused by antituberculosis drugs.
Bilirubin excretion was competitively inhibited by INH+RIF, with elevated AKP, TBA,
DBIL and TBIL. In this study, serum levels of AKP, TBA, DBIL and TBIL were decreased
by BER (Figure 1B). It suggested that BER alleviated INH+RIF-induced liver injury by
ameliorating cholestasis.

It has been shown that INH+RIF-induced liver injury was closely related to abnormal
drug metabolism, cholestasis, oxidative stress and inflammatory response [18]. Subse-
quently, RNA sequencing was processed in liver tissue to obtain the differentially expressed
genes. They were focused on the effects of BER on the drug metabolism pathway, bile acid
metabolism pathway, Nrf2 pathway and TLR4 pathway.

The drug metabolism process can be divided into phase I and phase II. Phase I in-
cludes oxidation, reduction and hydrolysis. Phase II includes glucuronidation, sulphation
and glutathione coupling. Drug metabolism genes may be the main targets of INH+RIF-
induced liver injury. In this study, some genes related to drug metabolism were changed
in liver tissues after INH+RIF induction. N-acetyltransferases play an important role in
the metabolism of INH. INH is metabolized by N-acetyltransferases (Nat1, Nat2) to acetyl
hydrazine and finally hydrolyzed to non-toxic diacetyl hydrazine for excretion. The in-
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duction of INH+RIF leads to the down-regulation of Nat1 and Nat2 expression, which
leads to reduced acetylation of INH and production of toxic hydrazine [21,22], which was
also observed in this study and reversed by the BER intervention (Figures 3A,B and 7A).
Furthermore, due to the overlapping substrate specificity and the unresolved functional
significance of the Nat1 and Nat2 allelic variants, caution must be exercised in interpreting
the tissue localization of them based on metabolic activity. Numerous studies have exam-
ined Nat expression in tissues using RT-PCR [23–25], which is similar to our approaches. In
this study, the mRNA expression of Nat1 and Nat2 was down-regulated by INH+RIF. This
suggests the accumulation of toxic metabolites in the liver, which led to liver damage. Mean-
while, INH was further oxidized by Cyp2e1 and excessive acetyl radicals were generated.
RIF provides acetyl groups for INH and synergically induced liver injury. Flavin-containing
monooxygenase (Fmo1, Fmo3) is a kind of enzyme similar to CYPs, and it can catalyze
the oxidation of N, P, S (e.g., GSH) substances. In addition, Maob is also a very important
drug oxidase. In this study, the Fmo1, Fmo3 and Maob were abnormally expressed in
INH+RIF-induced liver injury and BER changed them (Figures 3A,B and 7A). Glutathione
S-transferases (GSTs), highly expressed detoxifying enzymes in the liver, catalyze glu-
tathione to bind to electrophiles (such as ROS and free radicals), which ultimately maintain
redox equilibrium. In this study, it was found that the expressions of Gstm2, Gstm3, Gstm7,
Gsta1 and Gsta2 were up-regulated by INH+RIF, which might be a stress response for
cells to get rid of toxic substances (Figure 3A,B). However, the BER intervention reduced
the expression of GSTs, and we hypothesized that BER inhibited the production of toxic
substances, leading to a relative decline in GST expression. UDP glucuronosyltransferase-
family genes (UGTs) are essential for the metabolism and clearance of many endogenous
and exogenous compounds, including bile acid, bilirubin, fatty acid, carcinogens and thera-
peutic drugs [26]. In this study, Ugt1a9 and Ugtla10 genes were abnormally up-regulated
in the INH+RIF group, and they were markedly down-regulated after the BER intervention
(Figure 3A,B). We speculated that UGTs might be up-regulated by the body for the sake
of adapting to abnormally high levels of bilirubin and bile acid. In other words, BER
reduced the levels of bilirubin and bile acid, thus down-regulating the expression of these
genes. Moreover, we paid attention to the expression of genes related to the bile acid
metabolism pathway.

Bile acid is the main product of cholesterol metabolism. Sulfotransferase (SULTs) and
Acat2 are important enzymes that promote cholesterol metabolism and bile acid production.
Cholesterol is catalyzed into bile acid by SULTs-mediated sulfosylation. Cholesterol is
catalyzed into cholesterol esters by Acat2, which speeds up the production of bile acid. In
this study, the expressions of Sult2a7 and Acat2 were abnormally increased after INH+RIF
induction, and significantly down-regulated after the BER intervention (Figure 4A,B). Abcc3
and Abcc4, members of the ATP binding box family (ABC), play an important role in bile
acid efflux. Their expressions are abnormally increased in certain liver disease states, such
as cholestasis, primary biliary cirrhosis and non-alcoholic liver disease [27–29]. Therefore,
Abcc3 and Abcc4 are considered bile acid effector transporters in the adaptive response to
cholestatic injury. The synergistic action of ABC and solute carrier transporter (SLC) are re-
quired to maintain bile acid and bilirubin homeostasis. The increased uptake of hepatotoxic
drugs may be the result of increased SLC expression [30]. Aqp8, a transmembrane channel
protein, restricts the rate of water secretion in the ependymal membrane during biliary
secretion. In this study, after induction of INH+RIF, the expressions of genes related to bile
acid transport (Abcc3, Abcc4, Slco1a, Slc1oa2, Aqp8) were abnormally up-regulated. These
results indicated that the manifestation of INH+RIF-induced liver injury was cholestasis,
which was consistent with other studies [31,32]. After the BER intervention, cholestasis
in the liver was improved (Figures 4A,B and 7B). It was consistent with the results of this
research (Figure 1B). In short, the effect of BER on cholestasis in INH+RIF-induced liver
injury was related to the regulation of bile acid synthesis and transport.

Hgf is a substance that can stimulate hepatocyte proliferation and regulate the Nrf2
pathway. Nrf2 is a major transcription factor in response to oxidative stress. Nrf2 affects
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the expression of nearly 500 genes, which regulate the redox balance factors, detoxifying
enzymes, stress response proteins and metabolic enzymes [33]. Once the cell is stimulated,
Nrf2 will separate from Keap1 and enter the nucleus. Then, Nrf2 combines with antiox-
idant elements (ARE) to promote the synthesis of peroxidase enzymes (SOD, GSH-Px).
Cyp2e1 is induced by INH+RIF, which increases the release of ROS and weakens the activi-
ties of SOD and GSH-Px, thus promoting the production of lipid peroxidation products
(MDA). In this study, BER enhanced the activities of SOD and GSH-Px, and reduced the
contents of MDA (Figure 1C,D). In addition, BER significantly up-regulated the expressions
of Hgf and Nrf2, and markedly down-regulated the expressions of Cyp2e1 and Keap1
(Figures 5A,B, 7C and 8A–D). It suggested that BER played an antioxidant role. Nqo1 and
HO-1, as downstream factors of Nrf2, also play an important antioxidant role. In this
study, BER promoted the generation of HO-1 and Nqo1 (Figures 5A,B, 7C and 8B,D). This
suggests that BER increased the activity of peroxidase and reduced lipid peroxidation by
regulating the Nrf2 pathway, which ultimately alleviated liver cell death.

Oxidative stress and inflammation are often closely related. The TLR4 signaling
pathway is a classic pathway associated with inflammation. It has been reported that
inflammation and apoptosis were alleviated by inhibiting the TLR4/NF-κB pathway, which
ameliorated acute liver injury caused by lipopolysaccharides [34]. Therefore, in this study,
it was explored the role of the TLR4 pathway in liver injury induced by INH+RIF. TLR4 in-
duces macrophages to differentiate into M1 phenotypes, which then produces inflammatory
cytokines [35]. In this research, the expressions of TLR4, TNF-α, IL-6 and IL-1β in the liver
tissue of mice treated with INH+RIF were abnormally increased. After BER treatment, their
expressions were significantly down-regulated (Figures 1E, 6A,B, 7D and 9A,B). There is a
close relationship between TLR4 and NF-κB p65. Upon receiving the stimulus signal, TLR4
conducts the signal through a MyD88-dependent pathway [36]. MyD88 then interacts with
Tirap to trigger the autophosphorylation of IRAK1 and IRAK4, followed by the activation
of TAK1. Next, IKK is phosphorylated, leading to the inhibition of IKB-α/β. Gradually,
the NF-κB p65 subunit is dissociated into the nucleus and united to target genes. Finally, it
promotes the secretion of inflammatory cytokines [37]. In this study, gene or protein ex-
pressions of MyD88 and p-IKKα/β were abnormally increased, and IKB-α and IKB-β were
inhibited after induction by INH+RIF, while the BER intervention significantly inhibited
MyD88 and p-IKKα/β and increased IKB-α and IKB-β (Figures 6A,B and 9A,B). In short,
BER alleviated INH+RIF-induced inflammatory response in liver tissue by inhibiting the
TLR4 pathway.

RNA sequencing helped us fully understand the protective effect of BER on INH+RIF-
induced liver injury. In general, abnormal drug metabolism, cholestasis, oxidative stress
and inflammatory responses were important triggers of INH+RIF-induced liver injury. BER
was an active compound with antioxidant and anti-inflammatory effects in this study.

4. Materials and Methods
4.1. Animal Experiments

The male mice (6–8 weeks, 18–20 g) used in this study were purchased from Hunan
SJA Laboratory Animal Co. All mice were placed at a temperature of 22–25 ◦C and relative
humidity of 50–60%, and guaranteed 12 h of alternating light-darkness.

The 70 mice were randomly divided into 7 groups of 10 mice each group, including the
Control group, INH+RIF group, INH+RIF+Silymarin group, INH+RIF+BER (20 mg/kg)
group, INH+RIF+BER (40 mg/kg) group, INH+RIF+BER (80 mg/kg) group and BER
(80 mg/kg) group. Except for the Control group and BER (80 mg/kg) group, mice were
given 100 mg/kg INH (Purity: HPLC ≥ 98%; 54-85-3, Aladdin Biochemical Technology,
Co. Ltd., Shanghai, China) and 100 mg/kg RIF (Purity: HPLC ≥ 97%, 13292-46-1, Aladdin
Biochemical Technology Co., Ltd., Shanghai, China), followed by the corresponding dose
of BER (Purity: HPLC ≥ 98%; BD5122; Bidepharm, Shanghai, China) and Silymarin
(150 mg/kg, Purity: UV ≥ 80%; MB5982; Meilunbio, Dalian, China) for 30 days. Mice were
given 0.5% sodium carboxymethylcellulose solution (10 mL/kg) in the Control group. The
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BER (80 mg/kg) group was given 80 mg/kg BER for 30 days. All drugs were suspended in
0.5% sodium carboxymethyl cellulose solution. After 30 days, the blood and tissues were
collected for subsequent experiments. The blood samples were centrifuged at 4500 rpm for
15 min and serums were collected for biochemical analysis. Some liver tissues were quickly
immersed in liquid nitrogen for RNA sequencing, qRT-PCR and Western blot experiments.
In addition, some tissues of the liver, brain, heart, spleen, lung and kidney were fixed in 4%
paraformaldehyde solution for histological analysis. An overview of animal experiments
was shown in Figure 10.
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4.2. Liver Histological Analysis

The liver tissues of mice were fixed with 4% paraformaldehyde for 48 h. After gradient
ethanol dehydration and paraffin embedding, the wax blocks were cut into slices with a
thickness of 4 µm. HE staining was performed and the pathological changes of the liver
tissues were observed under a BX51 light microscope (Olympus; Tokyo, Japan).

4.3. Analysis of Serum Samples and Liver Tissue Samples

According to the instructions, the serums levels of alanine aminotransferase (ALT,
C009-2-1), aspartate aminotransferase (AST, C010-2-1), alkaline phosphatase (AKP, A059-
2-2), bile acid (TBA, E003-2-1), direct bilirubin (DBIL, C019-2-1) and total bilirubin (TBIL,
C019-1-1) were determined. The activities or contents of superoxide dismutase (SOD, A001-
3-2), glutathione peroxidase (GSH-Px, A005-1-2) and malondialdehyde (MDA, A003-1-2) in
the liver were also measured (Nanjing Jiancheng Bioengineering Research Institute, Nanjing,
China). The contents of TNF-α (MM-0132M1), (MM-0132M1), IL-6 (MM-0163M1) and IL-1β
(MM-0040M1) in liver tissues were determined by enzyme-linked immunosorbent assay
(Meimian Industrial Co., Ltd., Wuhan, China).

4.4. RNA Sequencing Analysis

Liver tissue samples (the Control group, INH+RIF group and INH+RIF+BER (80 mg/kg)
group, with 3 samples in each group) were sequenced by PanoMIX (Suzhou, China). A 300 bp
fragment was obtained by Oligo (dT) magnetic bead enrichment and ion interruption. The
first strand of cDNA (as a template for the second strand of cDNA) was synthesized using a
6-base random primer and reverse transcriptase. After library construction, library fragments
were enriched using PCR amplification, followed by library selection based on the fragment
size, with the library size at 450 bp. Next, libraries were checked for quality by Agilent
2100 Bioanalyzer, and then total library concentration and effective library concentration
were tested. The mixed libraries were uniformly diluted to 2 nM and formed into single-
stranded libraries by base denaturation. Finally, the libraries were sequenced by double-end
(Paired-end, PE) sequencing based on the Illumina sequencing platform. Tophat2 was used
to compare clean reads with the reference genome. Then, DESeq (v1.38.3) software was
used for differential expression analysis based on the read count of genes. p ≤ 0.05 and
foldchange ≥ 1.5 were set as the thresholds.

4.5. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

The total RNA of liver tissues was reverse transcribed into cDNA on the basis of
the HiFiScript gDNA Removal cDNA Synthesis Kit (Beijing ComWin Biotech Co., Ltd.,
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Beijing, China). According to the reaction conditions of the SYBR Green quantitative PCR
kit (Beijing ComWin Biotech Co., Beijing, China), the amplified cDNA was detected by
Quant Studio3 real-time quantitative PCR instrument (Thermo Fisher Scientific, Waltham,
MA, USA). The relative expression of each gene was calculated using GAPDH as the
internal reference (formula: 2−∆∆Ct). The primer sequences are shown in Table 1 (The Beijing
Genomics Institute, Shenzhen, China).

Table 1. Primer sequences.

Gene Primer Sequence (5′-3′)

Maob Forward ATGAGCAACAAAAGCGATGTGA
Reverse TCCTAATTGTGTAAGTCCTGCCT

Nat1 Forward AGATGCGAGCAGTTCCTTTTG
Reverse CCTGTACTAGAAGGTGGACCATT

Nat2 Forward ACACTCCAGCCAATAAGTACAGC
Reverse GGTAGGAACGTCCAAACCCA

Gstm3 Forward CCCCAACTTTGACCGAAGC
Reverse GGTGTCCATAACTTGGTTCTCCA

Abcc3 Forward CTGGGTCCCCTGCATCTAC
Reverse GCCGTCTTGAGCCTGGATAAC

Abcc4 Forward AGGAGCTTCAACGGTACTGG
Reverse GCCTTTGTTAAGGAGGGCTTC

Cyp2e1 Forward CGTTGCCTTGCTTGTCTGGA
Reverse AAGAAAGGAATTGGGAAAGGTCC

Keap1 Forward TGCCCCTGTGGTCAAAGTG
Reverse GGTTCGGTTACCGTCCTGC

Nrf2 Forward TCTTGGAGTAAGTCGAGAAGTGT
Reverse GTTGAAACTGAGCGAAAAAGGC

Hmox1 Forward AAGCCGAGAATGCTGAGTTCA
Reverse GCCGTGTAGATATGGTACAAGGA

Nqo1 Forward AGGATGGGAGGTACTCGAATC
Reverse AGGCGTCCTTCCTTATATGCTA

TLR4 Forward ATGGCATGGCTTACACCACC
Reverse GAGGCCAATTTTGTCTCCACA

MyD88 Forward TCATGTTCTCCATACCCTTGGT
Reverse AAACTGCGAGTGGGGTCAG

NF-κB p65 Forward AGGCTTCTGGGCCTTATGTG
Reverse TGCTTCTCTCGCCAGGAATAC

4.6. Western Blot

A mixture of 60 mg of liver tissues mixed with 1 mL of RIPA lysis solution was homog-
enized using a biological sample homogenizer (Shanghai Jingxin Industrial Development
Co., Shanghai, China). The supernatant was obtained by centrifugation at 12,000 rpm for
30 min. Then, the protein concentration was determined according to the instructions of the
BCA kit. The proteins were separated by polyacrylamide gel electrophoresis (SDS-PAGE)
and then transferred to the NC membranes. Next, the NC membranes were blocked in
5% skim milk powder solution for 2 h and incubated overnight with primary antibodies:
MyD88 (bs-1047R); IKB-β (bs-10246R); p-IKK-α/β (bs-3237R); p-NF-κB p65 (bsm-52178R)
(Bioss, Beijing, Chain); NF-κB p65 (sc-8008, Santa Cruz, CA, USA); TLR-4 (19811-1-AP);
IKB-α (18220-1-1AP); Nrf2 (16396-1-AP); HO-1 (10701-1-AP); Cyp2e1 (19937-1-AP) (Protein-
tech, Wuhan, China); Histon-H3 (ab1791); Keap1 (ab227828); IKK-α/β (ab178870) (Abcam,
Cambridge, UK); and β-Actin (TA-09, Nakasugi Golden Bridge, Beijing, China). The next
day, the NC membranes were incubated with the secondary antibodies (Goat Anti-Mouse
IgG ZB-2305 or Goat Anti-Rabbit IgG ZB-2301, Sam Golden, Beijing, China) for 60 min.
Finally, the NC membranes were imaged in a GeneGnome XRQ professional chemilumines-
cence imaging system (Syngene, Cambridge, UK). The protein expressions were quantified
using Image-J and normalized with β-Actin as an internal reference.
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4.7. Statistical Analysis

IBM SPSS 20.0 software was used for statistical analysis. Unless otherwise stated, all
data were expressed as mean ± standard error of mean (SEM). Normal distributions were
assessed using the Shapiro–Wilk test. For two-group comparisons with equal variance as
determined by the F-test, an unpaired two-tailed t-test was used. Non-normally distributed
data were assessed by Mann–Whitney U test. For comparisons between multiple groups,
normally distributed and equal variance data were analyzed by one-way analysis of
variance (ANOVA). Non-normally distributed or unequal variance data were analyzed by
Kruskal–Wallis univariate analysis. p < 0.05 was considered statistically significant.

5. Conclusions

In this study, the molecular mechanism of BER alleviating INH+RIF-induced liver
injury was revealed. BER improved cholestasis, oxidative stress and inflammation, which
was related to the regulation of drug-metabolizing enzymes, bile acid metabolism, the Nrf2
pathway and the TLR4 pathway (Figure 11). This provides new methods for the clinical
treatment of INH+RIF-induced liver injury.
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Figure 11. Proposed model depicting the pathogenesis of INH+RIF-induced liver injury in mice, and
the underlying mechanisms of BER in improving liver injury. However, there was no data in this study
to support the upstream and downstream relationship of each factor, which was inferred according
to the references. The Control group vs. the INH+RIF group: ↑ up-regulated; ↓ down-regulated. The
INH+RIF group vs. the INH+RIF+BER (80 mg/kg) group: ↑ up-regulated; ↓ down-regulated.
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